-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathevaluate.py
692 lines (596 loc) · 31.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
import argparse
import numpy as np
import os
import re
from random import shuffle
import eval.stats
import utils
# import main.Args
from baselines.baseline_simple import *
class Args_evaluate():
def __init__(self):
# loop over the settings
# self.model_name_all = ['GraphRNN_MLP','GraphRNN_RNN','Internal','Noise']
# self.model_name_all = ['E-R', 'B-A']
self.model_name_all = ['GraphRNN_RNN']
# self.model_name_all = ['Baseline_DGMG']
# list of dataset to evaluate
# use a list of 1 element to evaluate a single dataset
self.dataset_name_all = ['caveman', 'grid', 'barabasi', 'citeseer', 'DD']
# self.dataset_name_all = ['citeseer_small','caveman_small']
# self.dataset_name_all = ['barabasi_noise0','barabasi_noise2','barabasi_noise4','barabasi_noise6','barabasi_noise8','barabasi_noise10']
# self.dataset_name_all = ['caveman_small', 'ladder_small', 'grid_small', 'ladder_small', 'enzymes_small', 'barabasi_small','citeseer_small']
self.epoch_start=100
self.epoch_end=3001
self.epoch_step=100
def find_nearest_idx(array,value):
idx = (np.abs(array-value)).argmin()
return idx
def extract_result_id_and_epoch(name, prefix, suffix):
'''
Args:
eval_every: the number of epochs between consecutive evaluations
suffix: real_ or pred_
Returns:
A tuple of (id, epoch number) extracted from the filename string
'''
pos = name.find(suffix) + len(suffix)
end_pos = name.find('.dat')
result_id = name[pos:end_pos]
pos = name.find(prefix) + len(prefix)
end_pos = name.find('_', pos)
epochs = int(name[pos:end_pos])
return result_id, epochs
def eval_list(real_graphs_filename, pred_graphs_filename, prefix, eval_every):
real_graphs_dict = {}
pred_graphs_dict = {}
for fname in real_graphs_filename:
result_id, epochs = extract_result_id_and_epoch(fname, prefix, 'real_')
if not epochs % eval_every == 0:
continue
if result_id not in real_graphs_dict:
real_graphs_dict[result_id] = {}
real_graphs_dict[result_id][epochs] = fname
for fname in pred_graphs_filename:
result_id, epochs = extract_result_id_and_epoch(fname, prefix, 'pred_')
if not epochs % eval_every == 0:
continue
if result_id not in pred_graphs_dict:
pred_graphs_dict[result_id] = {}
pred_graphs_dict[result_id][epochs] = fname
for result_id in real_graphs_dict.keys():
for epochs in sorted(real_graphs_dict[result_id]):
real_g_list = utils.load_graph_list(real_graphs_dict[result_id][epochs])
pred_g_list = utils.load_graph_list(pred_graphs_dict[result_id][epochs])
shuffle(real_g_list)
shuffle(pred_g_list)
perturbed_g_list = perturb(real_g_list, 0.05)
#dist = eval.stats.degree_stats(real_g_list, pred_g_list)
dist = eval.stats.clustering_stats(real_g_list, pred_g_list)
print('dist between real and pred (', result_id, ') at epoch ', epochs, ': ', dist)
#dist = eval.stats.degree_stats(real_g_list, perturbed_g_list)
dist = eval.stats.clustering_stats(real_g_list, perturbed_g_list)
print('dist between real and perturbed: ', dist)
mid = len(real_g_list) // 2
#dist = eval.stats.degree_stats(real_g_list[:mid], real_g_list[mid:])
dist = eval.stats.clustering_stats(real_g_list[:mid], real_g_list[mid:])
print('dist among real: ', dist)
def compute_basic_stats(real_g_list, target_g_list):
dist_degree = eval.stats.degree_stats(real_g_list, target_g_list)
dist_clustering = eval.stats.clustering_stats(real_g_list, target_g_list)
return dist_degree, dist_clustering
def clean_graphs(graph_real, graph_pred):
''' Selecting graphs generated that have the similar sizes.
It is usually necessary for GraphRNN-S version, but not the full GraphRNN model.
