-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtestMultiRoverPLearners.cpp
165 lines (136 loc) · 5.83 KB
/
testMultiRoverPLearners.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include <iostream>
#include <vector>
#include <string>
#include <Eigen/Eigen>
#include <stdlib.h>
#include "Domains/MultiRover.h"
using std::vector ;
using std::string ;
using namespace Eigen ;
int main(){
vector<double> world ;
world.push_back(0.0) ;
world.push_back(25.0) ;
world.push_back(0.0) ;
world.push_back(25.0) ; // Dimensions of testing arena [xmin, xmax, ymin, ymax]
size_t rovs = 10 ; // Number of rovers
size_t nPOIs = 10 ; // Number of POIs
int coupling = 1 ; // Number of simultaneous observations required
size_t nSteps = 25 ; // Number of timesteps in each learning epoch
size_t nEps = 1000 ; // Number of learning epochs
size_t nInputs = 8 ; // Dimension of state inputs to NN: keep fixed at 8
size_t nHidden = 16 ; // Number of hidden units
size_t nOutputs = 2 ; // Dimension of action outputs of NN: keep fixed at 2
size_t nPop = 25 ; // Number of members in original population
string evalFunc = "D" ; // Fitness evaluation function {"D","G"}
bool pLearn = true ; // Apply pLearners
double tau = 1.0 ; // Temperature value for pLearners
std::cout << "Generating expert policies for rover domain using " << evalFunc << " fitness.\n" ;
bool staticOrRandom = true ; // 0 - training epochs use the same POI and rover initial configuration, 1 - randomized configurations for each learning epoch. Note that each of the 2k multiagent teams in each epoch are still trained on the same configuration.
std::cout << "This program will evolve a " << rovs << "-rover team over " << nEps << " learning epochs, each of " << nSteps << " timesteps.\n" ;
std::cout << "Rover NN control policy parameters:\n" ;
std::cout << " Input dimensions: " << nInputs << "\n" ;
std::cout << " Hidden units: " << nHidden << "\n" ;
std::cout << " Output dimensions: " << nOutputs << "\n" ;
std::cout << "CCEA parameters:\n" ;
std::cout << " Population size: " << nPop << "\n" ;
std::cout << " Evaluation function: " << evalFunc << "\n" ;
std::cout << "Environment parameters:\n" ;
std::cout << " World size: " << world[1] << " x " << world[3] << "\n" ;
std::cout << " Number of POIs: " << nPOIs << "\n" ;
std::cout << " Simultaneous observation requirements: " << coupling << "\n" ;
if (!staticOrRandom)
std::cout << " Training worlds: each identical\n" ;
else
std::cout << " Training worlds: each randomly generated\n" ;
if (pLearn){
std::cout << "Applying probabilistic learner agents\n" ;
std::cout << " tau: " << tau << "\n" ;
}
size_t totalTrials = 20 ;
std::cout << "Total number of statistical trials: " << totalTrials << "\n" ;
for (size_t trialNum = 0; trialNum < totalTrials; trialNum++){
srand(trialNum) ;
MultiRover trainDomain(world, nSteps, nPop, nPOIs, evalFunc, rovs, coupling) ;
string pLearnDir ;
if (pLearn){
trainDomain.SetLearningEvaluation(tau) ;
pLearnDir = "pL" ;
}
else{
pLearnDir = "L" ;
}
int buffSize = 100 ;
char fileDir[buffSize] ;
sprintf(fileDir,"Results/Multirover_probabilistic_learners/%s/%s/%d_square/tau_%.1f/Gmax/%d",evalFunc.c_str(),pLearnDir.c_str(),(int)world[1],tau,trialNum) ;
char mkdir[buffSize] ;
sprintf(mkdir,"mkdir -p %s",fileDir) ;
system(mkdir) ;
std::cout << "\nWriting log files to: " << fileDir << "\n\n" ;
char eFile[buffSize] ;
sprintf(eFile,"%s/results.txt",fileDir) ;
char tFile[buffSize] ;
sprintf(tFile,"%s/trajectories.txt",fileDir) ;
char pFile[buffSize] ;
sprintf(pFile,"%s/POIs.txt",fileDir) ;
char iFile[buffSize] ;
sprintf(iFile,"%s/impacts_",fileDir) ;
char lFile[buffSize] ;
sprintf(lFile,"%s/learners.txt",fileDir) ;
char cFile[buffSize] ;
sprintf(cFile,"%s/config.txt",fileDir) ;
std::stringstream fileName ;
fileName << cFile ;
std::ofstream configFile ;
if (configFile.is_open())
configFile.close() ;
configFile.open(fileName.str().c_str(),std::ios::app) ;
configFile << "world: [" << world[0] << "," << world[1] << "," << world[2] << "," << world[3] << "]\n" ;
if (!staticOrRandom)
configFile << "world_type: static\n" ;
else
configFile << "world_type: random\n" ;
configFile << "rovers: " << rovs << "\n" ;
configFile << "POIs: " << nPOIs << "\n" ;
configFile << "coupling: " << coupling << "\n" ;
configFile << "timesteps: " << nSteps << "\n" ;
configFile << "epochs: " << nEps << "\n" ;
configFile << "NN:\n" ;
configFile << " inputs: " << nInputs << "\n" ;
configFile << " hidden: " << nHidden << "\n" ;
configFile << " outputs: " << nOutputs << "\n" ;
configFile << "pop_size: " << nPop << "\n" ;
configFile << "fitness: " << evalFunc << "\n" ;
if (pLearn){
configFile << "tau: " << tau << "\n" ;
}
configFile.close() ;
trainDomain.OutputPerformance(eFile) ;
for (size_t n = 0; n < nEps; n++){
std::cout << "Trial: " << trialNum << ", episode " << n << "..." ;
if (n == 0){
trainDomain.EvolvePolicies(true) ;
if (!staticOrRandom)
trainDomain.InitialiseEpoch() ; // Static world
}
else
trainDomain.EvolvePolicies() ;
if (staticOrRandom)
trainDomain.InitialiseEpoch() ; // Random worlds
if (n == nEps-1)
trainDomain.OutputTrajectories(tFile, pFile) ;
trainDomain.ResetEpochEvals() ;
trainDomain.SimulateEpoch() ;
if (pLearn){
trainDomain.OutputImpacts(iFile) ;
}
trainDomain.OutputLearners(lFile) ;
}
char NNFile[buffSize] ;
sprintf(NNFile,"%s/NNs.txt",fileDir) ;
std::cout << "\nWriting final control policies to file...\n" ;
trainDomain.OutputControlPolicies(NNFile) ;
}
std::cout << "Test complete!\n" ;
return 0 ;
}