-
Notifications
You must be signed in to change notification settings - Fork 0
/
BenchPost2.tex
1348 lines (1338 loc) · 38.7 KB
/
BenchPost2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%\documentclass{article}
\documentclass{easychair}
\newtheorem{hypothesis}{Hypothesis}
\usepackage{graphicx}
\usepackage{url}
\usepackage[show]{ed}
\usepackage{helvet}
\usepackage{xcolor}
\usepackage{graphbox}
\usepackage{tikz}
% RGB
\newcommand{\mkc}[4]{\definecolor{#1}{RGB}{#4}}
\input{Florian/altran_colours}
%\usepackage{tikz}
\usepackage{amsfonts}
\usetikzlibrary{datavisualization}
\pgfdvdeclarestylesheet{altran}{
1/.style={Altran1},
2/.style={Altran4},
3/.style={Altran6},
4/.style={Altran7},
5/.style={Altran8},
6/.style={Altran12},
default style/.style={black}
}
\bibliographystyle{plain}
\begin{document}
\title{Benchmarking Solvers, SAT-style}
\author{Martin Nyx Brain\inst{1} \and James H. Davenport\inst{2} \and Alberto Griggio\inst{3}}
\institute{
University of Oxford, Oxford, U.K. {\tt [email protected]} \and
University of Bath, Bath, U.K. {\tt [email protected]} \and
Fondazione Bruno Kessler, Trento, Italy {\tt [email protected]}}
\authorrunning{Brain/Davenport/Griggio}
\titlerunning{Benchmarking}
\maketitle
\begin{abstract}\noindent
The SAT community, and hence the SMT community, have substantial experience in benchmarking solvers against each other on large sample sets, and publishing summaries, whereas the computer algebra community tends to time solvers on a small set of problems, and publishing individual times.
\par
This paper aims to document the SAT community practice for the benefit of the computer algebra community.
\end{abstract}
\input BenchInner
\section{Virtual Best Solver}
Though not shown in Figure \ref{fig:survivor}, the SAT competition has taken to including a "virtual best solver" (VBS)
which is synthesised from the other results by taking the minimum (across all solvers tested) time taken to solve every given benchmark.
Thus the VBS time is always equal to the time of some real solver, but which one will change by the benchmark (measuring how often each solver is the VBS is also an interesting metric). The VBS can be added to the survivor/cactus plot to get a feeling for the variability between solvers. In particular, if it tracks one solver, then that is close to being the best, whereas if it does significantly better than any individual solver, that is an indication that the different real solvers have different strengths and weaknesses, and a portfolio approach might be appropriate. See Section \ref{sec:RL}.
\par
We have therefore added this to our solvers on the diagrams, and counted how often a solver is the VBS. A variation on counting is provided by \cite{Janotaetal2016a}, who measure how often a solver is within one second of being VBS. Their justification is ``The constant of one second was chosen since we consider a smaller difference as insignificant, especially in the context of 800 second time-out''.
%\ednote{@All: do we want to discuss this? For example, this is just as subject to random fluctuation as the original, but in a different place. How about scoring ``VBS points'': 1 if VBS, 0 if more than 5\% slower than VBS, and linear in between? Or any other smooth idea?}
This is open to the argument that it is just as subject to random fluctuation as the original, but in a different place. One could consider scoring ``VBS points'': 1 if VBS, 0 if more than 5\% slower\footnote{A percentage-based approach is probably more appropriate than a fixed time, as differences in time tend to come from consistent features. But this could also do with more experimentation.} than VBS, and linear interpolation in between.
