forked from geodynamics/ellipsis3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTracer_advection.c
982 lines (778 loc) · 27.5 KB
/
Tracer_advection.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
/*
Copyright (C) 2003 The GeoFramework Consortium
This file is part of Ellipsis3D.
Ellipsis3D is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
Ellipsis3D is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Authors:
Louis Moresi <[email protected]>
Richard Albert <[email protected]>
*/
#include "config.h"
#include <math.h>
#if HAVE_STRING_H
#include <string.h>
#endif
#if HAVE_STRINGS_H
#include <strings.h>
#endif
#include "element_definitions.h"
#include "global_defs.h"
/* =================================================
tracer_advection: Midpoint method (2nd order RK)
================================================= */
void passive_tracer_advection(
struct All_variables *E,
standard_precision timestep
)
{
/* Use the general tracer advection routine to
1) Apply a corrector to the previous particle locations
if this is not the first timestep
2) Shoot the current particle positions forward using the
latest velocity solution (predictor)
*/
int n;
printf("passive: 1 doing general_tracer_advection \n");
void general_tracer_advection();
printf("passive: 2 doing standard_tracer_advection \n");
void standard_tracer_advection();
/* Corrector step */
if(0 && E->advection.timesteps > 1) {
/* This is called after the first timestep value has been calculated */
general_tracer_advection(E,E->advection.previous_timestep,
E->tracer.sample_x1,E->tracer.sample_z1,E->tracer.sample_y1,
E->tracer.sample_x, E->tracer.sample_z, E->tracer.sample_y ,
E->V1[1], E->V1[2], E->V1[3],
E->V[1], E->V[2], E->V[3],
0,E->tracer.SAMPLE_PTS,
E->tracer.sample_in_element,E->tracer.sample_lagrangian);
}
/* Updated tracer positions should now become the stored positions
for the next correction */
for(n=0;n<E->tracer.SAMPLE_PTS;n++) {
E->tracer.sample_x1[n] = E->tracer.sample_x[n];
E->tracer.sample_z1[n] = E->tracer.sample_z[n];
if(E->mesh.nsd==3)
E->tracer.sample_y1[n] = E->tracer.sample_y[n];
}
/* Predictor step */
printf("passive: 3 doing general_tracer_advection \n");
general_tracer_advection(E,E->advection.timestep,
E->tracer.sample_x1,E->tracer.sample_z1,E->tracer.sample_y1,
E->tracer.sample_x, E->tracer.sample_z, E->tracer.sample_y ,
E->V[1], E->V[2], E->V[3],
E->V[1], E->V[2], E->V[3],
0,E->tracer.SAMPLE_PTS,
E->tracer.sample_in_element,E->tracer.sample_lagrangian);
printf("passive: Done!!! \n");
return;
}
/* =================================================
tracer_advection: Midpoint method (2nd order RK)
================================================= */
void tracer_advection(
struct All_variables *E,
standard_precision timestep
)
{
/* Use the general tracer advection routine to
1) Apply a corrector to the previous particle locations
if this is not the first timestep
2) Shoot the current particle positions forward using the
latest velocity solution (predictor)
*/
standard_precision *XX,*ZZ,*XX1,*ZZ1;
standard_precision *dX1,*dX2,*dX3;
int *el_list;
const int dims = E->mesh.nsd;
int n,m,tr;
static int here = 0;