'''
shuffle(graph_real)
shuffle(graph_pred)
# get length
real_graph_len = np.array([len(graph_real[i]) for i in range(len(graph_real))])
pred_graph_len = np.array([len(graph_pred[i]) for i in range(len(graph_pred))])
# select pred samples
# The number of nodes are sampled from the similar distribution as the training set
pred_graph_new = []
pred_graph_len_new = []
for value in real_graph_len:
pred_idx = find_nearest_idx(pred_graph_len, value)
pred_graph_new.append(graph_pred[pred_idx])
pred_graph_len_new.append(pred_graph_len[pred_idx])
return graph_real, pred_graph_new
def load_ground_truth(dir_input, dataset_name, model_name='GraphRNN_RNN'):
''' Read ground truth graphs.
'''
if not 'small' in dataset_name:
hidden = 128
else:
hidden = 64
if model_name=='Internal' or model_name=='Noise' or model_name=='B-A' or model_name=='E-R':
fname_test = dir_input + 'GraphRNN_MLP' + '_' + dataset_name + '_' + str(args.num_layers) + '_' + str(
hidden) + '_test_' + str(0) + '.dat'
else:
fname_test = dir_input + model_name + '_' + dataset_name + '_' + str(args.num_layers) + '_' + str(
hidden) + '_test_' + str(0) + '.dat'
try:
graph_test = utils.load_graph_list(fname_test,is_real=True)
except:
print('Not found: ' + fname_test)
logging.warning('Not found: ' + fname_test)
return None
return graph_test
def eval_single_list(graphs, dir_input, dataset_name):
''' Evaluate a list of graphs by comparing with graphs in directory dir_input.
Args:
dir_input: directory where ground truth graph list is stored
dataset_name: name of the dataset (ground truth)
'''
graph_test = load_ground_truth(dir_input, dataset_name)
graph_test_len = len(graph_test)
graph_test = graph_test[int(0.8 * graph_test_len):] # test on a hold out test set
mmd_degree = eval.stats.degree_stats(graph_test, graphs)
mmd_clustering = eval.stats.clustering_stats(graph_test, graphs)
try:
mmd_4orbits = eval.stats.orbit_stats_all(graph_test, graphs)
except:
mmd_4orbits = -1
print('deg: ', mmd_degree)
print('clustering: ', mmd_clustering)
print('orbits: ', mmd_4orbits)
def evaluation_epoch(dir_input, fname_output, model_name, dataset_name, args, is_clean=True, epoch_start=1000,epoch_end=3001,epoch_step=100):
with open(fname_output, 'w+') as f:
f.write('sample_time,epoch,degree_validate,clustering_validate,orbits4_validate,degree_test,clustering_test,orbits4_test\n')
# TODO: Maybe refactor into a separate file/function that specifies THE naming convention
# across main and evaluate
if not 'small' in dataset_name:
hidden = 128
else:
hidden = 64
# read real graph
if model_name=='Internal' or model_name=='Noise' or model_name=='B-A' or model_name=='E-R':
fname_test = dir_input + 'GraphRNN_MLP' + '_' + dataset_name + '_' + str(args.num_layers) + '_' + str(
hidden) + '_test_' + str(0) + '.dat'
elif 'Baseline' in model_name:
fname_test = dir_input + model_name + '_' + dataset_name + '_' + str(64) + '_test_' + str(0) + '.dat'
else:
fname_test = dir_input + model_name + '_' + dataset_name + '_' + str(args.num_layers) + '_' + str(
hidden) + '_test_' + str(0) + '.dat'
try:
graph_test = utils.load_graph_list(fname_test,is_real=True)
except:
print('Not found: ' + fname_test)
logging.warning('Not found: ' + fname_test)
return None
graph_test_len = len(graph_test)
graph_train = graph_test[0:int(0.8 * graph_test_len)] # train
graph_validate = graph_test[0:int(0.2 * graph_test_len)] # validate
graph_test = graph_test[int(0.8 * graph_test_len):] # test on a hold out test set
graph_test_aver = 0
for graph in graph_test:
graph_test_aver+=graph.number_of_nodes()
graph_test_aver /= len(graph_test)
print('test average len',graph_test_aver)
# get performance for proposed approaches
if 'GraphRNN' in model_name:
# read test graph
for epoch in range(epoch_start,epoch_end,epoch_step):
for sample_time in range(1,4):
# get filename
fname_pred = dir_input + model_name + '_' + dataset_name + '_' + str(args.num_layers) + '_' + str(hidden) + '_pred_' + str(epoch) + '_' + str(sample_time) + '.dat'
# load graphs
try:
graph_pred = utils.load_graph_list(fname_pred,is_real=False) # default False
except:
print('Not found: '+ fname_pred)
logging.warning('Not found: '+ fname_pred)
continue
# clean graphs
if is_clean:
graph_test, graph_pred = clean_graphs(graph_test, graph_pred)
else:
shuffle(graph_pred)
graph_pred = graph_pred[0:len(graph_test)]
print('len graph_test', len(graph_test))
print('len graph_validate', len(graph_validate))
print('len graph_pred', len(graph_pred))
graph_pred_aver = 0
for graph in graph_pred:
graph_pred_aver += graph.number_of_nodes()
graph_pred_aver /= len(graph_pred)
print('pred average len', graph_pred_aver)
# evaluate MMD test
mmd_degree = eval.stats.degree_stats(graph_test, graph_pred)
mmd_clustering = eval.stats.clustering_stats(graph_test, graph_pred)
try:
mmd_4orbits = eval.stats.orbit_stats_all(graph_test, graph_pred)
except:
mmd_4orbits = -1
# evaluate MMD validate
mmd_degree_validate = eval.stats.degree_stats(graph_validate, graph_pred)
mmd_clustering_validate = eval.stats.clustering_stats(graph_validate, graph_pred)
try:
mmd_4orbits_validate = eval.stats.orbit_stats_all(graph_validate, graph_pred)
except:
mmd_4orbits_validate = -1
# write results
f.write(str(sample_time)+','+
str(epoch)+','+
str(mmd_degree_validate)+','+
str(mmd_clustering_validate)+','+
str(mmd_4orbits_validate)+','+
str(mmd_degree)+','+
str(mmd_clustering)+','+
str(mmd_4orbits)+'\n')
print('degree',mmd_degree,'clustering',mmd_clustering,'orbits',mmd_4orbits)
# get internal MMD (MMD between ground truth validation and test sets)
if model_name == 'Internal':
mmd_degree_validate = eval.stats.degree_stats(graph_test, graph_validate)
mmd_clustering_validate = eval.stats.clustering_stats(graph_test, graph_validate)
try:
mmd_4orbits_validate = eval.stats.orbit_stats_all(graph_test, graph_validate)
except:
mmd_4orbits_validate = -1
f.write(str(-1) + ',' + str(-1) + ',' + str(mmd_degree_validate) + ',' + str(
mmd_clustering_validate) + ',' + str(mmd_4orbits_validate)
+ ',' + str(-1) + ',' + str(-1) + ',' + str(-1) + '\n')
# get MMD between ground truth and its perturbed graphs
if model_name == 'Noise':
graph_validate_perturbed = perturb(graph_validate, 0.05)
mmd_degree_validate = eval.stats.degree_stats(graph_test, graph_validate_perturbed)
mmd_clustering_validate = eval.stats.clustering_stats(graph_test, graph_validate_perturbed)
try:
mmd_4orbits_validate = eval.stats.orbit_stats_all(graph_test, graph_validate_perturbed)
except:
mmd_4orbits_validate = -1
f.write(str(-1) + ',' + str(-1) + ',' + str(mmd_degree_validate) + ',' + str(
mmd_clustering_validate) + ',' + str(mmd_4orbits_validate)
+ ',' + str(-1) + ',' + str(-1) + ',' + str(-1) + '\n')
# get E-R MMD
if model_name == 'E-R':
graph_pred = Graph_generator_baseline(graph_train,generator='Gnp')
# clean graphs
if is_clean:
graph_test, graph_pred = clean_graphs(graph_test, graph_pred)
print('len graph_test', len(graph_test))
print('len graph_pred', len(graph_pred))
mmd_degree = eval.stats.degree_stats(graph_test, graph_pred)
mmd_clustering = eval.stats.clustering_stats(graph_test, graph_pred)
try:
mmd_4orbits_validate = eval.stats.orbit_stats_all(graph_test, graph_pred)
except:
mmd_4orbits_validate = -1
f.write(str(-1) + ',' + str(-1) + ',' + str(-1) + ',' + str(-1) + ',' + str(-1)
+ ',' + str(mmd_degree) + ',' + str(mmd_clustering) + ',' + str(mmd_4orbits_validate) + '\n')
