This repo is a pytorch implementation of training a variational autoencoder (VAE). This is written to train a VAE for use in a RL environment, and contains code to generate images from random exploration of various RL environments from pybullet and RLBench for training.
- clone this repo
- cd to DeepRL-pytorch/VAE All scripts for VAE training and data generation are to be run in this directory
python generate_data.py
usage: generate_data.py [-h] --env ENV --num_samples NUM_SAMPLES
[--max_ep_len MAX_EP_LEN] [--seed SEED] [--rlbench]
[--view {wrist_rgb,front_rgb,left_shoulder_rgb,right_shoulder_rgb}]
optional arguments:
-h, --help show this help message and exit
--env ENV environment_id
--num_samples NUM_SAMPLES
specify number of image samples to generate
--max_ep_len MAX_EP_LEN
Maximum length of an episode
--seed SEED seed number for reproducibility
--rlbench if true, use rlbench environment wrappers
--view {wrist_rgb,front_rgb,left_shoulder_rgb,right_shoulder_rgb}
choose the type of camera view to generate image (only
for RLBench envs)
python train_vae.py
usage: train_vae.py [-h] [--dir DIR] [--seed SEED] [--num_workers NUM_WORKERS]
[--batch_size BATCH_SIZE] [--epochs EPOCHS] [--beta BETA]
[--lr LR] [--ngpu NGPU] [--save_freq SAVE_FREQ]
[--log_freq LOG_FREQ] [--save_dir SAVE_DIR]
optional arguments:
-h, --help show this help message and exit
--dir DIR path to image folders
--seed SEED seed number for reproducibility
--num_workers NUM_WORKERS
number of workers for dataloaders
--batch_size BATCH_SIZE
batch size
--epochs EPOCHS Number of epochs
--beta BETA Weighing value for KLD in B-VAE
--lr LR Learning Rate
--ngpu NGPU number of gpus to use
--save_freq SAVE_FREQ
save weights every <x> iterations
--log_freq LOG_FREQ log losses every <x> iterations
--save_dir SAVE_DIR path to save weights and logs