forked from kernelci/kcidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_main.py
473 lines (427 loc) · 15.9 KB
/
test_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
"""main.py tests"""
import os
import subprocess
import unittest
from copy import deepcopy
from datetime import datetime, timezone, timedelta
from importlib import import_module
from urllib.parse import quote
import time
import yaml
import requests
import kcidb
@unittest.skipIf(os.environ.get("KCIDB_DEPLOYMENT"), "local-only")
def test_google_credentials_are_not_specified():
"""Check Google Application credentials are not specified"""
assert os.environ.get("GOOGLE_APPLICATION_CREDENTIALS") is None, \
"Local tests must run without " \
"GOOGLE_APPLICATION_CREDENTIALS " \
"environment variable"
def test_import():
"""Check main.py can be loaded"""
# Load deployment environment variables
file_dir = os.path.dirname(os.path.abspath(__file__))
cloud_path = os.path.join(file_dir, "cloud")
env = yaml.safe_load(
subprocess.check_output([
cloud_path,
"env", "kernelci-production", "",
"--log-level=DEBUG"
])
)
env["GCP_PROJECT"] = "TEST_PROJECT"
orig_env = dict(os.environ)
try:
os.environ.update(env)
import_module("main")
finally:
os.environ.clear()
os.environ.update(orig_env)
def url_is_in_cache(url, content):
"""Check whether the URL is in the cache or not."""
url_encoded = quote(url)
cache_redirector_url = os.environ["KCIDB_CACHE_REDIRECTOR_URL"]
try:
response = requests.get(
f"{cache_redirector_url}?{url_encoded}",
timeout=10, # Time in secs
allow_redirects=False
)
except requests.exceptions.Timeout:
return False
if response.status_code == 302:
# Check if the redirect URL matches the blob storage URL pattern
location = response.headers.get("Location", "")
if location.startswith('https://storage.googleapis.com/'):
if content is not None:
response = requests.get(
location, timeout=10, allow_redirects=True
)
response.raise_for_status()
assert response.content == content
return True
return False
def test_url_caching(empty_deployment):
"""kcidb cache client workflow test"""
# Make empty_deployment appear used to silence pylint warning
assert empty_deployment is None
urls_expected = [
"https://raw.githubusercontent.com/kernelci/kcidb/main/"
"setup.py?padding=2366",
"https://raw.githubusercontent.com/kernelci/kcidb/main/"
"requirements.txt?padding=11277",
"https://raw.githubusercontent.com/kernelci/kcidb/main/"
".gitignore?padding=1557",
"https://raw.githubusercontent.com/kernelci/kcidb/main/"
".pylintrc?padding=1013",
"https://raw.githubusercontent.com/kernelci/kcidb/main/"
"doc/_index.md?padding=1435",
"https://raw.githubusercontent.com/kernelci/kcidb/main/"
".github/workflows/deploy.yml?padding=307",
"https://raw.githubusercontent.com/kernelci/kcidb/main/"
"doc/installation.md?padding=9761",
]
urls_unexpected = [
# Invalid url
'https://non-existing-name.kernel.org/pub/linux/',
# Larger-than-maximum size URL
"https://cdn.kernel.org/pub/linux/kernel/v6.x/"
"linux-6.4.11.tar.xz",
# Wrong hash URL
"https://github.com/kernelci/kcidb/blob/main/Dockerfile",
# URL from a wrong field
"https://github.com/kernelci/kcidb/tree/main/kcidb/?padding=4165",
]
client = kcidb.Client(
project_id=os.environ["GCP_PROJECT"],
topic_name=os.environ["KCIDB_LOAD_QUEUE_TOPIC"]
)
data = {
"version": {
"major": 4,
"minor": 0
},
"checkouts": [
{
"id": "_:1",
"origin": "_",
"log_url": urls_expected[0],
"patchset_files": [
{
"name": "file",
"url": urls_expected[1]
}
],
},
],
"builds": [
{
"id": "_:1",
"origin": "_",
"input_files": [
{
"name": "kernel_image1",
"url": urls_expected[2]
}
],
"log_url": urls_expected[3],
"config_url": urls_expected[4],
"output_files": [
{
"name": "kernel_image",
"url": urls_unexpected[0]
},
{
"name": "kernel",
"url": urls_unexpected[1]
}
],
"checkout_id": "_:1",
},
],
"tests": [
{
"build_id": "kernelci:kernelci.org:64147283e6021132258c86c0",
"id": "_:1",
"origin": "_",
"log_url": urls_unexpected[2]
},
{
"build_id": "kernelci:kernelci.org:64147283e6021132258c86c0",
"id": "_:1",
"origin": "_",
"output_files": [
{
"name": "x86_64_4_console.log",
"url": urls_expected[5]
},
{
"name": "x86_64_4_IOMMU_boot_test_dmesg.log",
"url": urls_expected[6]
},
],
"environment": {
"comment": "meson-s905d-p230 in lab-baylibre",