# get B-A MMD
if model_name == 'B-A':
graph_pred = Graph_generator_baseline(graph_train, generator='BA')
# clean graphs
if is_clean:
graph_test, graph_pred = clean_graphs(graph_test, graph_pred)
print('len graph_test', len(graph_test))
print('len graph_pred', len(graph_pred))
mmd_degree = eval.stats.degree_stats(graph_test, graph_pred)
mmd_clustering = eval.stats.clustering_stats(graph_test, graph_pred)
try:
mmd_4orbits_validate = eval.stats.orbit_stats_all(graph_test, graph_pred)
except:
mmd_4orbits_validate = -1
f.write(str(-1) + ',' + str(-1) + ',' + str(-1) + ',' + str(-1) + ',' + str(-1)
+ ',' + str(mmd_degree) + ',' + str(mmd_clustering) + ',' + str(mmd_4orbits_validate) + '\n')
# get performance for baseline approaches
if 'Baseline' in model_name:
# read test graph
for epoch in range(epoch_start, epoch_end, epoch_step):
# get filename
fname_pred = dir_input + model_name + '_' + dataset_name + '_' + str(
64) + '_pred_' + str(epoch) + '.dat'
# load graphs
try:
graph_pred = utils.load_graph_list(fname_pred, is_real=True) # default False
except:
print('Not found: ' + fname_pred)
logging.warning('Not found: ' + fname_pred)
continue
# clean graphs
if is_clean:
graph_test, graph_pred = clean_graphs(graph_test, graph_pred)
else:
shuffle(graph_pred)
graph_pred = graph_pred[0:len(graph_test)]
print('len graph_test', len(graph_test))
print('len graph_validate', len(graph_validate))
print('len graph_pred', len(graph_pred))
graph_pred_aver = 0
for graph in graph_pred:
graph_pred_aver += graph.number_of_nodes()
graph_pred_aver /= len(graph_pred)
print('pred average len', graph_pred_aver)
# evaluate MMD test
mmd_degree = eval.stats.degree_stats(graph_test, graph_pred)
mmd_clustering = eval.stats.clustering_stats(graph_test, graph_pred)
try:
mmd_4orbits = eval.stats.orbit_stats_all(graph_test, graph_pred)
except:
mmd_4orbits = -1
# evaluate MMD validate
mmd_degree_validate = eval.stats.degree_stats(graph_validate, graph_pred)
mmd_clustering_validate = eval.stats.clustering_stats(graph_validate, graph_pred)
try:
mmd_4orbits_validate = eval.stats.orbit_stats_all(graph_validate, graph_pred)
except:
mmd_4orbits_validate = -1
# write results
f.write(str(-1) + ',' + str(epoch) + ',' + str(mmd_degree_validate) + ',' + str(
mmd_clustering_validate) + ',' + str(mmd_4orbits_validate)
+ ',' + str(mmd_degree) + ',' + str(mmd_clustering) + ',' + str(mmd_4orbits) + '\n')
print('degree', mmd_degree, 'clustering', mmd_clustering, 'orbits', mmd_4orbits)
return True
def evaluation(args_evaluate,dir_input, dir_output, model_name_all, dataset_name_all, args, overwrite = True):
''' Evaluate the performance of a set of models on a set of datasets.
'''
for model_name in model_name_all:
for dataset_name in dataset_name_all:
# check output exist
fname_output = dir_output+model_name+'_'+dataset_name+'.csv'
print('processing: '+dir_output + model_name + '_' + dataset_name + '.csv')
logging.info('processing: '+dir_output + model_name + '_' + dataset_name + '.csv')
if overwrite==False and os.path.isfile(fname_output):
print(dir_output+model_name+'_'+dataset_name+'.csv exists!')
logging.info(dir_output+model_name+'_'+dataset_name+'.csv exists!')
continue
evaluation_epoch(dir_input,fname_output,model_name,dataset_name,args,is_clean=True, epoch_start=args_evaluate.epoch_start,epoch_end=args_evaluate.epoch_end,epoch_step=args_evaluate.epoch_step)
def eval_list_fname(real_graph_filename, pred_graphs_filename, baselines,
eval_every, epoch_range=None, out_file_prefix=None):
''' Evaluate list of predicted graphs compared to ground truth, stored in files.
Args:
baselines: dict mapping name of the baseline to list of generated graphs.
