forked from skapadia3214/groq-moa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
345 lines (302 loc) · 13.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import copy
import json
from typing import Iterable, Dict, Any
import streamlit as st
from streamlit_ace import st_ace
from groq import Groq
from moa.agent import MOAgent
from moa.agent.moa import ResponseChunk, MOAgentConfig
from moa.agent.prompts import SYSTEM_PROMPT, REFERENCE_SYSTEM_PROMPT
# Default configuration
default_main_agent_config = {
"main_model": "llama3-70b-8192",
"cycles": 3,
"temperature": 0.1,
"system_prompt": SYSTEM_PROMPT,
"reference_system_prompt": REFERENCE_SYSTEM_PROMPT
}
default_layer_agent_config = {
"layer_agent_1": {
"system_prompt": "Think through your response step by step. {helper_response}",
"model_name": "llama3-8b-8192",
"temperature": 0.3
},
"layer_agent_2": {
"system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
"model_name": "gemma-7b-it",
"temperature": 0.7
},
"layer_agent_3": {
"system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
"model_name": "llama3-8b-8192",
"temperature": 0.1
},
}
# Recommended Configuration
rec_main_agent_config = {
"main_model": "llama-3.1-70b-versatile",
"cycles": 2,
"temperature": 0.1,
"system_prompt": SYSTEM_PROMPT,
"reference_system_prompt": REFERENCE_SYSTEM_PROMPT
}
rec_layer_agent_config = {
"layer_agent_1": {
"system_prompt": "Think through your response step by step. {helper_response}",
"model_name": "gemma2-9b-it",
"temperature": 0.1
},
"layer_agent_2": {
"system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
"model_name": "llama-3.1-8b-instant",
"temperature": 0.2,
"max_tokens": 2048
},
"layer_agent_3": {
"system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
"model_name": "llama-3.1-70b-versatile",
"temperature": 0.4,
"max_tokens": 2048
},
"layer_agent_4": {
"system_prompt": "You are an expert planner agent. Create a plan for how to answer the human's query. {helper_response}",
"model_name": "mixtral-8x7b-32768",
"temperature": 0.5
},
}
# Helper functions
def json_to_moa_config(config_file) -> Dict[str, Any]:
config = json.load(config_file)
moa_config = MOAgentConfig( # To check if everything is ok
**config
).model_dump(exclude_unset=True)
return {
'moa_layer_agent_config':moa_config.pop('layer_agent_config', None),
'moa_main_agent_config': moa_config or None
}
def stream_response(messages: Iterable[ResponseChunk]):
layer_outputs = {}
for message in messages:
if message['response_type'] == 'intermediate':
layer = message['metadata']['layer']
if layer not in layer_outputs:
layer_outputs[layer] = []
layer_outputs[layer].append(message['delta'])
else:
# Display accumulated layer outputs
for layer, outputs in layer_outputs.items():
st.write(f"Layer {layer}")
cols = st.columns(len(outputs))
for i, output in enumerate(outputs):
with cols[i]:
st.expander(label=f"Agent {i+1}", expanded=False).write(output)
# Clear layer outputs for the next iteration
layer_outputs = {}
# Yield the main agent's output
yield message['delta']
def set_moa_agent(
moa_main_agent_config = None,
moa_layer_agent_config = None,
override: bool = False
):
moa_main_agent_config = copy.deepcopy(moa_main_agent_config or default_main_agent_config)
moa_layer_agent_config = copy.deepcopy(moa_layer_agent_config or default_layer_agent_config)
if "moa_main_agent_config" not in st.session_state or override:
st.session_state.moa_main_agent_config = moa_main_agent_config
if "moa_layer_agent_config" not in st.session_state or override:
st.session_state.moa_layer_agent_config = moa_layer_agent_config
if override or ("moa_agent" not in st.session_state):
st_main_copy = copy.deepcopy(st.session_state.moa_main_agent_config)
st_layer_copy = copy.deepcopy(st.session_state.moa_layer_agent_config)
st.session_state.moa_agent = MOAgent.from_config(
**st_main_copy,
layer_agent_config=st_layer_copy
)
del st_main_copy
del st_layer_copy
del moa_main_agent_config
del moa_layer_agent_config
# App
st.set_page_config(
page_title="Mixture-Of-Agents Powered by Groq",
page_icon='static/favicon.ico',
menu_items={
'About': "## Groq Mixture-Of-Agents \n Powered by [Groq](https://groq.com)"
},
layout="wide"
)
valid_model_names = [model.id for model in Groq().models.list().data if not (model.id.startswith("whisper") or model.id.startswith("llama-guard"))]
st.markdown("<a href='https://groq.com'><img src='app/static/banner.png' width='500'></a>", unsafe_allow_html=True)
st.write("---")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
set_moa_agent()
# Sidebar for configuration
with st.sidebar:
st.title("MOA Configuration")
# upl_col, load_col = st.columns(2)
st.download_button(
"Download Current MoA Configuration as JSON",
data=json.dumps({
**st.session_state.moa_main_agent_config,
'moa_layer_agent_config': st.session_state.moa_layer_agent_config
}, indent=2),
file_name="moa_config.json"
)
# moa_config_upload = st.file_uploader("Choose a JSON file", type="json")
# submit_config_file = st.button("Update config")
# if moa_config_upload and submit_config_file:
# try:
# moa_config = json_to_moa_config(moa_config_upload)
# set_moa_agent(
# moa_main_agent_config=moa_config['moa_main_agent_config'],
# moa_layer_agent_config=moa_config['moa_layer_agent_config']
# )
# st.session_state.messages = []
# st.success("Configuration updated successfully!")
# except Exception as e:
# st.error(f"Error loading file: {str(e)}")
with st.form("Agent Configuration", border=False):
# Load and Save moa config file
if st.form_submit_button("Use Recommended Config"):
try:
set_moa_agent(
moa_main_agent_config=rec_main_agent_config,
moa_layer_agent_config=rec_layer_agent_config,
override=True
)
st.session_state.messages = []
st.success("Configuration updated successfully!")
