forked from geodynamics/ellipsis3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUzawa_constraint_iteration.c
501 lines (404 loc) · 16.4 KB
/
Uzawa_constraint_iteration.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/*
Copyright (C) 2003 The GeoFramework Consortium
This file is part of Ellipsis3D.
Ellipsis3D is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
Ellipsis3D is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Authors:
Louis Moresi <[email protected]>
Richard Albert <[email protected]>
*/
/* Functions which solve for the velocity and
pressure fields using Uzawa-type iteration loop. */
#include <math.h>
#include "element_definitions.h"
#include "global_defs.h"
/* =========================================================================
Solves the Au + Bp = f equation of motion assuming no initial guess for p
but that V contains helpful best-guess info of velocity
========================================================================= */
int solve_q_velocity_3(
struct All_variables *E,
standard_precision *V1,
standard_precision *V2,
standard_precision *V3,
standard_precision *V4,
standard_precision *V5,
standard_precision *V6,
standard_precision *Q,
standard_precision *F1,
standard_precision *F2,
standard_precision *F3,
standard_precision *F4,
standard_precision *F5,
standard_precision *F6,
standard_precision v_res,
int V_GUESS,
int level
)
{
int i,j,m,count,loops;
int steps_max,relax;
int continuity_satisfied;
standard_precision *u1,*u2,*u3,*u4,*u5,*u6;
standard_precision *Ah1,*Ah2,*Ah3,*R1,*R2,*R3,*R4,*R5,*R6,*Au1,*Au2,*Au3;
standard_precision *Ahv1,*Ahv2,*Ahv3,*QQ;
standard_precision alpha,delta,dotAhat;
standard_precision imp_fact,this_res,v_mag,q_res;
standard_precision time;
standard_precision this_imp;
standard_precision continuity;
static int been_here=0;
static int solved_this_level[MAX_LEVELS];
void assemble_div_us3();
void s_strip_bcs_from_residual();
/* void remove_horiz_press_ave();
void remove_nodal_horiz_press_ave();
void remove_surf_horiz_press_ave(); */ /*RAA: 17/4/01, these 3 functions not called*/
standard_precision return_bulk_value_l();
standard_precision CPU_time();
standard_precision lpdot(),vsdot(),vsselfdot(),vsselfdot6(),lpselfdot(),return_bulk_value_l();
/* int solve_del2_u(); */ /*RAA: old function, not called*/
int apply_continuity();
const int npno=E->mesh.NPNO[level];
const int nno=E->mesh.NNO[level];
const int neq=E->mesh.NEQ[level];
const int dofs = E->mesh.dof;
const int dims = E->mesh.nsd;
int count1,count2;
standard_precision aveVx ;
count1 = count2 = 0 ;
if(been_here++ == 0) {
for(i=E->mesh.q_levmin;i<=E->mesh.levmax;i++)
solved_this_level[i]=0;
}
QQ = (standard_precision *)Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(standard_precision));
u1 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
u2 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
u3 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
u4 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
u5 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
u6 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
R1 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
R2 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
R3 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
R4 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
R5 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
R6 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Au1 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Au2 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Au3 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Ah1 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Ah2 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Ah3 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Ahv1 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Ahv2 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Ahv3 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