void standard_tracer_advection();
void general_tracer_advection();
dX1 = (standard_precision *)Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(standard_precision));
dX2 = (standard_precision *)Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(standard_precision));
dX3 = (standard_precision *)Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(standard_precision));
el_list = (int *) Malloc0((E->tracer.NUM_TRACERS+1)*sizeof(int));
printf("tracer_adv: 1 just alloced memory \n");
/* Store current particle positions */
for(n=1;n<=E->tracer.NUM_TRACERS;n++) {
E->tracer.tx1[n] = E->tracer.tx[n];
E->tracer.tz1[n] = E->tracer.tz[n];
if(E->mesh.nsd==3)
E->tracer.ty1[n] = E->tracer.ty[n];
}
if(E->control.verbose)
fprintf(stderr,"Particle advection\n");
/* Predictor step */
if(E->control.verbose)
fprintf(stderr,"Particle advection ... 1\n");
printf("tracer_adv: 2 doing standard_tracer_advection \n");
standard_tracer_advection(E,E->advection.timestep,
E->tracer.tx1,E->tracer.tz1,E->tracer.ty1,
E->tracer.tx, E->tracer.tz, E->tracer.ty ,
E->V[1], E->V[2], E->V[3],
E->V[1], E->V[2], E->V[3],
1,E->tracer.NUM_TRACERS,
E->tracer.tracer_elt[E->mesh.levmax],NULL);
/* Local strain information */
/* X dirn */
for(m=1;m<=E->tracer.NUM_TRACERS;m++) {
dX1[m] = E->tracer.tx1[m] + E->tracer.dX11[m];
dX2[m] = E->tracer.tz1[m] + E->tracer.dX12[m];
if(3==dims)
dX3[m] = E->tracer.ty1[m] + E->tracer.dX13[m];
el_list[m] = E->tracer.tracer_elt[E->mesh.levmax][m];
general_tracer_within_boundaries(E,dX1,dX2,dX3,m);
}
printf("tracer_adv: 3 doing general_tracer_advection \n");
general_tracer_advection(E,E->advection.timestep,
dX1,dX2,dX3,
dX1,dX2,dX3,
E->V[1], E->V[2], E->V[3],
E->V[1], E->V[2], E->V[3],
1,E->tracer.NUM_TRACERS,
el_list,NULL);
for(m=1;m<=E->tracer.NUM_TRACERS;m++) {
if(el_list[m] == -1) {
fprintf(stderr,"Tracer %d's X shadow is a little lost %g,%g\n",m,E->tracer.dX11[m],E->tracer.dX12[m]);
E->tracer.dX11[m] *= 0.9;
E->tracer.dX12[m] *= 0.9;
if(3==dims)
E->tracer.dX13[m] *= 0.9;
}
else {
E->tracer.dX11[m] = dX1[m] - E->tracer.tx[m];
E->tracer.dX12[m] = dX2[m] - E->tracer.tz[m];
if(3==dims)
E->tracer.dX13[m] = dX3[m] - E->tracer.ty[m];
}
}
/* Z dirn */
for(m=1;m<=E->tracer.NUM_TRACERS;m++) {
dX1[m] = E->tracer.tx1[m] + E->tracer.dX21[m];
dX2[m] = E->tracer.tz1[m] + E->tracer.dX22[m];
if(3==dims)
dX3[m] = E->tracer.ty1[m] + E->tracer.dX23[m];
el_list[m] = E->tracer.tracer_elt[E->mesh.levmax][m];
general_tracer_within_boundaries(E,dX1,dX2,dX3,m);
}
printf("tracer_adv: 4 doing general_tracer_advection \n");
general_tracer_advection(E,E->advection.timestep,
dX1,dX2,dX3,
dX1,dX2,dX3,
E->V[1], E->V[2], E->V[3],
E->V[1], E->V[2], E->V[3],
1,E->tracer.NUM_TRACERS,
el_list,NULL);
for(m=1;m<=E->tracer.NUM_TRACERS;m++) {
if(el_list[m] == -1) {
/* fprintf(stderr,"Tracer %d's Z shadow is a little lost\n",m); */
E->tracer.dX21[m] *= 0.9;
E->tracer.dX22[m] *= 0.9;
if(3==dims)
E->tracer.dX23[m] *= 0.9;
}
else {
E->tracer.dX21[m] = dX1[m] - E->tracer.tx[m];
E->tracer.dX22[m] = dX2[m] - E->tracer.tz[m];
if(3==dims)
E->tracer.dX23[m] = dX3[m] - E->tracer.ty[m];
}
}
/* A difficulty occurs when periodic bc's are in force.