'''
if out_file_prefix is not None:
out_files = {
'train': open(out_file_prefix + '_train.txt', 'w+'),
'compare': open(out_file_prefix + '_compare.txt', 'w+')
}
out_files['train'].write('degree,clustering,orbits4\n')
line = 'metric,real,ours,perturbed'
for bl in baselines:
line += ',' + bl
line += '\n'
out_files['compare'].write(line)
results = {
'deg': {
'real': 0,
'ours': 100, # take min over all training epochs
'perturbed': 0,
'kron': 0},
'clustering': {
'real': 0,
'ours': 100,
'perturbed': 0,
'kron': 0},
'orbits4': {
'real': 0,
'ours': 100,
'perturbed': 0,
'kron': 0}
}
num_evals = len(pred_graphs_filename)
if epoch_range is None:
epoch_range = [i * eval_every for i in range(num_evals)]
for i in range(num_evals):
real_g_list = utils.load_graph_list(real_graph_filename)
#pred_g_list = utils.load_graph_list(pred_graphs_filename[i])
# contains all predicted G
pred_g_list_raw = utils.load_graph_list(pred_graphs_filename[i])
if len(real_g_list)>200:
real_g_list = real_g_list[0:200]
shuffle(real_g_list)
shuffle(pred_g_list_raw)
# get length
real_g_len_list = np.array([len(real_g_list[i]) for i in range(len(real_g_list))])
pred_g_len_list_raw = np.array([len(pred_g_list_raw[i]) for i in range(len(pred_g_list_raw))])
# get perturb real
#perturbed_g_list_001 = perturb(real_g_list, 0.01)
perturbed_g_list_005 = perturb(real_g_list, 0.05)
#perturbed_g_list_010 = perturb(real_g_list, 0.10)
# select pred samples
# The number of nodes are sampled from the similar distribution as the training set
pred_g_list = []
pred_g_len_list = []
for value in real_g_len_list:
pred_idx = find_nearest_idx(pred_g_len_list_raw, value)
pred_g_list.append(pred_g_list_raw[pred_idx])
pred_g_len_list.append(pred_g_len_list_raw[pred_idx])
# delete
pred_g_len_list_raw = np.delete(pred_g_len_list_raw, pred_idx)
del pred_g_list_raw[pred_idx]
if len(pred_g_list) == len(real_g_list):
break
# pred_g_len_list = np.array(pred_g_len_list)
print('################## epoch {} ##################'.format(epoch_range[i]))
# info about graph size
print('real average nodes',
sum([real_g_list[i].number_of_nodes() for i in range(len(real_g_list))]) / len(real_g_list))
print('pred average nodes',
sum([pred_g_list[i].number_of_nodes() for i in range(len(pred_g_list))]) / len(pred_g_list))
print('num of real graphs', len(real_g_list))
print('num of pred graphs', len(pred_g_list))
# ========================================
# Evaluation
# ========================================
mid = len(real_g_list) // 2
dist_degree, dist_clustering = compute_basic_stats(real_g_list[:mid], real_g_list[mid:])
#dist_4cycle = eval.stats.motif_stats(real_g_list[:mid], real_g_list[mid:])
dist_4orbits = eval.stats.orbit_stats_all(real_g_list[:mid], real_g_list[mid:])
print('degree dist among real: ', dist_degree)
print('clustering dist among real: ', dist_clustering)
#print('4 cycle dist among real: ', dist_4cycle)
print('orbits dist among real: ', dist_4orbits)
results['deg']['real'] += dist_degree
results['clustering']['real'] += dist_clustering
results['orbits4']['real'] += dist_4orbits
dist_degree, dist_clustering = compute_basic_stats(real_g_list, pred_g_list)
#dist_4cycle = eval.stats.motif_stats(real_g_list, pred_g_list)
dist_4orbits = eval.stats.orbit_stats_all(real_g_list, pred_g_list)
print('degree dist between real and pred at epoch ', epoch_range[i], ': ', dist_degree)
print('clustering dist between real and pred at epoch ', epoch_range[i], ': ', dist_clustering)
#print('4 cycle dist between real and pred at epoch: ', epoch_range[i], dist_4cycle)
print('orbits dist between real and pred at epoch ', epoch_range[i], ': ', dist_4orbits)
results['deg']['ours'] = min(dist_degree, results['deg']['ours'])
results['clustering']['ours'] = min(dist_clustering, results['clustering']['ours'])
results['orbits4']['ours'] = min(dist_4orbits, results['orbits4']['ours'])
# performance at training time
out_files['train'].write(str(dist_degree) + ',')
out_files['train'].write(str(dist_clustering) + ',')
out_files['train'].write(str(dist_4orbits) + ',')
dist_degree, dist_clustering = compute_basic_stats(real_g_list, perturbed_g_list_005)