steps_max=E->control.p_iterations;
this_imp = pow(E->control.delta_accuracy_factor,(double)(E->mesh.levmax-level));
if(this_imp < 0.01)
this_imp = 0.01;
if(this_imp > 10.0)
this_imp=10.0;
time=CPU_time();
if(E->control.vector_optimization)
e_assemble_del2_u_6(E,V1,V2,V3,V4,V5,V6,u1,u2,u3,u4,u5,u6,level,1);
else
n_assemble_del2_u_6(E,V1,V2,V3,V4,V5,V6,u1,u2,u3,u4,u5,u6,level,1);
/*RAA: 28/11/01, check out the load vector*/
/* for(i=1;i<=nno;i++) {
fprintf(stderr,"-->FF's at node#, F1,F2,F3: %d %g %g %g\n",i,F1[i],F2[i],F3[i]);
}
*/
assemble_grad_qst3(E,E->tracer.DQ,Ah1,Ah2,Ah3,level);
assemble_grad_qs3(E,Q,Ahv1,Ahv2,Ahv3,level);
if(2==dofs) {
for(i=1;i<=nno;i++) {
R1[i] = (F1[i] - u1[i] - Ah1[i] - Ahv1[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R2[i] = (F2[i] - u2[i] - Ah2[i] - Ahv2[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
}
}
else if(3==dofs && 3==dims) {
for(i=1;i<=nno;i++) {
R1[i] = (F1[i] - u1[i] - Ah1[i] - Ahv1[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R2[i] = (F2[i] - u2[i] - Ah2[i] - Ahv2[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R3[i] = (F3[i] - u3[i] - Ah3[i] - Ahv3[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
}
}
else if(3==dofs && 2==dims) {
for(i=1;i<=nno;i++) {
R1[i] = (F1[i] - u1[i] - Ah1[i] - Ahv1[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R2[i] = (F2[i] - u2[i] - Ah2[i] - Ahv2[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R3[i] = (F3[i] - u3[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0) ;
}
}
else {
for(i=1;i<=nno;i++) {
R1[i] = (F1[i] - u1[i] - Ah1[i] - Ahv1[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R2[i] = (F2[i] - u2[i] - Ah2[i] - Ahv2[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R3[i] = (F3[i] - u3[i] - Ah3[i] - Ahv3[i]) * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R4[i] = F4[i] - u4[i] * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R5[i] = F5[i] - u5[i] * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
R6[i] = F6[i] - u6[i] * ((E->NODE[level][i] & ( OFFSIDE)) == 0);
}
}
strip_bcs_from_residual_6(E,R1,R2,R3,R4,R5,R6,level);
v_res=sqrt(vsselfdot6(E,F1,F2,F3,F4,F5,F6,level)/nno);
/*
for(i=1;i<=E->mesh.nno;i++) {
if(3==dims) {
fprintf(E->fp1,"b4 multisolve: node V1[n] V2[n] V3[n] %d %g %g %g \n",i,V1[i],V2[i],V3[i]);
fprintf(E->fp1,"b4 multisolve: node u1[n] u2[n] u3[n] %d %g %g %g \n",i,u1[i],u2[i],u3[i]);
fprintf(E->fp1,"b4 multisolve: node F1[n] F2[n] F3[n] %d %g %g %g \n",i,F1[i],F2[i],F3[i]);
}
else
fprintf(E->fp1,"b4 multisolve: node F1[n] F2[n] %d %g %g \n",i,F1[i],F2[i]);
} */
/* fprintf(stderr,"Vres = %g (%g)\n",v_res,vsselfdot6(E,F1,F2,F3,F4,F5,F6,level)); */
if(1 || sqrt(vsselfdot6(E,R1,R2,R3,R4,R5,R6,level)/nno) > 0.1 * E->control.accuracy * v_res * this_imp) {
/* 1. Initial improvement of velocity residual */
multigrid_solve_del2_u(E,u1,u2,u3,u4,u5,u6,R1,R2,R3,R4,R5,R6,0.1*E->control.accuracy*v_res* this_imp,level,1);
v_mag = sqrt(vsselfdot6(E,V1,V2,V3,V4,V5,V6,level)/nno);
if(v_mag == 0.0) {
v_mag = sqrt(vsselfdot6(E,u1,u2,u3,u4,u5,u6,level)/nno);
}
switch(dofs) {
case 2:
for(i=1;i<=nno;i++) {
if(E->NODE[level][i] & ( OFFSIDE ))
continue;
V1[i] += u1[i];
V2[i] += u2[i];
}
break ;
case 3:
for(i=1;i<=nno;i++) {
if(E->NODE[level][i] & ( OFFSIDE ))
continue;
V1[i] += u1[i];
V2[i] += u2[i];
V3[i] += u3[i];
}
break ;
case 6:
for(i=1;i<=nno;i++) {
if(E->NODE[level][i] & ( OFFSIDE ))
continue;
V1[i] += u1[i];
V2[i] += u2[i];
V3[i] += u3[i];
