-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_rendunet.py
202 lines (175 loc) · 9.76 KB
/
train_rendunet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import numpy as np
import os
from util import semantic_to_mask, mask_to_semantic, get_confusion_matrix, get_miou, get_classification_report
import torch.nn.functional as F
os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1, 2, 3'
import torch
import torch.nn as nn
from torch.optim import SGD, lr_scheduler, adamw
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from models import UNetPP, UNet, rf101, DANet, SEDANet, RendUNet
from loss import lovasz_softmax, LabelSmoothSoftmaxCE, LabelSmoothCE, MultiRendLoss
from utils_Deeplab import SyncBN2d
from models.DeepLabV3_plus import deeplabv3_plus
from models.HRNetOCR import seg_hrnet_ocr
from data_loader import get_dataloader
def train_val(config):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
train_loader = get_dataloader(img_dir=config.train_img_dir, mask_dir=config.train_mask_dir, mode="train",
batch_size=config.batch_size, num_workers=config.num_workers, smooth=config.smooth)
val_loader = get_dataloader(img_dir=config.val_img_dir, mask_dir=config.val_mask_dir, mode="val",
batch_size=config.batch_size, num_workers=config.num_workers)
writer = SummaryWriter(
comment="LR_%f_BS_%d_MODEL_%s_DATA" % (config.lr, config.batch_size, config.model_type))
if config.model_type == "UNet":
model = UNet()
elif config.model_type == "UNet++":
model = UNetPP()
elif config.model_type == "SEDANet":
model = SEDANet()
elif config.model_type == "RefineNet":
model = rf101()
elif config.model_type == "DANet":
model = DANet(backbone='resnet101', nclass=config.output_ch, pretrained=True, norm_layer=nn.BatchNorm2d)
elif config.model_type == "Deeplabv3+":
model = deeplabv3_plus.DeepLabv3_plus(in_channels=3, num_classes=config.output_ch, backend='resnet101', os=16, pretrained=True, norm_layer=nn.BatchNorm2d)
elif config.model_type == "HRNet_OCR":
model = seg_hrnet_ocr.get_seg_model()
elif config.model_type == "RendUNet":
model = RendUNet(n_class=config.output_ch, pretrained="resnet101", norm_layer=nn.BatchNorm2d)
else:
model = UNet()
if config.iscontinue:
model = torch.load("./exp/3_RendUNet_0.5893.pth").module
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
model = model.to(device)
labels = [0, 1, 2]
objects = ['背景', '原发灶', '淋巴结']
if config.optimizer == "sgd":
optimizer = SGD(model.parameters(), lr=config.lr, weight_decay=1e-4, momentum=0.9)
elif config.optimizer == "adamw":
optimizer = adamw.AdamW(model.parameters(), lr=config.lr)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
# weight = torch.tensor([1, 1.5, 1, 2, 1.5, 2, 2, 1.2]).to(device)
# criterion = nn.CrossEntropyLoss(weight=weight)
criterion = MultiRendLoss()
# scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[25, 30, 35, 40], gamma=0.5)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode="max", factor=0.1, patience=6, verbose=True)
# scheduler = lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=20, eta_min=1e-5)
global_step = 0
max_miou = 0
for epoch in range(config.num_epochs):
epoch_loss = 0.0
cm = np.zeros([3, 3])
print(optimizer.param_groups[0]['lr'])
with tqdm(total=config.num_train, desc="Epoch %d / %d" % (epoch + 1, config.num_epochs),
unit='img', ncols=100) as train_pbar:
model.train()
for image, mask in train_loader:
image = image.to(device, dtype=torch.float32)
mask = mask.to(device, dtype=torch.float32)
pred = model(image)
seg_loss, point_loss3, point_loss4, point_loss5 = criterion(pred, mask)
loss = 3 * seg_loss + point_loss3 + point_loss4 + point_loss5
epoch_loss += loss.item()
writer.add_scalar('Loss/train', loss.item(), global_step)
writer.add_scalar('Loss/seg_loss', seg_loss.item(), global_step)
writer.add_scalar('Loss/point_loss3', point_loss3.item(), global_step)
writer.add_scalar('Loss/point_loss4', point_loss4.item(), global_step)
writer.add_scalar('Loss/point_loss5', point_loss5.item(), global_step)