except json.JSONDecodeError:
st.error("Invalid JSON in Layer Agent Configuration. Please check your input.")
except Exception as e:
st.error(f"Error updating configuration: {str(e)}")
# Main model selection
new_main_model = st.selectbox(
"Select Main Model",
options=valid_model_names,
index=valid_model_names.index(st.session_state.moa_main_agent_config['main_model'])
)
# Cycles input
new_cycles = st.number_input(
"Number of Layers",
min_value=1,
max_value=10,
value=st.session_state.moa_main_agent_config['cycles']
)
# Main Model Temperature
main_temperature = st.number_input(
label="Main Model Temperature",
value=0.1,
min_value=0.0,
max_value=1.0,
step=0.1
)
# Layer agent configuration
tooltip = "Agents in the layer agent configuration run in parallel _per cycle_. Each layer agent supports all initialization parameters of [Langchain's ChatGroq](https://api.python.langchain.com/en/latest/chat_models/langchain_groq.chat_models.ChatGroq.html) class as valid dictionary fields."
st.markdown("Layer Agent Config", help=tooltip)
new_layer_agent_config = st_ace(
key="layer_agent_config",
value=json.dumps(st.session_state.moa_layer_agent_config, indent=2),
language='json',
placeholder="Layer Agent Configuration (JSON)",
show_gutter=False,
wrap=True,
auto_update=True
)
with st.expander("Optional Main Agent Params"):
tooltip_str = """\
Main Agent configuration that will respond to the user based on the layer agent outputs.
Valid fields:
- ``system_prompt``: System prompt given to the main agent. \
**IMPORTANT**: it should always include a `{helper_response}` prompt variable.
- ``reference_prompt``: This prompt is used to concatenate and format each layer agent's output into one string. \
This is passed into the `{helper_response}` variable in the system prompt. \
**IMPORTANT**: it should always include a `{responses}` prompt variable.
- ``main_model``: Which Groq powered model to use. Will overwrite the model given in the dropdown.\
"""
tooltip = tooltip_str
st.markdown("Main Agent Config", help=tooltip)
new_main_agent_config = st_ace(
key="main_agent_params",
value=json.dumps(st.session_state.moa_main_agent_config, indent=2),
language='json',
placeholder="Main Agent Configuration (JSON)",
show_gutter=False,
wrap=True,
auto_update=True
)
if st.form_submit_button("Update Configuration"):
try:
new_layer_config = json.loads(new_layer_agent_config)
new_main_config = json.loads(new_main_agent_config)
# Configure conflicting params
# If param in optional dropdown == default param set, prefer using explicitly defined param
if new_main_config.get('main_model', default_main_agent_config['main_model']) == default_main_agent_config["main_model"]:
new_main_config['main_model'] = new_main_model
if new_main_config.get('cycles', default_main_agent_config['cycles']) == default_main_agent_config["cycles"]:
new_main_config['cycles'] = new_cycles
if new_main_config.get('temperature', default_main_agent_config['temperature']) == default_main_agent_config['temperature']:
new_main_config['temperature'] = main_temperature
set_moa_agent(
moa_main_agent_config=new_main_config,
moa_layer_agent_config=new_layer_config,
override=True
)
st.session_state.messages = []
st.success("Configuration updated successfully!")
except json.JSONDecodeError:
st.error("Invalid JSON in Layer Agent Configuration. Please check your input.")
except Exception as e:
st.error(f"Error updating configuration: {str(e)}")
st.markdown("---")
st.markdown("""
### Credits
- MOA: [Together AI](https://www.together.ai/blog/together-moa)
- LLMs: [Groq](https://groq.com/)
- Paper: [arXiv:2406.04692](https://arxiv.org/abs/2406.04692)
""")
# Main app layout
st.header("Mixture of Agents", anchor=False)
st.write("A demo of the Mixture of Agents architecture proposed by Together AI, Powered by Groq LLMs.")
# Display current configuration
with st.status("Current MOA Configuration", expanded=True, state='complete') as config_status:
st.image("./static/moa_groq.svg", caption="Mixture of Agents Workflow", use_column_width='always')
st.markdown(f"**Main Agent Config**:")
new_layer_agent_config = st_ace(
value=json.dumps(st.session_state.moa_main_agent_config, indent=2),
language='json',
placeholder="Layer Agent Configuration (JSON)",
show_gutter=False,
wrap=True,
readonly=True,
auto_update=True
)
st.markdown(f"**Layer Agents Config**:")
new_layer_agent_config = st_ace(
value=json.dumps(st.session_state.moa_layer_agent_config, indent=2),
language='json',
placeholder="Layer Agent Configuration (JSON)",
show_gutter=False,
wrap=True,
readonly=True,
auto_update=True
)
if st.session_state.get("message", []) != []:
st.session_state['expand_config'] = False
# Chat interface
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if query := st.chat_input("Ask a question"):
config_status.update(expanded=False)
st.session_state.messages.append({"role": "user", "content": query})
with st.chat_message("user"):
st.write(query)
moa_agent: MOAgent = st.session_state.moa_agent
with st.chat_message("assistant"):
message_placeholder = st.empty()
ast_mess = stream_response(moa_agent.chat(query, output_format='json'))
response = st.write_stream(ast_mess)
st.session_state.messages.append({"role": "assistant", "content": response})