V4[i] += u4[i];
V5[i] += u5[i];
V6[i] += u6[i];
}
break ;
}
velocity_conform_bcs_6(E,V1,V2,V3,V4,V5,V6,level);
}
v_mag = sqrt(vsselfdot6(E,V1,V2,V3,V4,V5,V6,level)/nno);
/* fprintf(stderr,"Vmag = %g, Vres = %g\n",v_mag,v_res); */
/* 2 magnitude of pressure equation terms
(approx - just one V cycle to get an estimate. Otherwise
this can be really hard to solve at certain times) */
multigrid_solve_del2_u(E,u1,u2,u3,u4,u5,u6,F1,F2,F3,F4,F5,F6,1000.0*E->control.accuracy*v_res,level,1);
assemble_div_us3(E,u1,u2,u3,QQ,level);
q_res = 0.0;
for(i=1;i<=E->mesh.NPNO[level];i++) {
q_res += QQ[i] * QQ[i];
}
q_res = sqrt(q_res / E->mesh.NPNO[level]);
/* fprintf(stderr,"%d: |Fhat| = %g\n",level,p_res); */
/* Solve CG form of Uzawa's iteration to impose continuity */
continuity_satisfied = apply_continuity(E,V1,V2,V3,Q,v_mag,v_res,q_res,level);
velocity_conform_bcs_6(E,V1,V2,V3,NULL,NULL,NULL,level);
/* continuity_satisfied=1 ;/**/
for(m=1;m<=E->tracer.NUM_TRACERS;m++)
E->tracer.Q[m] = E->tracer.DQ1[m] /* + E->tracer.DQ[m]*/;
free((void *) u1);
free((void *) u2);
free((void *) u3);
free((void *) u4);
free((void *) u5);
free((void *) u6);
free((void *) R1);
free((void *) R2);
free((void *) R3);
free((void *) R4);
free((void *) R5);
free((void *) R6);
free((void *) Ah1);
free((void *) Ahv1);
free((void *) Au1);
free((void *) Ah2);
free((void *) Ahv2);
free((void *) Au2);
free((void *) Ah3);
free((void *) Ahv3);
free((void *) Au3);
free((void *) QQ);
printf("In Uzawa, first free finished\n");
return(continuity_satisfied);
}
/* =========================================================================
Solves the Au + Bp = f equation of motion assuming no initial guess for p
but that V contains helpful best-guess info of velocity
========================================================================= */
int apply_continuity(
struct All_variables *E,
standard_precision *V1,
standard_precision *V2,
standard_precision *V3,
standard_precision *Q,
standard_precision v_mag,
standard_precision v_res,
standard_precision q_res,
int level
)
{
int i,j,m,count,loops;
int steps_max,relax;
standard_precision *r0,*r1,*r2;
standard_precision *u1,*u2,*u3;
standard_precision *Ah1,*Ah2,*Ah3,*R1,*R2,*R3;
standard_precision *QQ,*ZZ1,*ZZ2,*QQ1,*w1;
standard_precision alpha,delta,dotAhat,r0dotr0,r1dotr1;
standard_precision imp_fact,this_res,v_res2;
standard_precision time;
standard_precision this_imp;
standard_precision continuity;
static int been_here=0;
void assemble_div_us3();
standard_precision lpdot(),vsdot(),vsselfdot(),vsselfdot3(),vsselfdot6(),lpselfdot();
standard_precision CPU_time();
/* int solve_del2_u(); */ /*RAA: old function, not called*/
const int npno=E->mesh.NPNO[level];
const int nno=E->mesh.NNO[level];
const int neq=E->mesh.NEQ[level];
const int dofs = E->mesh.dof;
const int dims = E->mesh.nsd;
this_imp = pow(E->control.delta_accuracy_factor,(double)(E->mesh.levmax-level));
if(this_imp < 0.01)
this_imp = 0.01;
if(this_imp > 10.0)
this_imp=10.0;
/* QQ = (standard_precision *)Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(standard_precision));
ZZ1 = (standard_precision *)Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(standard_precision));
QQ1 = (standard_precision *)Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(standard_precision));
r1 = (standard_precision *)Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(standard_precision));
w1 = (standard_precision *)Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(standard_precision));*/
QQ = (standard_precision *)Malloc0((npno+1)*sizeof(standard_precision));
ZZ1 = (standard_precision *)Malloc0((npno+1)*sizeof(standard_precision));
QQ1 = (standard_precision *)Malloc0((npno+1)*sizeof(standard_precision));