The tracker particles can be wrapped around away from
their host particles (or vice versa). There's not really
an elegant solution to this, given that the local velocity
gradient tracker is pretty awful */
if(E->mesh.periodic_x) {
for(m=1;m<=E->tracer.NUM_TRACERS;m++) {
if(E->tracer.dX21[m] > (E->x[1][E->mesh.nno]-E->x[1][1]) * 0.9)
E->tracer.dX21[m] -= (E->x[1][E->mesh.nno]-E->x[1][1]);
else if(E->tracer.dX21[m] < (E->x[1][E->mesh.nno]-E->x[1][1]) * -0.9)
E->tracer.dX21[m] += (E->x[1][E->mesh.nno]-E->x[1][1]);
if(E->tracer.dX11[m] > (E->x[1][E->mesh.nno]-E->x[1][1]) * 0.9)
E->tracer.dX11[m] -= (E->x[1][E->mesh.nno]-E->x[1][1]);
else if(E->tracer.dX11[m] < (E->x[1][E->mesh.nno]-E->x[1][1]) * -0.9)
E->tracer.dX11[m] += (E->x[1][E->mesh.nno]-E->x[1][1]);
}
}
printf("tracer_adv: freeing memory \n");
free((void *) dX1);
free((void *) dX2);
free((void *) dX3);
free((void *) el_list);
if(E->control.verbose)
fprintf(stderr,"Particle advection ... 2\n");
printf("tracer_adv: Done!!! \n");
return;
}
/* =================================================
tracer_advection: Midpoint method (2nd order RK)
================================================= */
void tracer_corrector(
struct All_variables *E,
standard_precision *U1,
standard_precision *U2,
standard_precision *U3,
standard_precision timestep
)
{
/* Use the general tracer advection routine to
1) Apply a corrector to the previous particle locations
if this is not the first timestep
2) Shoot the current particle positions forward using the
latest velocity solution (predictor)
*/
int n;
void general_tracer_advection();
void standard_tracer_advection();
/* Corrector step */
if(E->advection.timesteps > 1) { /* This is called after the first timestep value has been calculated */
standard_tracer_advection(E,timestep,
E->tracer.tx1,E->tracer.tz1,E->tracer.ty1,
E->tracer.tx, E->tracer.tz, E->tracer.ty ,
E->V1[1], E->V1[2], E->V1[3],
U1,U2,U3,
1,E->tracer.NUM_TRACERS,
E->tracer.tracer_elt[E->mesh.levmax],
NULL
);
}
return;
}
/* =================================================
Generalized tracer advection routine ... to
take existing particle positions and update them
based on velocities supplied for beginning and
end of the timestep. This routine can be
used for both the predictor and the corrector
phases of the update if the appropriate velocity
fields are supplied.
================================================= */
void general_tracer_advection(
struct All_variables *E,
standard_precision timestep,
standard_precision *X1,
standard_precision *Z1,
standard_precision *Y1, /* previous location */
standard_precision *X,
standard_precision *Z,
standard_precision *Y, /* new location */
standard_precision *U1,
standard_precision *W1,
standard_precision *V1, /* previous velocity */
standard_precision *U,
standard_precision *W,
standard_precision *V, /* new velocity */
int Nstart,
int NQ,
int *in_element,
int *lagrangian
)
{
int n;
int i,j,k,m;
int n_x,n_y,n_z;
int node1;
int iteration;
int level;
int tr,el,el1;
standard_precision eta1,eta2,eta3;
standard_precision lN[ELNMAX+1];
standard_precision lNx[4][ELNMAX+1];
standard_precision dOmega;
standard_precision kx1,kx2,kx3,kx4;
standard_precision kz1,kz2,kz3,kz4;
standard_precision ky1,ky2,ky3,ky4;
standard_precision vx,vz,vy,vzz;
standard_precision x0,z0,y0;
standard_precision half_delta_t;
standard_precision CPU_time(),time;
const int dims = E->mesh.nsd;
const int dofs = E->mesh.dof;
const int ends = enodes[dims];
struct IEN *IEN = E->ien;
half_delta_t = timestep * 0.5;