"misc": {
"rootfs_url": urls_unexpected[3]
}
},
},
],
}
# Submit data to submission queue
client.submit(data)
# Trigger a submission queue pull
kcidb.mq.JSONPublisher(
os.environ["GCP_PROJECT"],
os.environ["KCIDB_LOAD_QUEUE_TRIGGER_TOPIC"]
).publish({})
current_time = time.time()
deadline_time = current_time + 300 # 5 minutes
retry_interval = 5 # seconds
# URLs and their contents to check, as they should be cached
urls_contents_expected = {}
for url in urls_expected:
response = requests.get(url, timeout=10, allow_redirects=True)
response.raise_for_status()
urls_contents_expected[url] = response.content
# Wait until either URLs are cached or we hit the deadline
while urls_contents_expected and time.time() < deadline_time:
time.sleep(retry_interval)
urls_contents_expected = {
url: content
for url, content in urls_contents_expected.items()
if not url_is_in_cache(url, content)
}
assert not set(urls_contents_expected), \
f"Expected URLs '{set(urls_contents_expected)}' " \
f"not found in the cache"
current_time = time.time()
if current_time < deadline_time:
time.sleep(deadline_time - current_time)
# URL cases not to be cached
urls_unexpected_but_found = set(filter(
lambda url: url_is_in_cache(url, None), urls_unexpected
))
assert not urls_unexpected_but_found, \
f"Unexpected URLs {urls_unexpected_but_found} found in the cache"
def test_purge_db(empty_deployment):
"""Check kcidb_purge_db() works correctly"""
# It's OK, pylint: disable=too-many-locals
# Make empty_deployment appear used to silence pylint warning
assert empty_deployment is None
# Each type of database, purging expectation, and client
clients = dict(
op=(True, kcidb.db.Client(os.environ["KCIDB_OPERATIONAL_DATABASE"])),
sm=(True, kcidb.db.Client(os.environ["KCIDB_SAMPLE_DATABASE"])),
ar=(False, kcidb.db.Client(os.environ["KCIDB_ARCHIVE_DATABASE"])),
)
# Determine the minimum supported I/O version
min_io_version = min(c.get_schema()[1] for _, c in clients.values())
# Use the current time to avoid deployment purge trigger
timestamp_before = datetime.now(timezone.utc)
str_before = timestamp_before.isoformat(timespec="microseconds")
timestamp_cutoff = timestamp_before + timedelta(seconds=1)
str_cutoff = timestamp_cutoff.isoformat(timespec="microseconds")
data_before = dict(
version=dict(
major=min_io_version.major, minor=min_io_version.minor
),
checkouts=[dict(
id="origin:1", origin="origin",
_timestamp=str_before
)],
builds=[dict(
id="origin:1", origin="origin", checkout_id="origin:1",
_timestamp=str_before
)],
tests=[dict(
id="origin:1", origin="origin", build_id="origin:1",
_timestamp=str_before
)],
issues=[dict(
id="origin:1", origin="origin", version=1,
_timestamp=str_before
)],
incidents=[dict(
id="origin:1", origin="origin",
issue_id="origin:1", issue_version=1,
_timestamp=str_before
)],
)
timestamp_after = timestamp_cutoff + timedelta(seconds=1)
str_after = timestamp_after.isoformat(timespec="microseconds")
data_after = dict(
version=dict(
major=min_io_version.major, minor=min_io_version.minor
),
checkouts=[dict(
id="origin:2", origin="origin",
_timestamp=str_after
)],
builds=[dict(
id="origin:2", origin="origin", checkout_id="origin:2",
_timestamp=str_after
)],
tests=[dict(
id="origin:2", origin="origin", build_id="origin:2",
_timestamp=str_after
)],
issues=[dict(
id="origin:2", origin="origin", version=1,
_timestamp=str_after
)],
incidents=[dict(
id="origin:2", origin="origin",
issue_id="origin:2", issue_version=1,
_timestamp=str_after
)],
)
def filter_test_data(data):
"""Filter objects created by this test from I/O data"""
return {
key: [
deepcopy(obj) for obj in value
if obj.get("_timestamp") in (str_before, str_after)
] if key and key in min_io_version.graph
else deepcopy(value)
for key, value in data.items()
}
# Merge the before and after data
data = min_io_version.merge(data_before, [data_after])
# For each type of database, purging expectation, and client
publisher = kcidb.mq.JSONPublisher(
os.environ["GCP_PROJECT"],
os.environ["KCIDB_PURGE_DB_TRIGGER_TOPIC"]
)
for database, (purging, client) in clients.items():
client.load(data, with_metadata=True)
dump = filter_test_data(client.dump())
for obj_list_name in min_io_version.graph:
if obj_list_name:
assert len(dump.get(obj_list_name, [])) == 2, \
