forked from arnavmago/Speedsign-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
125 lines (100 loc) · 4.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from matplotlib.pyplot import imshow
from object_detection.utils import visualization_utils as vis_util
from object_detection.utils import label_map_util
from tensorflow.keras.models import load_model
import sys
import glob as glob
import tensorflow as tf
import os
import numpy as np
from collections import namedtuple
from PIL import Image
import altair as alt
import math
import pandas as pd
import streamlit as st
import subprocess
import warnings
warnings.filterwarnings('ignore')
MODEL_NAME = 'faster_rcnn_resnet50'
sys.path.append('PATH_TO_TENSORFLOW_OBJECT_DETECTION_FOLDER')
MODEL_PATH = os.path.join('model', MODEL_NAME)
PATH_TO_CKPT = os.path.join(
MODEL_PATH, 'inference_graph/frozen_inference_graph.pb')
PATH_TO_LABELS = os.path.join('scripts', 'gtsdb3_label_map.pbtxt')
NUM_CLASSES = 3
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
print(label_map)
st.set_page_config(layout="centered",
page_title="Car Improvement Center", page_icon=":car:")
"""
# MERNcenaries Megathon Car Improvement Center
### Infotainment system:
"""
with st.echo(code_location='below'):
my_speed = st.slider("Your current speed", 1, 120, 50)
uploaded_file = st.file_uploader("Upload Image", type=".jpg")
if uploaded_file:
image = Image.open(uploaded_file)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_np = load_image_into_numpy_array(image)
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name(
'image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name(
'detection_scores:0')
classes = detection_graph.get_tensor_by_name(
'detection_classes:0')
num_detections = detection_graph.get_tensor_by_name(
'num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
count = 0
for i in range(300):
if (scores[0, i] > 0.5):
count += 1
for i in range(count):
yl = int(boxes[0, i, 0]*image.height)
xl = int(boxes[0, i, 1]*image.width)
yr = int(boxes[0, i, 2]*image.height)
xr = int(boxes[0, i, 3]*image.width)
img = image_np[yl:yr, xl:xr]
better = Image.fromarray(img).resize(
(30, 30), resample=Image.BOX)
better.save(f'test2/image.jpg')
Detected_image = vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=6)
st.image(Detected_image)
try:
subprocess.check_output(["/bin/python3", "infer.py"])
except Exception as e:
speeds = int(str(e).split()[-1][:-1])
f"""
##### Your speed limit is: {speeds}
##### Your current speed is: {my_speed}
"""
if (my_speed > speeds):
st.error('Please reduce your speed now', icon="⚠️")
st.stop()