-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathmodel.py
292 lines (246 loc) · 10.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import torch
import torch.nn as nn
import torch_geometric as tg
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree
from torch.nn import init
import pdb
####################### Basic Ops #############################
# # PGNN layer, only pick closest node for message passing
class PGNN_layer(nn.Module):
def __init__(self, input_dim, output_dim,dist_trainable=True):
super(PGNN_layer, self).__init__()
self.input_dim = input_dim
self.dist_trainable = dist_trainable
if self.dist_trainable:
self.dist_compute = Nonlinear(1, output_dim, 1)
self.linear_hidden = nn.Linear(input_dim*2, output_dim)
self.linear_out_position = nn.Linear(output_dim,1)
self.act = nn.ReLU()
for m in self.modules():
if isinstance(m, nn.Linear):
m.weight.data = init.xavier_uniform_(m.weight.data, gain=nn.init.calculate_gain('relu'))
if m.bias is not None:
m.bias.data = init.constant_(m.bias.data, 0.0)
def forward(self, feature, dists_max, dists_argmax):
if self.dist_trainable:
dists_max = self.dist_compute(dists_max.unsqueeze(-1)).squeeze()
subset_features = feature[dists_argmax.flatten(), :]
subset_features = subset_features.reshape((dists_argmax.shape[0], dists_argmax.shape[1],
feature.shape[1]))
messages = subset_features * dists_max.unsqueeze(-1)
self_feature = feature.unsqueeze(1).repeat(1, dists_max.shape[1], 1)
messages = torch.cat((messages, self_feature), dim=-1)
messages = self.linear_hidden(messages).squeeze()
messages = self.act(messages) # n*m*d
out_position = self.linear_out_position(messages).squeeze(-1) # n*m_out
out_structure = torch.mean(messages, dim=1) # n*d
return out_position, out_structure
### Non linearity
class Nonlinear(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(Nonlinear, self).__init__()
self.linear1 = nn.Linear(input_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, output_dim)
self.act = nn.ReLU()
for m in self.modules():
if isinstance(m, nn.Linear):
m.weight.data = init.xavier_uniform_(m.weight.data, gain=nn.init.calculate_gain('relu'))
if m.bias is not None:
m.bias.data = init.constant_(m.bias.data, 0.0)
def forward(self, x):
x = self.linear1(x)
x = self.act(x)
x = self.linear2(x)
return x
####################### NNs #############################
class MLP(torch.nn.Module):
def __init__(self, input_dim, feature_dim, hidden_dim, output_dim,
feature_pre=True, layer_num=2, dropout=True, **kwargs):
super(MLP, self).__init__()
self.feature_pre = feature_pre
self.layer_num = layer_num
self.dropout = dropout
if feature_pre:
self.linear_pre = nn.Linear(input_dim, feature_dim)
self.linear_first = nn.Linear(feature_dim, hidden_dim)
else:
self.linear_first = nn.Linear(input_dim, hidden_dim)
self.linear_hidden = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for i in range(layer_num - 2)])
self.linear_out = nn.Linear(hidden_dim, output_dim)
def forward(self, data):
x = data.x
if self.feature_pre:
x = self.linear_pre(x)
x = self.linear_first(x)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
for i in range(self.layer_num - 2):
x = self.linear_hidden[i](x)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
x = self.linear_out(x)
x = F.normalize(x, p=2, dim=-1)
return x
class GCN(torch.nn.Module):
def __init__(self, input_dim, feature_dim, hidden_dim, output_dim,
feature_pre=True, layer_num=2, dropout=True, **kwargs):
super(GCN, self).__init__()
self.feature_pre = feature_pre
self.layer_num = layer_num
self.dropout = dropout
if feature_pre:
self.linear_pre = nn.Linear(input_dim, feature_dim)
self.conv_first = tg.nn.GCNConv(feature_dim, hidden_dim)
else:
self.conv_first = tg.nn.GCNConv(input_dim, hidden_dim)
self.conv_hidden = nn.ModuleList([tg.nn.GCNConv(hidden_dim, hidden_dim) for i in range(layer_num - 2)])
self.conv_out = tg.nn.GCNConv(hidden_dim, output_dim)
def forward(self, data):
x, edge_index = data.x, data.edge_index
if self.feature_pre:
x = self.linear_pre(x)
x = self.conv_first(x, edge_index)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
for i in range(self.layer_num-2):
x = self.conv_hidden[i](x, edge_index)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
x = self.conv_out(x, edge_index)
x = F.normalize(x, p=2, dim=-1)
return x
class SAGE(torch.nn.Module):
def __init__(self, input_dim, feature_dim, hidden_dim, output_dim,
feature_pre=True, layer_num=2, dropout=True, **kwargs):