f"Invalid number of {obj_list_name} in " \
f"{database} database"
# Trigger the purge at the boundary
publisher.publish(
dict(database=database, timedelta=dict(stamp=str_cutoff))
)
# Wait and check for the purge
deadline = datetime.now(timezone.utc) + timedelta(minutes=5)
while datetime.now(timezone.utc) < deadline:
time.sleep(5)
dump = filter_test_data(client.dump())
# If everything was purged
# NOTE: For some reason we're hitting incomplete purges sometimes
if all(
len(dump.get(n, [])) == 1
for n in min_io_version.graph
if n
):
break
assert dump == client.get_schema()[1].upgrade(
data_after if purging else data
), "Unexpected data in {database} database"
def test_archive(empty_deployment):
"""Check kcidb_archive() works correctly"""
# Make empty_deployment appear used to silence pylint warning
assert empty_deployment is None
op_client = kcidb.db.Client(os.environ["KCIDB_OPERATIONAL_DATABASE"])
op_schema = op_client.get_schema()[1]
ar_client = kcidb.db.Client(os.environ["KCIDB_ARCHIVE_DATABASE"])
ar_schema = ar_client.get_schema()[1]
publisher = kcidb.mq.JSONPublisher(
os.environ["GCP_PROJECT"],
os.environ["KCIDB_ARCHIVE_TRIGGER_TOPIC"]
)
# Empty the archive
ar_client.empty()
# Generate timestamps
ts_now = op_client.get_current_time()
ts_3w = ts_now - timedelta(days=7 * 3)
ts_4w = ts_now - timedelta(days=7 * 4)
def gen_data(id, ts):
"""
Generate a dataset with one object per type, all using the specified
timestamp, ID, and origin extracted from the ID.
"""
assert isinstance(id, str)
assert isinstance(ts, datetime) and ts.tzinfo
origin = id.split(":")[0]
assert origin
assert origin != id
base = dict(id=id, origin=origin,
_timestamp=ts.isoformat(timespec='microseconds'))
return dict(
checkouts=[base | dict()],
builds=[base | dict(checkout_id=id)],
tests=[base | dict(build_id=id)],
issues=[base | dict(version=1)],
incidents=[base | dict(issue_id=id, issue_version=1)],
**op_schema.new(),
)
# Generate datasets
data_now = gen_data("archive:now", ts_now)
data_3w = gen_data("archive:3w", ts_3w)
data_4w = gen_data("archive:4w", ts_4w)
# Archival parameters
params = dict(
# Edit window: two weeks
data_min_age=2 * 7 * 24 * 60 * 60,
# Transfer at most one week
data_max_duration=7 * 24 * 60 * 60,
# Transfer one week at a time (everything in one go)
data_chunk_duration=7 * 24 * 60 * 60,
# We gotta be at least faster than the time we wait (60s)
run_max_duration=45,
)
# Load data_now into the operational DB
op_client.load(data_now, with_metadata=True)
# Trigger and wait for archival (ignore possibility of actual trigger)
publisher.publish(params)
time.sleep(60)
# Check data_now doesn't end up in the archive DB
assert ar_schema.count(ar_client.dump()) == 0
# Load data_3w and data_4w
op_client.load(op_schema.merge(data_3w, [data_4w]), with_metadata=True)
# Trigger and wait for archival (ignore possibility of actual trigger)
publisher.publish(params)
time.sleep(60)
# Check data_4w is in the archive database
dump = ar_client.dump()
assert all(
any(obj["id"] == "archive:4w"
for obj in dump.get(obj_list_name, []))
for obj_list_name in op_schema.id_fields
), "No complete four-week old data in the archive"
# Check data_3w is not in the archive database
assert not any(
any(obj["id"] == "archive:3w"
for obj in dump.get(obj_list_name, []))
for obj_list_name in op_schema.id_fields
), "Some three-week old data in the archive"
# Trigger and wait for another archival (ignore chance of actual trigger)
publisher.publish(params)
time.sleep(60)
# Check data_3w is now in the archive database
dump = ar_client.dump()
assert all(
any(obj["id"] == "archive:3w"
for obj in dump.get(obj_list_name, []))
for obj_list_name in op_schema.id_fields
), "No complete three-week old data in the archive"
# Empty the archive
ar_client.empty()
# Trigger a run of full archiving at once, and wait
del params["data_max_duration"]
publisher.publish(params)
time.sleep(60)
# Check both data_4w and data_3w are in the archive database
dump = ar_client.dump()
assert all(
any(obj["id"] == "archive:4w"
for obj in dump.get(obj_list_name, [])) and
any(obj["id"] == "archive:3w"
for obj in dump.get(obj_list_name, []))
for obj_list_name in op_schema.id_fields
), "No complete four- and three-week old data in the archive"