time=CPU_time();
/* Loop over each tracer in order */
for(n=Nstart;n<Nstart+NQ;n++) {
if((lagrangian != NULL) && (!lagrangian[n]))
continue;
/* Initial location */
x0 = X1[n] ;
z0 = Z1[n] ;
if(3==dims)
y0 = Y1[n] ;
else
y0 = 0.0 ;
/* Velocity at initial location */
/* printf("In tracer advection calling tracers_element 1st \n"); */
el1 = in_element[n];
el1 = general_tracers_element(E,el1,x0,z0,y0,&eta1,&eta2,&eta3,E->mesh.levmax);
if(0 && el1 != in_element[n])
fprintf(stderr,"Tracer %d is different element from expectations ! (%g,%g -> %d v %d) \n",n,
x0,z0,el1,in_element[n] );
if(el1 == -1) { /* Asked to advect something not in the mesh ! */
/* fprintf(stderr,"Warning, tracer %d at %g,%g appears to be lost\n",n,x0,z0); */
in_element[n] = -1;
continue;
}
else
in_element[n] = el1;
v_shape_fn(E,el1,lN,eta1,eta2,eta3,E->mesh.levmax);
vx=vz=vy=0.0;
for(m=1;m<=ends;m++) {
node1 = E->ien[el1].node[m];
vx += lN[m] * U1[node1];
vz += lN[m] * W1[node1];
if(dims==3)
vy += lN[m] * V1[node1];
}
/* Determine midpoint values */
kx1 = timestep * vx;
kz1 = timestep * vz;
X[n] = x0 + kx1 * 0.5;
Z[n] = z0 + kz1 * 0.5;
if(dims==3) {
ky1 = timestep * vy;
Y[n] = y0 + ky1 * 0.5;
}
if(E->mesh.periodic_x) {
if(X[n] > E->x[1][E->mesh.nno]) {
X[n] -= (E->x[1][E->mesh.nno]-E->x[1][1]);
}
if(X[n] < E->x[1][1]) {
X[n] += (E->x[1][E->mesh.nno]-E->x[1][1]);
}
}
/*RAA: 18/10/01, need to add these ~10 lines for periodic_y */
if(3==dims && E->mesh.periodic_y) {
if(Y[n] > E->x[3][E->mesh.nno]) {
Y[n] -= (E->x[3][E->mesh.nno]-E->x[3][1]);
}
if(Y[n] < E->x[3][1]) {
Y[n] += (E->x[3][E->mesh.nno]-E->x[3][1]);
}
}
/* Velocity at x + k1 /2 */
/* printf("Hello all. In trace_adv still, calling 2nd time \n"); */
el1 = general_tracers_element(E,el1,X[n],Z[n],((E->mesh.nsd==3) ? Y[n] : 0.0),
&eta1,&eta2,&eta3,E->mesh.levmax);
if(el1 == -1) {
el1 = in_element[n];
/* has moved outside grid ... but maybe not accurate as this
is the mid point guess of the real step,
so use orginal element as best guess
until correction is made */
fprintf(stderr,"Tracer %d is being reset to old element %d\n",n,el1);
get_element_coords(E,el1,n,X,Z,Y,&eta1,&eta2,&eta3,E->mesh.levmax); /* Should be OK */
}
else
in_element[n] = el1;
v_shape_fn(E,el1,lN,eta1,eta2,eta3,E->mesh.levmax);
vx=vz=vy=0.0;
for(m=1;m<=ends;m++) {
node1 = E->ien[el1].node[m];
vx += lN[m] * 0.5 * (U1[node1] + U[node1]);
vz += lN[m] * 0.5 * (W1[node1] + W[node1]);
if(3==dims)
vy += lN[m] * 0.5 * (V1[node1] + V[node1]);
}
/* Final location */
kx2 = timestep * vx;
kz2 = timestep * vz;
X[n] = x0 + kx2;
Z[n] = z0 + kz2;
if(3==dims) {
ky2 = timestep * vy;
Y[n] = y0 + ky2;
}
/* if periodic, then tracers can scoot around out of the
box and need to be scooped up again */
if(E->mesh.periodic_x) {
if(X[n] > E->x[1][E->mesh.nno]) {
X[n] -= (E->x[1][E->mesh.nno]-E->x[1][1]);
}
if(X[n] < E->x[1][1]) {
X[n] += (E->x[1][E->mesh.nno]-E->x[1][1]);
}
}
/*RAA: 18/10/01, need to add these ~10 lines for periodic_y */
if(3==dims && E->mesh.periodic_y) {
if(Y[n] > E->x[3][E->mesh.nno]) {
Y[n] -= (E->x[3][E->mesh.nno]-E->x[3][1]);
}
if(Y[n] < E->x[3][1]) {
Y[n] += (E->x[3][E->mesh.nno]-E->x[3][1]);
}
}
}
return;
}
/* =================================================
Generalized tracer advection routine ... to
take existing particle positions and update them
based on velocities supplied for beginning and
end of the timestep. This routine can be
used for both the predictor and the corrector
phases of the update if the appropriate velocity
fields are supplied.