r1 = (standard_precision *)Malloc0((npno+1)*sizeof(standard_precision));
w1 = (standard_precision *)Malloc0((npno+1)*sizeof(standard_precision));
u1 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
u2 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
u3 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
R1 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
R2 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
R3 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Ah1 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Ah2 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
Ah3 = (standard_precision *)Malloc0((nno+1)*sizeof(standard_precision));
steps_max=E->control.p_iterations;
time=CPU_time();
/* Preconditioner */
assemble_div_us3(E,V1,V2,V3,r1,level); /* Compute Bt.U */
assemble_Mq_t(E,Q,QQ,level); /* Compute QQ = M.q */
for(i=1;i<=E->mesh.NPNO[level];i++) {
r1[i] -= QQ[i]; /* First residue r = Bt.U + M.q */
ZZ1[i] = r1[i] * E->BPI[level][i]; /* preconditionner M.z = r with M=(Ahat-1) */
}
count=0;
do {
if(count==0) {
r0dotr0 = 0.0;
for(i=1;i<=E->mesh.NPNO[level];i++) {
QQ1[i] = ZZ1[i];
r0dotr0 += r1[i] * ZZ1[i];
}
}
else {
r1dotr1=0.0;
for(i=1;i<=E->mesh.NPNO[level];i++)
r1dotr1 += r1[i] * ZZ1[i];
delta = r1dotr1 / r0dotr0;
r0dotr0 = r1dotr1;
for(i=1;i<=E->mesh.NPNO[level];i++)
QQ1[i] = ZZ1[i] + delta * QQ1[i];
}
/* Velocity search direction */
assemble_grad_qs3(E,QQ1,Ah1,Ah2,Ah3,level);
v_res=sqrt(vsselfdot3(E,Ah1,Ah2,Ah3,level)/nno);
multigrid_solve_del2_u(E,u1,u2,u3,0,0,0,Ah1,Ah2,Ah3,0,0,0,0.5 * E->control.accuracy*v_res*this_imp,level,2);
strip_bcs_from_residual_6(E,u1,u2,u3,0,0,0,level);
/* Gives pressure search direction */
assemble_div_us3(E,u1,u2,u3,w1,level); /* Compute Bt.u or Bt.A-1.B.p */
assemble_Mq_t(E,QQ1,QQ,level); /* Compute PP = M.QQ1 */
dotAhat=0.0;
for(i=1;i<=E->mesh.NPNO[level];i++) {
w1[i] += QQ[i]; /* Bt.A-1.B.p - M.p or Ahat.p*/
dotAhat += QQ1[i] * w1[i];
}
if(dotAhat == 0.0)
alpha = 0.0;
else
alpha = r0dotr0/dotAhat; /* rT.z / p.Ahat.p */
for(i=1;i<=E->mesh.NPNO[level];i++) {
Q[i] += alpha * QQ1[i];
r1[i] -= alpha * w1[i]; /* r = r - alpha.Ahat.p */
ZZ1[i] = r1[i] * E->BPI[level][i];
}
if(3==dims)
for(i=1;i<=nno;i++) {
if(E->NODE[level][i] & OFFSIDE ) /*RAA: 30/5/01, these 2 lines added for 3D periodic */
continue;
V1[i] -= alpha * u1[i];
V2[i] -= alpha * u2[i];
V3[i] -= alpha * u3[i];
}
else
for(i=1;i<=nno;i++) {
if(E->NODE[level][i] & OFFSIDE )
continue;
V1[i] -= alpha * u1[i];
V2[i] -= alpha * u2[i];
}
v_res2 = 0.0;
for(i=1;i<=E->mesh.NPNO[level];i++) {
v_res2 += r1[i] * r1[i];
}
/* This definition of the continuity residual is prefered since it is stable
and simplifies to divU/U for incompressible version of the algorithm */
continuity = sqrt(v_res2 / E->mesh.NPNO[level]);
if(E->control.print_convergence)
fprintf(stderr,"%d: Continuity Residual = %g (relative) = %g\n",count,continuity, continuity /
q_res);
count++;
} while ((count <E->control.p_iterations) && (/* (pressure_change > E->control.accuracy) ||*/
/*(continuity > 0.001 * E->control.accuracy + 0.0 * continuity_residual)*/
(continuity > 0.5 * q_res * E->control.accuracy * this_imp) ));
fprintf(E->fp,"%d: Continuity Residual = %g (relative) = %g\n",count,continuity, continuity /
q_res);
free((void *) u1);
free((void *) Ah1);
free((void *) R1);
free((void *) u2);
free((void *) Ah2);
free((void *) R2);
free((void *) u3);
free((void *) Ah3);
free((void *) R3);
free((void *) QQ);
free((void *) ZZ1);
free((void *) QQ1);
free((void *) r1);
free((void *) w1);
printf("In Uzawa, second free done \n");
return((continuity / q_res) < E->control.accuracy *
pow(E->control.delta_accuracy_factor,(double)(-E->mesh.levmax+level)) );
}