forked from geodynamics/hc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hc_init.old
667 lines (588 loc) · 19.5 KB
/
hc_init.old
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
#include "hc.h"
/*
general routines dealing with the hager & Connell implementation
$Id: hc_init.c,v 1.13 2006/01/22 01:11:34 becker Exp becker $
*/
/* first, call this routine with a blank **hc */
void hc_struc_init(struct hcs **hc)
{
*hc = (struct hcs *)calloc(1,sizeof(struct hcs *));
if(!(*hc))
HC_MEMERROR("hc_struc_init: hc");
/*
assign NULL pointers to allow reallocating
*/
(*hc)->r = (*hc)->visc = (*hc)->rvisc =
(*hc)->dfact = (*hc)->rden = NULL;
(*hc)->rpb = (*hc)->fpb= NULL;
(*hc)->dens_anom = (*hc)->geoid = NULL; /* expansions */
(*hc)->plm = NULL;
(*hc)->prem_init = FALSE;
(*hc)->print_pt_sol = FALSE;
/*
filenames
*/
strncpy((*hc)->visc_filename,HC_VISC_FILE,HC_CHAR_LENGTH);
strncpy((*hc)->dens_filename,HC_DENS_SH_FILE,HC_CHAR_LENGTH);
strncpy((*hc)->pvel_filename,HC_PVEL_FILE,HC_CHAR_LENGTH);
}
/*
initialize all variables
sh_type: type of expansion storage/spherical haronics scheme to use
compressible: flag for ddensity factors and polsol operation
vel_bc_zero: if true, will set all surface velocities to zero
free-slip: free_slip TRUE
no-slip : free_slip FALSE vel_bc_zero: TRUE
platevel : free_slip FALSE vel_bc_zero: FALSE
*/
void hc_init(struct hcs *hc,int sh_type,
hc_boolean compressible,
hc_boolean free_slip,
hc_boolean vel_bc_zero,
HC_PREC dens_anom_scale,
hc_boolean verbose)
{
int dummy=0;
/* mechanical boundary condition */
hc->free_slip = free_slip;
/*
set the default expansion type, input expansions will be
converted
*/
hc->sh_type = sh_type;
/*
start by reading in physical constants and PREM model, if compressible
*/
hc_init_constants(hc,dens_anom_scale,PREM_MODEL_FILE,verbose);
/*
initialize viscosity structure from file
*/
hc_assign_viscosity(hc,HC_INIT_FROM_FILE,hc->visc_filename,verbose);
if(vel_bc_zero){
/* no slip (zero velocity) surface boundary conditions */
if(free_slip)
HC_ERROR("hc_init","vel_bc_zero and free_slip doesn't make sense");
/* read in the densities */
hc_assign_density(hc,compressible,HC_INIT_FROM_FILE,
hc->dens_filename,-1,FALSE,FALSE,verbose);
/* assign all zeroes up to the lmax of the density expansion */
hc_assign_plate_velocities(hc,HC_INIT_FROM_FILE,
hc->pvel_filename,vel_bc_zero,
hc->dens_anom[0].lmax,FALSE,verbose);
}else{
/* presribed surface velocities */
if(!free_slip){
/* read in velocities, which will determine the solution lmax */
hc_assign_plate_velocities(hc,HC_INIT_FROM_FILE,
hc->pvel_filename,vel_bc_zero,
dummy,FALSE,verbose);
hc_assign_density(hc,compressible,HC_INIT_FROM_FILE,
hc->dens_filename,hc->pvel[0].lmax,FALSE,FALSE,verbose);
}else{
if(verbose)
fprintf(stderr,"hc_init: initializing for free-slip\n");
/* read in the density fields */
hc_assign_density(hc,compressible,HC_INIT_FROM_FILE,
hc->dens_filename,-1,FALSE,FALSE,verbose);
}
}
/*
phase boundaries, if any
*/
hc_init_phase_boundaries(hc,0,verbose);
/* */
hc->save_solution = TRUE; /* (don')t save the propagator
matrices in hc_polsol and the
poloidal/toroidal solutions
*/
hc->initialized = TRUE;
}
/*
some of those numbers might be a bit funny, but leave them like
this for now for backward compatibility.