This is the vector version - move tracers
incrementally all at the same time.
MOD - need to supply and return shape function
information as well as element distributions.
================================================= */
void standard_tracer_advection(
struct All_variables *E,
standard_precision timestep,
standard_precision *X1,
standard_precision *Z1,
standard_precision *Y1, /* previous location */
standard_precision *X,
standard_precision *Z,
standard_precision *Y, /* new location */
standard_precision *U1,
standard_precision *W1,
standard_precision *V1, /* previous velocity */
standard_precision *U,
standard_precision *W,
standard_precision *V, /* new velocity */
int N1,
int N2,
int *el_list,
int *lagrangian
)
{
int n;
int el;
int i,j,k,m;
struct TRACER_ELT_WEIGHT *lN;
standard_precision *VX,*VZ,*VY;
standard_precision *KX,*KZ,*KY;
standard_precision *XX0,*ZZ0,*YY0;
standard_precision *eta1;
standard_precision *eta2;
standard_precision *eta3;
standard_precision perx0,perx1;
standard_precision pery0,pery1; /*RAA: 18/10/01, add this line*/
standard_precision half_delta_t;
standard_precision CPU_time(),time;
int *old_el_list;
struct IEN *IEN;
int all_tracers_elts_and_sfns();
const int dims = E->mesh.nsd;
const int dofs = E->mesh.dof;
const int ends = enodes[dims];
if(N2-N1 == 0 || N2+1 == 0) /* Nothing wrong with this situation, but nothing
to do if this is the case */
return;
lN = (struct TRACER_ELT_WEIGHT *) Malloc0((N2+1) * sizeof(struct TRACER_ELT_WEIGHT));
VX = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
VZ = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
VY = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
KX = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
KZ = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
KY = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
XX0 = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
ZZ0 = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
YY0 = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
eta1 = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
eta2 = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
eta3 = (standard_precision *) Malloc0((N2+1) * sizeof(standard_precision));
old_el_list = (int *) Malloc0((N2+1) * sizeof(int));
/* Shorthand for some tracers to help vectorizer */
IEN = E->ien;
if(E->mesh.periodic_x) { /* How should this be generalized ? */
perx0 = E->x[1][1];
perx1 = E->x[1][E->mesh.nno];
}
/*RAA: 18/10/01, add this for periodic_y*/
if(3==dims && E->mesh.periodic_y) { /* How should this be generalized ? */
pery0 = E->x[3][1];
pery1 = E->x[3][E->mesh.nno];
}
time=CPU_time();
/* use a copy of the element list in case we need to backtrack */
/* #pragma loop novrec old_el_list,el_list */
for(m=N1;m<=N2;m++) {
old_el_list[m] = el_list[m];
if(el_list[m] == -1)
fprintf(stderr,"tracer %d/%d already on its own (%d) %g,%g\n",m,N2,old_el_list[m],X[m],Z[m]);
}
/* Get shape functions in order to obtain velocity field.
