-
Notifications
You must be signed in to change notification settings - Fork 0
/
unified_detector.py
43 lines (38 loc) · 1.39 KB
/
unified_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2
import numpy as np
from net.network import model
class Fingertips:
def __init__(self, weights):
self.model = model()
self.model.load_weights(weights)
@staticmethod
def class_finder(prob):
cls = ''
classes = [0, 1, 2, 3, 4, 5, 6, 7]
if np.array_equal(prob, np.array([0, 1, 0, 0, 0])):
cls = classes[0]
elif np.array_equal(prob, np.array([0, 1, 1, 0, 0])):
cls = classes[1]
elif np.array_equal(prob, np.array([0, 1, 1, 1, 0])):
cls = classes[2]
elif np.array_equal(prob, np.array([0, 1, 1, 1, 1])):
cls = classes[3]
elif np.array_equal(prob, np.array([1, 1, 1, 1, 1])):
cls = classes[4]
elif np.array_equal(prob, np.array([1, 0, 0, 0, 1])):
cls = classes[5]
elif np.array_equal(prob, np.array([1, 1, 0, 0, 1])):
cls = classes[6]
elif np.array_equal(prob, np.array([1, 1, 0, 0, 0])):
cls = classes[7]
return cls
def classify(self, image):
image = np.asarray(image)
image = cv2.resize(image, (128, 128))
image = image.astype('float32')
image = image / 255.0
image = np.expand_dims(image, axis=0)
probability, position = self.model.predict(image)
probability = probability[0]
position = position[0]
return probability, position