*/
void hc_init_constants(struct hcs *hc, HC_PREC dens_anom_scale,
char *prem_filename,hc_boolean verbose)
{
static hc_boolean init=FALSE;
if(init)
HC_ERROR("hc_init_constants","why would you call this routine twice?")
if(!hc->prem_init){
/* PREM constants */
prem_read_model(prem_filename,hc->prem,verbose);
hc->prem_init = TRUE;
}
/*
density scale
*/
hc->dens_scale[0] = dens_anom_scale;
/*
constants
*/
hc->timesc = HC_TIMESCALE_YR; /* timescale [yr]*/
hc->visnor = 1e21; /* normalizing viscosity [Pas]*/
hc->gacc = 10.0; /* gravitational acceleration [m/s2]*/
hc->g = 6.672e-11; /* gravitational constant [Nm2/kg2]*/
hc->re = HC_RE_KM*1e3; /* raadius of Earth [m]*/
hc->secyr = 3.1556926e7; /* seconds/year */
hc->avg_den_mantle = 4.4488e3;/* average density in mantle [kg/m^3] */
hc->avg_den_core = 9.90344e3; /* same for core */
/* velocity scale if input is in [cm/yr],
works out to be ~0.11 */
hc->vel_scale = hc->re*PIOVERONEEIGHTY/hc->timesc;
init = TRUE;
}
/*
handle command line parameters
visc_filename[] needs to be [HC_CHAR_LENGTH]
*/
void hc_handle_command_line(int argc, char **argv,
HC_PREC *dens_anom_scale,
hc_boolean *free_slip,
char *visc_filename,
hc_boolean *print_pt_sol,
hc_boolean *verbose)
{
int i;
for(i=1;i < argc;i++){
if(strcmp(argv[i],"-h")==0 || strcmp(argv[i],"-?")==0){// help
/*
help paghe
*/
fprintf(stderr,"%s - perform Hager & O'Connell flow computation\n\n",
argv[0]);
fprintf(stderr,"options:\n\n");
fprintf(stderr,"-ds\t\tdensity scaling (%g)\n",
*dens_anom_scale);
fprintf(stderr,"-fs\t\tperform free slip computation, else no slip or plates (%s)\n",
hc_name_boolean(*free_slip));
fprintf(stderr,"-pptsol\t\tprint pol[6] and tor[2] solution vectors\n");
fprintf(stderr,"-vf\tname\tset viscosity structure filename to name (%s)\n",
visc_filename);
fprintf(stderr,"-v\t-vv\t-vvv: verbosity levels (%i)\n",
(int)(*verbose));
fprintf(stderr,"\n\n");
exit(-1);
}else if(strcmp(argv[i],"-ds")==0){ /* density anomaly scaling factor */
hc_advance_argument(&i,argc,argv);
sscanf(argv[i],HC_FLT_FORMAT,dens_anom_scale);
}else if(strcmp(argv[i],"-fs")==0){ /* free slip flag */
hc_toggle_boolean(free_slip);
}else if(strcmp(argv[i],"-pptsol")==0){ /* print
poloidal/toroidal
solution
parameters */
hc_toggle_boolean(print_pt_sol);
}else if(strcmp(argv[i],"-vf")==0){ /* viscosity filename */
hc_advance_argument(&i,argc,argv);
strncpy(visc_filename,argv[i],HC_CHAR_LENGTH);
}else if(strcmp(argv[i],"-v")==0){ /* verbosities */
*verbose = 1;
}else if(strcmp(argv[i],"-vv")==0){ /* verbosities */
*verbose = 2;
}else if(strcmp(argv[i],"-vvv")==0){
*verbose = 3;
}else{
fprintf(stderr,"%s: can not use parameter %s, use -h for help page\n",
argv[0],argv[i]);
exit(-1);
}
}
}
/*
assign viscosity structure
mode == 0
read in a viscosity structure with layers of constant viscosity in
format
r visc
where r is non-dim radius and visc non-dim viscosity, r has to be
ascending
*/
void hc_assign_viscosity(struct hcs *hc,int mode,char filename[HC_CHAR_LENGTH],
hc_boolean verbose)
{
FILE *in;
char fstring[100];
HC_PREC mean;
static hc_boolean init=FALSE;
switch(mode){
case HC_INIT_FROM_FILE:
/*
init from file part
*/
if(init)
HC_ERROR("hc_assign_viscosity","viscosity already read from file, really read again?");
/*
read viscosity structure from file
format:
r[non-dim] visc[non-dim]
from bottom to top
*/
in = hc_open(filename,"r","hc_assign_viscosity");
hc_vecrealloc(&hc->rvisc,1,"hc_assign_viscosity");
hc_vecrealloc(&hc->visc,1,"hc_assign_viscosity");
hc->nvis = 0;mean = 0.0;
/* read sscanf string */
hc_get_flt_frmt_string(fstring,2,FALSE);
/* start read loop */
while(fscanf(in,"%lf %lf",
(hc->rvisc+hc->nvis),(hc->visc+hc->nvis))==2){
mean += hc->visc[hc->nvis];
if(hc->nvis){
if(hc->rvisc[hc->nvis] < hc->rvisc[hc->nvis-1]){
fprintf(stderr,"hc_assign_viscosity: error: radius has to be ascing, entry %i (%g) smaller than last (%g)\n",
hc->nvis+1,hc->rvisc[hc->nvis],hc->rvisc[hc->nvis-1]);
exit(-1);
}
}
hc->nvis++;
hc_vecrealloc(&hc->rvisc,hc->nvis+1,"hc_assign_viscosity");
hc_vecrealloc(&hc->visc,hc->nvis+1,"hc_assign_viscosity");
}
fclose(in);
mean /= hc->nvis;
if(verbose){
fprintf(stderr,"hc_assign_viscosity: read %i layers of non-dimensionalized viscosities from %s\n",
hc->nvis,filename);
fprintf(stderr,"hc_assign_viscosity: rough estimate of mean viscosity %g Pas\n",
mean * hc->visnor);
}
break;
default:
HC_ERROR("hc_assign_viscosity","mode undefined");
break;
}
init = TRUE;
}
/*
assign/initialize the density anomalies and density factors
if mode==0: expects spherical harmonics of density anomalies [%] with
respect to the 1-D reference model (PREM) given in SH
format on decreasing depth levels in [km]
spherical harmonics are real, fully normalized as in
Dahlen & Tromp p. 859
this routine assigns the inho density radii, and the total (nrad=inho)+2
radii
furthermore, the dfact factors are assigned as well
set density_in_binary to TRUE, if expansion given in binary
nominal_lmax: -1: the max order of the density expansion will either
determine the lmax of the solution (free-slip, or vel_bc_zero) or
will have to be the same as the plate expansion lmax (!free_slip && !vel_bc_zero)
else: will zero out all entries > nominal_lmax
*/
void hc_assign_density(struct hcs *hc,
hc_boolean compressible,int mode,
char *filename,int nominal_lmax,
hc_boolean layer_structure_changed,
hc_boolean density_in_binary,
hc_boolean verbose)
{
FILE *in;
int type,lmax,shps,ilayer,nset,ivec,i,j;
HC_PREC *dtop,*dbot,zlabel,dens_scale[1],rho0;
hc_boolean reported = FALSE;
static HC_PREC local_dens_fac = .01; /* this factor will be multiplied with
the hc->dens_fac factor to arrive at
fractional anomalies from input. set to
0.01 for percent input, for instance
*/
static hc_boolean init=FALSE;
hc->compressible = compressible;
if(init) /* clear old expansions, if
already initialized */
sh_free_expansion(hc->dens_anom,hc->inho);
/* get PREM model, if not initialized */
if(!hc->prem_init)
HC_ERROR("hc_assign_density","assign 1-D reference model (PREM) first");
switch(mode){
case HC_INIT_FROM_FILE:
if(init)
HC_ERROR("hc_assign_density","really read dens anomalies again from file?");
/*
read in density anomalies in spherical harmonics format for
different layers from file.