NOTE - this information is probably already available
and could be passed into this routine. */
/* tr_local_coords(E,el_list,lN,X1,Z1,Y1,eta1,eta2,eta3,
N1,N2,E->mesh.levmax); */
k = all_tracers_elts_and_sfns(E,el_list,lN,X1,Z1,Y1,
eta1,eta2,eta3,N1,N2,E->mesh.levmax);
for(m=N1;m<=N2;m++) {
if(fabs(eta1[m]) > 1.0 || fabs(eta2[m]) > 1.0)
fprintf(stderr,"tracer %d/%d not found (%d) %g,%g\n",m,N2,old_el_list[m],X[m],Z[m]);
}
/* Determine velocity ... */
if(2==dims) {
/* #pragma loop novrec VX,VZ */
for(m=N1;m<=N2;m++) {
VX[m] = 0.0;
VZ[m] = 0.0;
}
for(k=1;k<=ends;k++) {
/* #pragma loop novrec VX,VZ,U1,W1,lN,IEN,el_list */
for(m=N1;m<=N2;m++) {
el = el_list[m];
VX[m] += U1[IEN[el].node[k]] * lN[m].node[k];
VZ[m] += W1[IEN[el].node[k]] * lN[m].node[k];
}
}
}
else {
/* #pragma loop novrec VX,VZ,VY */
for(m=N1;m<=N2;m++) {
VX[m] = 0.0;
VZ[m] = 0.0;
VY[m] = 0.0;
}
for(k=1;k<=ends;k++) {
/* #pragma loop novrec VX,VZ,VY,U1,V1,W1,lN,IEN,el_list */
for(m=N1;m<=N2;m++) {
el = el_list[m];
VX[m] += U1[IEN[el].node[k]] * lN[m].node[k];
VZ[m] += W1[IEN[el].node[k]] * lN[m].node[k];
VY[m] += V1[IEN[el].node[k]] * lN[m].node[k];
}
}
}
/* Determine midpoint positions */
if(2==dims)
/* #pragma loop novrec XX0,ZZ0,X1,Z1,VX,VZ */
for(m=N1;m<=N2;m++) {
XX0[m] = X1[m] + 0.5 * timestep * VX[m];
ZZ0[m] = Z1[m] + 0.5 * timestep * VZ[m];
}
else
/* #pragma loop novrec XX0,ZZ0,YY0,X1,Z1,Y1,VX,VZ,VY */
for(m=N1;m<=N2;m++) {
XX0[m] = X1[m] + 0.5 * timestep * VX[m];
ZZ0[m] = Z1[m] + 0.5 * timestep * VZ[m];
YY0[m] = Y1[m] + 0.5 * timestep * VY[m];
}
/* Catch wanderers if periodic bc's */
if(E->mesh.periodic_x) { /* general case - this would call a function
to wraparound tracers - periodic bc's are only
meaningful when some high-symmetry geometry exists */
for(m=N1;m<=N2;m++) {
/* #pragma loop novrec XX0 */
XX0[m] = fmod(perx1+XX0[m],perx1); /* should be (XX0[m] - perx0) */
}
}
/*RAA: 18/10/01, add this for periodic_y*/
if(3==dims && E->mesh.periodic_y) {
for(m=N1;m<=N2;m++) {
/* #pragma loop novrec YY0 */
YY0[m] = fmod(pery1+YY0[m],pery1); /* should be (YY0[m] - pery0), RAA: verify*/
}
}
k = all_tracers_elts_and_sfns(E,el_list,lN,XX0,ZZ0,YY0,
eta1,eta2,eta3,N1,N2,E->mesh.levmax);
/* Some may have wandered out of the mesh with this method ... */
if(k)
for(m=N1;m<=N2;m++) { /* to vectorize we would need a list-based version of
the element coords and v_shape_fns */
if(el_list[m] == -1) {
fprintf(stderr,"tracer %d wandered off on its own (%d) %g,%g <- %g,%g (%g,%g)\n",
m,old_el_list[m],XX0[m],ZZ0[m],X[m],Z[m],VX[m],VZ[m]);
/* Restore it to old element */
el_list[m] = old_el_list[m];
get_element_coords(E,el_list[m],m,XX0,ZZ0,YY0,
&(eta1[m]),&(eta2[m]),&(eta3[m]),E->mesh.levmax); /* Should be OK */
v_shape_fn(E,el_list[m],&(lN[m]),&(eta1[m]),&(eta2[m]),&(eta3[m]),E->mesh.levmax);