super(SAGE, self).__init__()
self.feature_pre = feature_pre
self.layer_num = layer_num
self.dropout = dropout
if feature_pre:
self.linear_pre = nn.Linear(input_dim, feature_dim)
self.conv_first = tg.nn.SAGEConv(feature_dim, hidden_dim)
else:
self.conv_first = tg.nn.SAGEConv(input_dim, hidden_dim)
self.conv_hidden = nn.ModuleList([tg.nn.SAGEConv(hidden_dim, hidden_dim) for i in range(layer_num - 2)])
self.conv_out = tg.nn.SAGEConv(hidden_dim, output_dim)
def forward(self, data):
x, edge_index = data.x, data.edge_index
if self.feature_pre:
x = self.linear_pre(x)
x = self.conv_first(x, edge_index)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
for i in range(self.layer_num-2):
x = self.conv_hidden[i](x, edge_index)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
x = self.conv_out(x, edge_index)
x = F.normalize(x, p=2, dim=-1)
return x
class GAT(torch.nn.Module):
def __init__(self, input_dim, feature_dim, hidden_dim, output_dim,
feature_pre=True, layer_num=2, dropout=True, **kwargs):
super(GAT, self).__init__()
self.feature_pre = feature_pre
self.layer_num = layer_num
self.dropout = dropout
if feature_pre:
self.linear_pre = nn.Linear(input_dim, feature_dim)
self.conv_first = tg.nn.GATConv(feature_dim, hidden_dim)
else:
self.conv_first = tg.nn.GATConv(input_dim, hidden_dim)
self.conv_hidden = nn.ModuleList([tg.nn.GATConv(hidden_dim, hidden_dim) for i in range(layer_num - 2)])
self.conv_out = tg.nn.GATConv(hidden_dim, output_dim)
def forward(self, data):
x, edge_index = data.x, data.edge_index
if self.feature_pre:
x = self.linear_pre(x)
x = self.conv_first(x, edge_index)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
for i in range(self.layer_num-2):
x = self.conv_hidden[i](x, edge_index)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
x = self.conv_out(x, edge_index)
x = F.normalize(x, p=2, dim=-1)
return x
class GIN(torch.nn.Module):
def __init__(self, input_dim, feature_dim, hidden_dim, output_dim,
feature_pre=True, layer_num=2, dropout=True, **kwargs):
super(GIN, self).__init__()
self.feature_pre = feature_pre
self.layer_num = layer_num
self.dropout = dropout
if feature_pre:
self.linear_pre = nn.Linear(input_dim, feature_dim)
self.conv_first_nn = nn.Linear(feature_dim, hidden_dim)
self.conv_first = tg.nn.GINConv(self.conv_first_nn)
else:
self.conv_first_nn = nn.Linear(input_dim, hidden_dim)
self.conv_first = tg.nn.GINConv(self.conv_first_nn)
self.conv_hidden_nn = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for i in range(layer_num - 2)])
self.conv_hidden = nn.ModuleList([tg.nn.GINConv(self.conv_hidden_nn[i]) for i in range(layer_num - 2)])
self.conv_out_nn = nn.Linear(hidden_dim, output_dim)
self.conv_out = tg.nn.GINConv(self.conv_out_nn)
def forward(self, data):
x, edge_index = data.x, data.edge_index
if self.feature_pre:
x = self.linear_pre(x)
x = self.conv_first(x, edge_index)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
for i in range(self.layer_num-2):
x = self.conv_hidden[i](x, edge_index)
x = F.relu(x)
if self.dropout:
x = F.dropout(x, training=self.training)
x = self.conv_out(x, edge_index)
x = F.normalize(x, p=2, dim=-1)
return x
class PGNN(torch.nn.Module):
def __init__(self, input_dim, feature_dim, hidden_dim, output_dim,
feature_pre=True, layer_num=2, dropout=True, **kwargs):
super(PGNN, self).__init__()
self.feature_pre = feature_pre
self.layer_num = layer_num
self.dropout = dropout
if layer_num == 1:
hidden_dim = output_dim
if feature_pre:
self.linear_pre = nn.Linear(input_dim, feature_dim)
self.conv_first = PGNN_layer(feature_dim, hidden_dim)
else:
self.conv_first = PGNN_layer(input_dim, hidden_dim)
if layer_num>1:
self.conv_hidden = nn.ModuleList([PGNN_layer(hidden_dim, hidden_dim) for i in range(layer_num - 2)])
self.conv_out = PGNN_layer(hidden_dim, output_dim)
def forward(self, data):
x = data.x
if self.feature_pre:
x = self.linear_pre(x)
x_position, x = self.conv_first(x, data.dists_max, data.dists_argmax)
if self.layer_num == 1:
return x_position
# x = F.relu(x) # Note: optional!
if self.dropout:
x = F.dropout(x, training=self.training)
for i in range(self.layer_num-2):
_, x = self.conv_hidden[i](x, data.dists_max, data.dists_argmax)
# x = F.relu(x) # Note: optional!
if self.dropout:
x = F.dropout(x, training=self.training)
x_position, x = self.conv_out(x, data.dists_max, data.dists_argmax)
x_position = F.normalize(x_position, p=2, dim=-1)
return x_position