this assumes that we are reading in anomalies in percent
*/
in = hc_open(filename,"r","hc_assign_density");
if(verbose)
fprintf(stderr,"hc_assign_density: reading density anomalies in [%%] from %s, scaling by %g\n",
filename,hc->dens_scale[0]);
hc->inho = 0; /* counter for density layers */
hc->dens_anom = (struct sh_lms *)
realloc(hc->dens_anom,sizeof(struct sh_lms));
if(!hc->dens_anom)
HC_MEMERROR("hc_assign_density: dens anom");
/*
read all layes as spherical harmonics assuming real Dahlen & Tromp
(physical) normalization
*/
while(sh_read_parameters(&type,&lmax,&shps,&ilayer, &nset,
&zlabel,&ivec,in,FALSE,density_in_binary,
verbose)){
if((verbose)&&(!reported)){
if(nominal_lmax > lmax)
fprintf(stderr,"hc_assign_density: density lmax: %3i filling up to nominal lmax: %3i with zeroes\n",
lmax,nominal_lmax);
if(nominal_lmax != -1){
fprintf(stderr,"hc_assign_density: density lmax: %3i limiting to lmax: %3i\n",
lmax,nominal_lmax);
}else{
fprintf(stderr,"hc_assign_density: density lmax: %3i determines solution lmax\n",
lmax);
}
reported = TRUE;
}
/*
do tests
*/
if((shps != 1)||(ivec))
HC_ERROR("hc_assign_density","vector field read in but only scalar expansion expected");
/* test and assign depth levels */
hc->rden=(HC_PREC *)
realloc(hc->rden,(1+hc->inho)*sizeof(HC_PREC));
if(!hc->rden)
HC_MEMERROR("hc_assign_density: rden");
/*
assign depth, this assumes that we are reading in depths [km]
*/
hc->rden[hc->inho] = HC_ND_RADIUS(zlabel);
/*
get reference density at this level
*/
prem_get_rho(&rho0,hc->rden[hc->inho],hc->prem);
/*
general density (add additional depth dependence here)
*/
dens_scale[0] = hc->dens_scale[0] * local_dens_fac * rho0;
if(verbose >= 2)
fprintf(stderr,"hc_assign_density: r: %11g anom scales: %11g x %11g x %11g = %11g\n",
hc->rden[hc->inho],hc->dens_scale[0],
local_dens_fac,rho0,dens_scale[0]);
if(hc->inho){
/*
check by comparison with previous expansion
*/
if(nominal_lmax == -1)
if(lmax != hc->dens_anom[0].lmax)
HC_ERROR("hc_assign_density","lmax changed in file");
if(hc->rden[hc->inho] <= hc->rden[hc->inho-1])
HC_ERROR("hc_assign_density","depth should decrease, radius increase (give z[km])");
}
/*
make room for new expansion
*/
hc->dens_anom = (struct sh_lms *)
realloc(hc->dens_anom,(1+hc->inho)*sizeof(struct sh_lms));
if(!hc->dens_anom)
HC_MEMERROR("hc_assign_density");
/*
initialize expansion
*/
sh_init_expansion((hc->dens_anom+hc->inho),(nominal_lmax > lmax) ? (nominal_lmax):(lmax),
hc->sh_type,1,verbose);
/*
read parameters and scale (put possible depth dependence of
scaling here)
will assume input is in physical convention
*/
sh_read_coefficients((hc->dens_anom+hc->inho),1,lmax,
in,density_in_binary,dens_scale,
verbose);
hc->inho++;
}
if(hc->inho != nset)