}
}
/* Velocity at x + k1 /2 */
if(2==dims) {
/* #pragma loop novrec VX,VZ */
for(m=N1;m<=N2;m++) {
VX[m] = 0.0;
VZ[m] = 0.0;
}
for(k=1;k<=ends;k++) {
/* #pragma loop novrec VX,VZ,U1,W1,U,W,lN,IEN */
for(m=N1;m<=N2;m++) {
el = el_list[m];
VX[m] += 0.5 * (U1[IEN[el].node[k]]+U[IEN[el].node[k]]) * lN[m].node[k];
VZ[m] += 0.5 * (W1[IEN[el].node[k]]+W[IEN[el].node[k]]) * lN[m].node[k];
}
}
}
else {
/* #pragma loop novrec VX,VZ,VY */
for(m=N1;m<=N2;m++) {
VX[m] = 0.0;
VZ[m] = 0.0;
VY[m] = 0.0;
}
for(k=1;k<=ends;k++) {
/* #pragma loop novrec VX,VZ,VY,U1,W1,V1,U,W,V,lN,IEN */
for(m=N1;m<=N2;m++) {
el = el_list[m];
VX[m] += 0.5 * (U1[IEN[el].node[k]]+U[IEN[el].node[k]]) * lN[m].node[k];
VZ[m] += 0.5 * (W1[IEN[el].node[k]]+W[IEN[el].node[k]]) * lN[m].node[k];
VY[m] += 0.5 * (V1[IEN[el].node[k]]+V[IEN[el].node[k]]) * lN[m].node[k];
}
}
}
/* And then use this velocity to update the particle over
the whole timestep */
if(lagrangian == NULL) {
if(2==dims)
/* #pragma loop novrec X,Z,X1,Z1,VX,VZ */
for(m=N1;m<=N2;m++) {
X[m] = X1[m] + timestep * VX[m];
Z[m] = Z1[m] + timestep * VZ[m];
}
else
/* #pragma loop novrec X,Z,Y,X1,Z1,Y1,VX,VZ,VY */
for(m=N1;m<=N2;m++) {
X[m] = X1[m] + timestep * VX[m];
Z[m] = Z1[m] + timestep * VZ[m];
Y[m] = Y1[m] + timestep * VY[m];
}
}
else { /* The possibility that some tracers are
not to be updated */
if(2==dims)
/* #pragma loop novrec X,Z,X1,Z1,VX,VZ */
for(m=N1;m<=N2;m++) {
if(lagrangian[m]) {
X[m] = X1[m] + timestep * VX[m];
Z[m] = Z1[m] + timestep * VZ[m];
}
}
else
/* #pragma loop novrec X,Z,Y,X1,Z1,Y1,VX,VZ,VY */
for(m=N1;m<=N2;m++) {
if(lagrangian[m]) {
X[m] = X1[m] + timestep * VX[m];
Z[m] = Z1[m] + timestep * VZ[m];
Y[m] = Y1[m] + timestep * VY[m];
}
}
}
/* Again, catch wanderers if periodic bc's */
if(E->mesh.periodic_x) {
/* #pragma loop novrec X */
for(m=N1;m<=N2;m++) {
X[m] = fmod(perx1+X[m],perx1); /* should be (XX0[m] - perx0) */
}
}
/*RAA: 18/10/01, add this for periodic_y*/
if(3==dims && E->mesh.periodic_y) {
/* #pragma loop novrec Y */
for(m=N1;m<=N2;m++) {
Y[m] = fmod(pery1+Y[m],pery1); /* should be (YY0[m] - perY0), RAA: verify this*/
}
}
free((void *) lN);
free((void *) VX);
free((void *) VZ);
free((void *) VY);
free((void *) KX);
free((void *) KZ);
free((void *) KY);
free((void *) XX0);
free((void *) ZZ0);
free((void *) YY0);
free((void *) eta1);
free((void *) eta2);
free((void *) eta3);
free((void *) old_el_list);
return;
}
/* Rotation of the director for Orthotropic materials */
void rotate_director (
struct All_variables *E
)
{
higher_precision *node_R;
standard_precision V11,V22,V33,V12,V21,V31,V13,V23,V32;
standard_precision vvx,vvz;
standard_precision eta1,eta2,eta3,dOmega;
standard_precision lNx[4][ELNMAX+1],lN[ELNMAX+1];
standard_precision U1,U2,U3;