#dist_4cycle = eval.stats.motif_stats(real_g_list, perturbed_g_list_005)
dist_4orbits = eval.stats.orbit_stats_all(real_g_list, perturbed_g_list_005)
print('degree dist between real and perturbed at epoch ', epoch_range[i], ': ', dist_degree)
print('clustering dist between real and perturbed at epoch ', epoch_range[i], ': ', dist_clustering)
#print('4 cycle dist between real and perturbed at epoch: ', epoch_range[i], dist_4cycle)
print('orbits dist between real and perturbed at epoch ', epoch_range[i], ': ', dist_4orbits)
results['deg']['perturbed'] += dist_degree
results['clustering']['perturbed'] += dist_clustering
results['orbits4']['perturbed'] += dist_4orbits
if i == 0:
# Baselines
for baseline in baselines:
dist_degree, dist_clustering = compute_basic_stats(real_g_list, baselines[baseline])
dist_4orbits = eval.stats.orbit_stats_all(real_g_list, baselines[baseline])
results['deg'][baseline] = dist_degree
results['clustering'][baseline] = dist_clustering
results['orbits4'][baseline] = dist_4orbits
print('Kron: deg=', dist_degree, ', clustering=', dist_clustering,
', orbits4=', dist_4orbits)
out_files['train'].write('\n')
for metric, methods in results.items():
methods['real'] /= num_evals
methods['perturbed'] /= num_evals
# Write results
for metric, methods in results.items():
line = metric+','+ \
str(methods['real'])+','+ \
str(methods['ours'])+','+ \
str(methods['perturbed'])
for baseline in baselines:
line += ',' + str(methods[baseline])
line += '\n'
out_files['compare'].write(line)
for _, out_f in out_files.items():
out_f.close()
def eval_performance(datadir, prefix=None, args=None, eval_every=200, out_file_prefix=None,
sample_time = 2, baselines={}):
if args is None:
real_graphs_filename = [datadir + f for f in os.listdir(datadir)
if re.match(prefix + '.*real.*\.dat', f)]
pred_graphs_filename = [datadir + f for f in os.listdir(datadir)
if re.match(prefix + '.*pred.*\.dat', f)]
eval_list(real_graphs_filename, pred_graphs_filename, prefix, 200)
else:
# # for vanilla graphrnn
# real_graphs_filename = [datadir + args.graph_save_path + args.note + '_' + args.graph_type + '_' + \
# str(epoch) + '_pred_' + str(args.num_layers) + '_' + str(args.bptt) + '_' + str(args.bptt_len) + '.dat' for epoch in range(0,50001,eval_every)]
# pred_graphs_filename = [datadir + args.graph_save_path + args.note + '_' + args.graph_type + '_' + \
# str(epoch) + '_real_' + str(args.num_layers) + '_' + str(args.bptt) + '_' + str(args.bptt_len) + '.dat' for epoch in range(0,50001,eval_every)]
real_graph_filename = datadir+args.graph_save_path + args.fname_test + '0.dat'
# for proposed model
end_epoch = 3001
epoch_range = range(eval_every, end_epoch, eval_every)
pred_graphs_filename = [datadir+args.graph_save_path + args.fname_pred+str(epoch)+'_'+str(sample_time)+'.dat'
for epoch in epoch_range]
# for baseline model
#pred_graphs_filename = [datadir+args.fname_baseline+'.dat']
#real_graphs_filename = [datadir + args.graph_save_path + args.note + '_' + args.graph_type + '_' + \
# str(epoch) + '_real_' + str(args.num_layers) + '_' + str(args.bptt) + '_' + str(
# args.bptt_len) + '_' + str(args.gumbel) + '.dat' for epoch in range(10000, 50001, eval_every)]
#pred_graphs_filename = [datadir + args.graph_save_path + args.note + '_' + args.graph_type + '_' + \
# str(epoch) + '_pred_' + str(args.num_layers) + '_' + str(args.bptt) + '_' + str(
# args.bptt_len) + '_' + str(args.gumbel) + '.dat' for epoch in range(10000, 50001, eval_every)]
eval_list_fname(real_graph_filename, pred_graphs_filename, baselines,
epoch_range=epoch_range,
eval_every=eval_every,
out_file_prefix=out_file_prefix)
def process_kron(kron_dir):
txt_files = []
for f in os.listdir(kron_dir):
filename = os.fsdecode(f)
if filename.endswith('.txt'):
txt_files.append(filename)
elif filename.endswith('.dat'):
return utils.load_graph_list(os.path.join(kron_dir, filename))
G_list = []
for filename in txt_files:
G_list.append(utils.snap_txt_output_to_nx(os.path.join(kron_dir, filename)))
return G_list
if __name__ == '__main__':
args = Args()
args_evaluate = Args_evaluate()
parser = argparse.ArgumentParser(description='Evaluation arguments.')