HC_ERROR("hc_assign_density","file mode: mismatch in number of layers");
fclose(in);
break;
default:
HC_ERROR("hc_assign_density","mode undefined");
break;
}
if((!init)||(layer_structure_changed)){
/*
assign the other radii, nrad + 2
*/
hc->nrad = hc->inho;
hc_vecrealloc(&hc->r,(2+hc->nrad),"hc_assign_density");
hc->r[0] = HC_RCMB_ND; /* CMB */
if(hc->rden[0] <= hc->r[0])
HC_ERROR("hc_assign_density","first density layer has to be above internal CMD limit");
for(i=0;i<hc->nrad;i++) /* density layers */
hc->r[i+1] = hc->rden[i];
if(hc->rden[hc->nrad-1] >= 1.0)
HC_ERROR("hc_assign_density","uppermost density layer has to be below surface");
hc->r[hc->nrad+1] = 1.0; /* surface */
/*
assign the density jump factors
*/
/*
since we have spherical harmonics at several layers, we assign
the layer thickness by picking the intermediate depths
*/
hc_vecalloc(&dbot,hc->nrad,"hc_assign_density");
hc_vecalloc(&dtop,hc->nrad,"hc_assign_density");
// top boundaries
j = hc->nrad-1;
for(i=0;i < j;i++)
dtop[i] = 1.0 - (hc->rden[i+1] + hc->rden[i])/2.0;
dtop[j] = 0.0; // top boundary
// bottom boundaries
dbot[0] = 1.0 - HC_RCMB_ND; // bottom boundary, ie. CMB
for(i=1;i < hc->nrad;i++)
dbot[i] = dtop[i-1];
/*
density layer thickness factors
*/
hc_dvecrealloc(&hc->dfact,hc->nrad,"hc_assign_density");
for(i=0;i<hc->nrad;i++){
hc->dfact[i] = 1.0/hc->rden[i] *(dbot[i] - dtop[i]);
}
if(verbose)
for(i=0;i < hc->nrad;i++)
fprintf(stderr,"hc_assign_density: dens %3i: r: %8.6f df: %8.6f |rho|: %8.4f\n",
i+1,hc->rden[i],hc->dfact[i],
sqrt(sh_total_power((hc->dens_anom+i))));
free(dbot);free(dtop);
} /* end layer structure part */
init = TRUE;
}
/*
assign phase boundary jumps
input:
npb: number of phase boundaries
....
*/
void hc_init_phase_boundaries(struct hcs *hc, int npb,
hc_boolean verbose)
{
hc->npb = npb; /* no phase boundaries for now */
if(hc->npb){
HC_ERROR("hc_init_phase_boundaries","phase boundaries not implemented yet");
hc_vecrealloc(&hc->rpb,hc->npb,"hc_init_phase_boundaries");
hc_vecrealloc(&hc->fpb,hc->npb,"hc_init_phase_boundaries");
}
}
/*
read in plate velocities,
vel_bc_zero: if true, will set all surface velocities to zero
lmax will only be referenced if all velocities are supposed to be set to zero
we expect velocities to be in cm/yr, convert to m/yr
*/
void hc_assign_plate_velocities(struct hcs *hc,int mode,
char *filename,
hc_boolean vel_bc_zero,int lmax,
hc_boolean pvel_in_binary,
hc_boolean verbose)
{
static hc_boolean init = FALSE;
int type,shps,ilayer,nset,ivec;
HC_PREC zlabel,vfac[2],t10[2],t11[2];
FILE *in;
/* scale to go from cm/yr to internal scale */
vfac[0] = vfac[1] = hc->vel_scale;
if(init)
HC_ERROR("hc_assign_plate_velocities","what to do if called twice?");
if(!vel_bc_zero){
/*
velocities are NOT all zero
*/
switch(mode){
case HC_INIT_FROM_FILE:
/*
read velocities in pol/tor expansion format from file
in units of HC_VELOCITY_FILE_FACTOR per year
*/
if(verbose)
fprintf(stderr,"hc_assign_plate_velocities: expecting [cm/yr] pol/tor from %s\n",
filename);
in = hc_open(filename,"r","hc_assign_plate_velocities");
if(!sh_read_parameters(&type,&lmax,&shps,&ilayer, &nset,
&zlabel,&ivec,in,FALSE,
pvel_in_binary,verbose)){
fprintf(stderr,"hc_assign_plate_velocities: read error file %s\n",
filename);
exit(-1);
} /* check if we read in two sets of expansions */
if(shps != 2){
fprintf(stderr,"hc_assign_plate_velocities: two sets expected but found shps: %i in file %s\n",
shps,filename);
exit(-1);
}
if((nset > 1)||(fabs(zlabel) > 0.01)){
fprintf(stderr,"hc_assign_plate_velocities: error: expected one layer at surface, but nset: %i z: %g\n",
nset, zlabel);
exit(-1);
}
/*
initialize expansion
*/
sh_init_expansion((hc->pvel+0),lmax,hc->sh_type,1,verbose);
sh_init_expansion((hc->pvel+1),lmax,hc->sh_type,1,verbose);
/*
read in expansions, convert to internal format from
physical
*/
sh_read_coefficients(hc->pvel,shps,-1,in,pvel_in_binary,
vfac,verbose);
fclose(in);
/*
scale by 1/sqrt(l(l+1))
*/
if(hc->pvel[0].lmax > hc->lfac_init)
hc_init_l_factors(hc,hc->pvel[0].lmax);
sh_scale_expansion_l_factor((hc->pvel+0),hc->ilfac);
sh_scale_expansion_l_factor((hc->pvel+1),hc->ilfac);
/*
check for net rotation
*/
sh_get_coeff((hc->pvel+1),1,0,0,TRUE,t10);
sh_get_coeff((hc->pvel+1),1,0,2,TRUE,t11);
if(fabs(t10[0])+fabs(t11[0])+fabs(t11[1]) > 1.0e-7)
fprintf(stderr,"\nhc_assign_plate_velocities: WARNING: toroidal A(1,0): %g A(1,1): %g B(1,1): %g\n\n",
t10[0],t11[0],t11[1]);
if(verbose)
fprintf(stderr,"hc_assign_plate_velocities: read velocities, lmax %i: |pol|: %11g |tor|: %11g\n",
lmax,sqrt(sh_total_power((hc->pvel+0))),sqrt(sh_total_power((hc->pvel+1))));
break;
default:
HC_ERROR("hc_assign_plate_velocities","op mode undefined");
}
}else{
/*
initialize with zeroes
*/
if(init){
sh_clear_alm(hc->pvel);
sh_clear_alm((hc->pvel+1));
}else{
sh_init_expansion(hc->pvel,lmax,hc->sh_type,
1,verbose);
sh_init_expansion((hc->pvel+1),lmax,hc->sh_type,
1,verbose);
}
if(verbose)
fprintf(stderr,"hc_assign_plate_velocities: using no-slip surface BC, lmax %i\n",
lmax);
}
init = TRUE;
}
/*
initialize an array with sqrt(l(l+1)) factors
from l=0 .. lmax+1
pass lfac initialized (say, as NULL)
*/
void hc_init_l_factors(struct hcs *hc, int lmax)
{
int lmaxp1,l;
lmaxp1 = lmax + 1;
hc_vecrealloc(&hc->lfac,lmaxp1,"hc_init_l_factors");
hc_vecrealloc(&hc->ilfac,lmaxp1,"hc_init_l_factors");
/* maybe optimize later */
hc->lfac[0] = 0.0;
hc->ilfac[0] = 1.0; /* shouldn't matter */
for(l=1;l < lmaxp1;l++){
hc->lfac[l] = sqrt((HC_PREC)l * ((HC_PREC)l + 1.0));
hc->ilfac[l] = 1.0/hc->lfac[l];
}
hc->lfac_init = lmax;
}