standard_precision n1dot,n2dot,n3dot;
standard_precision x1,z1,y1;
standard_precision mag;
const int dofs = E->mesh.dof ;
const int dims = E->mesh.nsd ;
const int ends = enodes[dims] ;
const int level = E->mesh.levmax;
int node,m,i,el;
struct IEN *IEN = E->ien;
/* 2D Classical */
if(2==dims && 2==dofs) {
for(m=1;m<=E->tracer.NUM_TRACERS;m++) {
if((E->control.CHEM_TRANS && E->tracer.visc[E->tracer.property_group[m]].mobile_phase_ratio == 1.0) ||
E->tracer.visc[E->tracer.property_group[m]].Ortho_viscosity_ratio == 1.0)
continue;
/* 1. get deformation rate tensor */
V11 = V12 = V21 = V22 = 0.0;
vvx=vvz=0.0;
el = E->tracer.tracer_elt[E->mesh.levmax][m];
x1 = 0.5 * (E->tracer.tx[m] + E->tracer.tx1[m]);
z1 = 0.5 * (E->tracer.tz[m] + E->tracer.tz1[m]);
/* printf("3rd \n"); */
general_tracers_element(E,el,x1,z1,NULL,&eta1,&eta2,NULL,E->mesh.levmax); /* */
/*
eta1 = E->tracer.eta1[level][m];
eta2 = E->tracer.eta2[level][m];
/* */
get_global_v_x_shape_fn(E,E->tracer.tracer_elt[level][m],lNx,&dOmega,eta1,eta2,0.0,level);
for(i=1;i<=ends;i++) {
node = IEN[E->tracer.tracer_elt[level][m]].node[i];
if(!(E->control.CURRENT_SKEWED_Vs && E->NODE[level][node] & SKEWBC)) {
U1 = E->VV[level][1][node];
U2 = E->VV[level][2][node];
}
else {
node_R = E->curvilinear.NODE_R[level][node];
U1 = node_R[0*dims+0] * E->VV[level][1][node] + node_R[0*dims+1] * E->VV[level][2][node];
U2 = node_R[1*dims+0] * E->VV[level][1][node] + node_R[1*dims+1] * E->VV[level][2][node];
}
vvx+=U1*E->tracer.sfn_values[level][m].node[i];
vvz+=U2*E->tracer.sfn_values[level][m].node[i];
V11 += U1 * lNx[1][i];
V21 += U2 * lNx[1][i];
V12 += U1 * lNx[2][i];
V22 += U2 * lNx[2][i];
}
/* n1dot = V11 * E->tracer.n1[m] * (E->tracer.n1[m] * E->tracer.n1[m] - 1.0)
- V21 * E->tracer.n2[m] + (V21 + V12) * E->tracer.n1[m] * E->tracer.n1[m] * E->tracer.n2[m]
+ V22 * E->tracer.n1[m] * E->tracer.n2[m] * E->tracer.n2[m];
n2dot = V22 * E->tracer.n2[m] * (E->tracer.n2[m] * E->tracer.n2[m] - 1.0)
- V12 * E->tracer.n1[m] + (V21 + V12) * E->tracer.n1[m] * E->tracer.n2[m] * E->tracer.n2[m]
+ V11 * E->tracer.n1[m] * E->tracer.n1[m] * E->tracer.n2[m]; */
n1dot = -V11 * E->tracer.n1[m] - V21 * E->tracer.n2[m];
n2dot = -V12 * E->tracer.n1[m] - V22 * E->tracer.n2[m];
E->tracer.n1[m] += n1dot * E->advection.timestep;
E->tracer.n2[m] += n2dot * E->advection.timestep;
mag = sqrt(E->tracer.n1[m]*E->tracer.n1[m]+E->tracer.n2[m]*E->tracer.n2[m]);
if(mag != 0.0)
mag = 1.0 / mag;
else
mag = 1.0;
E->tracer.n1[m] *= mag;
E->tracer.n2[m] *= mag;
/* if( E->tracer.n1[m] * E->tracer.n1[m] + E->tracer.n2[m] * E->tracer.n2[m] > 1.05)
fprintf(stderr,"Tracer %d, n = (%g,%g), |n| = %g\n", m,
E->tracer.n1[m],E->tracer.n2[m],
sqrt(E->tracer.n1[m] * E->tracer.n1[m] + E->tracer.n2[m] * E->tracer.n2[m])); */
}
}
return;
}