train_pbar.set_postfix(**{'loss (batch)': loss.item()})
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_pbar.update(image.shape[0])
global_step += 1
# if global_step > 3:
# break
# scheduler.step()
print("\ntraining epoch loss: " + str(epoch_loss / (float(config.num_train) / (float(config.batch_size)))))
torch.cuda.empty_cache()
val_loss = 0
with torch.no_grad():
with tqdm(total=config.num_val, desc="Epoch %d / %d validation round" % (epoch + 1, config.num_epochs),
unit='img', ncols=100) as val_pbar:
model.eval()
locker = 0
for image, mask in val_loader:
image = image.to(device, dtype=torch.float32)
target = mask.to(device, dtype=torch.long).argmax(dim=1)
mask = mask.cpu().numpy()
pred = model(image)['fine']
val_loss += F.cross_entropy(pred, target).item()
pred = pred.cpu().detach().numpy()
mask = semantic_to_mask(mask, labels)
pred = semantic_to_mask(pred, labels)
cm += get_confusion_matrix(mask, pred, labels)
val_pbar.update(image.shape[0])
if locker == 25:
writer.add_images('mask_a/true', mask[0, :, :], epoch + 1, dataformats='HW')
writer.add_images('mask_a/pred', pred[0, :, :], epoch + 1, dataformats='HW')
writer.add_images('mask_b/true', mask[1, :, :], epoch + 1, dataformats='HW')
writer.add_images('mask_b/pred', pred[1, :, :], epoch + 1, dataformats='HW')
locker += 1
# break
miou = get_miou(cm)
scheduler.step(miou[1] + miou[2])
precision, recall = get_classification_report(cm)
writer.add_scalar('precision_tumor/val', precision[1], epoch + 1)
writer.add_scalar('precision_lympha/val', precision[2], epoch + 1)
writer.add_scalar('recall_tumor/val', recall[1], epoch + 1)
writer.add_scalar('recall_lympha/val', recall[2], epoch + 1)
if (miou[1] + miou[2]) / 2 > max_miou:
if torch.__version__ == "1.6.0":
torch.save(model,
config.result_path + "/%d_%s_%.4f.pth" % (
epoch + 1, config.model_type, (miou[1] + miou[2]) / 2),
_use_new_zipfile_serialization=False)
else:
torch.save(model,
config.result_path + "/%d_%s_%.4f.pth" % (
epoch + 1, config.model_type, (miou[1] + miou[2]) / 2))
max_miou = (miou[1] + miou[2]) / 2
print("\n")
print(miou)
print("testing epoch loss: " + str(val_loss), "Foreground mIoU = %.4f" % ((miou[1] + miou[2]) / 2))
writer.add_scalar('Foreground mIoU/val', (miou[1] + miou[2]) / 2, epoch + 1)
writer.add_scalar('loss/val', val_loss, epoch + 1)
for idx, name in enumerate(objects):
writer.add_scalar('iou/val' + name, miou[idx], epoch + 1)
torch.cuda.empty_cache()
writer.close()
print("Training finished")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model hyper-parameters
parser.add_argument('--image_size', type=int, default=384)
# training hyper-parameters
parser.add_argument('--img_ch', type=int, default=3)
parser.add_argument('--output_ch', type=int, default=3)
parser.add_argument('--num_epochs', type=int, default=1000)
parser.add_argument('--batch_size', type=int, default=12)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--lr', type=float, default=1e-2)
parser.add_argument('--model_type', type=str, default='RendUNet', help='UNet/UNet++/RefineNet')
parser.add_argument('--loss', type=str, default='ce', help='ce/dice/mix')
parser.add_argument('--optimizer', type=str, default='sgd', help='sgd/adam/adamw')
parser.add_argument('--iscontinue', type=str, default=False, help='true/false')
parser.add_argument('--smooth', type=str, default=False, help='true/false')
parser.add_argument('--train_img_dir', type=str, default="../data/NPC20_V1/train/image")
parser.add_argument('--train_mask_dir', type=str, default="../data/NPC20_V1/train/mask")
parser.add_argument('--val_img_dir', type=str, default="../data/NPC20_V1/val/image")
parser.add_argument('--val_mask_dir', type=str, default="../data/NPC20_V1/val/mask")
parser.add_argument('--num_train', type=int, default=7300, help="4800/1600")
parser.add_argument('--num_val', type=int, default=1824, help="1200/400")
parser.add_argument('--model_path', type=str, default='./model')
parser.add_argument('--result_path', type=str, default='./exp')
config = parser.parse_args()
train_val(config)