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--export-real', dest='export', action='store_true')
feature_parser.add_argument('--no-export-real', dest='export', action='store_false')
feature_parser.add_argument('--kron-dir', dest='kron_dir',
help='Directory where graphs generated by kronecker method is stored.')
parser.add_argument('--testfile', dest='test_file',
help='The file that stores list of graphs to be evaluated. Only used when 1 list of '
'graphs is to be evaluated.')
parser.add_argument('--dir-prefix', dest='dir_prefix',
help='The file that stores list of graphs to be evaluated. Can be used when evaluating multiple'
'models on multiple datasets.')
parser.add_argument('--graph-type', dest='graph_type',
help='Type of graphs / dataset.')
parser.set_defaults(export=False, kron_dir='', test_file='',
dir_prefix='',
graph_type=args.graph_type)
prog_args = parser.parse_args()
# dir_prefix = prog_args.dir_prefix
# dir_prefix = "/dfs/scratch0/jiaxuany0/"
dir_prefix = args.dir_input
time_now = strftime("%Y-%m-%d %H:%M:%S", gmtime())
if not os.path.isdir('logs/'):
os.makedirs('logs/')
logging.basicConfig(filename='logs/evaluate' + time_now + '.log', level=logging.INFO)
if prog_args.export:
if not os.path.isdir('eval_results'):
os.makedirs('eval_results')
if not os.path.isdir('eval_results/ground_truth'):
os.makedirs('eval_results/ground_truth')
out_dir = os.path.join('eval_results/ground_truth', prog_args.graph_type)
if not os.path.isdir(out_dir):
os.makedirs(out_dir)
output_prefix = os.path.join(out_dir, prog_args.graph_type)
print('Export ground truth to prefix: ', output_prefix)
if prog_args.graph_type == 'grid':
graphs = []
for i in range(10,20):
for j in range(10,20):
graphs.append(nx.grid_2d_graph(i,j))
utils.export_graphs_to_txt(graphs, output_prefix)
elif prog_args.graph_type == 'caveman':
graphs = []
for i in range(2, 3):
for j in range(30, 81):
for k in range(10):
graphs.append(caveman_special(i,j, p_edge=0.3))
utils.export_graphs_to_txt(graphs, output_prefix)
elif prog_args.graph_type == 'citeseer':
graphs = utils.citeseer_ego()
utils.export_graphs_to_txt(graphs, output_prefix)
else:
# load from directory
input_path = dir_prefix + real_graph_filename
g_list = utils.load_graph_list(input_path)
utils.export_graphs_to_txt(g_list, output_prefix)
elif not prog_args.kron_dir == '':
kron_g_list = process_kron(prog_args.kron_dir)
fname = os.path.join(prog_args.kron_dir, prog_args.graph_type + '.dat')
print([g.number_of_nodes() for g in kron_g_list])
utils.save_graph_list(kron_g_list, fname)
elif not prog_args.test_file == '':
# evaluate single .dat file containing list of test graphs (networkx format)
graphs = utils.load_graph_list(prog_args.test_file)
eval_single_list(graphs, dir_input=dir_prefix+'graphs/', dataset_name='grid')
## if you don't try kronecker, only the following part is needed
else:
if not os.path.isdir(dir_prefix+'eval_results'):
os.makedirs(dir_prefix+'eval_results')
evaluation(args_evaluate,dir_input=dir_prefix+"graphs/", dir_output=dir_prefix+"eval_results/",
model_name_all=args_evaluate.model_name_all,dataset_name_all=args_evaluate.dataset_name_all,args=args,overwrite=True)