\section{Running multiple copies}
One of the effects of having a solution process whose running time is widely variable\footnote{These algorithms are widely called \emph{Las Vegas} algorithms. However, the term has different connotations in the different fields. In Symbolic Computation, most Las Vegas algorithms are ones that normally produce the answer in a deterministically-bounded time, but may occcasionally fail and have to try again, and effort goes into bounding the error probability, and proving that the algorithm will terminate. Modular algorithms are a classic example. But here we are considering algorithms whose running time is intrinsically variable.} is that one may well not be best served by just running the process to termination. In the case of a single processor, this issue was considered by \cite{Lubyetal1993}, who suggested (and indeed proved almost-optimality) running the process up to certain time limits and then starting afresh, where the limits were of the form $T,T,2T,T,T,2T,4T,T,T,2T,T,T,2T,4T,8T,\ldots$, where $T$ is some arbitrary unit.
\par
This is in fact the default behaviour in MiniSAT 2.2.0, where it is known as \verb+Luby+ (though $T$ is in fact measured in terms of conflicts rather than time, and it's not a complete restart that is performed, as certain learned clauses are kept).
\par
These days, with processors getting more numerous rather than faster, we might consider running multiple copies in parallel. To see how this might help, consider the trivial case of a process whose running time is $1,K,K^2$ with equal probability. Then the average time to solution is $\frac13(1+K+K^2)=37$ when $K=10$. Running two copies and aborting the other when one finds the solution has an average time to solution of $\frac19(5+3K+K^2)=15$ when $K=10$, so the CPU cost is 30 units, still less than the sequential cost.
Similarly, three copies gives $\frac1{27}(19+7K+K^2)=7$ when $K=10$, so the CPU cost is 21 units, even better. For $K=10$, the minimum is achieved at 8-fold parallelism, with time-to-solution 1.36 units, and a CPU cost of 10.9 units.
The break even point for two-fold parallel running is $K=\frac12\left(1+\sqrt{37}\right)\approx4.5$, and three-fold running is $K=4$. It is worth noting, though, that a single Luby process with $T=\frac13$ (to avoid $T=1$ getting lucky) achieves an average time to solution (and cost) of $\approx 9$.
\section{Distributions}
\subsection{Normal Distribution of Times}\label{sec:Normal}
\begin{figure}[h]
\caption{Data from Section \ref{sec:Normal} --- Normal distribution\label{Fig:Normal}}
\includegraphics[scale=0.4]{RSolve20.jpg}
\includegraphics[scale=0.4]{RlogSolve20.jpg}
\end{figure}
It is far from clear what sort of distribution the running times of SAT, and even less SMT, solvers have, but it would be foolish to ignore the normal distribution. We took 36 hypothetical cases, with 9 different running times $t_0=1,\ldots,9$, and standard deviations $t_0/10,2t_0/10,3t_0/10,4t_0/10$ for each running time. The mean running times roughly mimic the fact that a benchmark suite will have problems of a range of difficulties (indeed, we may have underplayed the range). Some problems seem to be more variable than others,but we have no real justification for the scale of standard deviations.
We used five (hypothetical) possible solvers. The base line one just took a time $t$ at random from the relevant normal distribution: $t \in N(t_0,kt_0/10)$. The second one ran two copies in parallel, terminating when the first one did, the third ran three copies, and the next two 10 and 20. In this case, the VBS is in fact the equivalent of running 36 copies.
The data are in Figure \ref{Fig:Normal}. Note that we are \emph{not} charging twice for the cost of running two copies, i.e. we are looking at ``time to solution'' not ``cost of solution''
\begin{figure}[h]
\caption{Data from Section \ref{sec:Normal} --- log Normal distribution\label{Fig:Normallog}}
\includegraphics[scale=0.4]{RSolvelog20v2.jpg}
\includegraphics[scale=0.4]{RlogSolvelog20v2.jpg}
\end{figure}
It is also not clear whether we should assume $t$ or $\log t$ is normally distributed. Hence we re-ran these experiments, but applied the normal distribution in $\log t$-space. The standard deviation was scaled so that it bore the same ratio to the mean as before, i.e. $\sigma_{\log}=\sigma\frac{\mu_{\log}}\mu$, where $\mu$ and $\sigma$ represent the mean and standard deviation.
Again, the VBS is in fact the equivalent of running 36 copies.
The data are in Figure \ref{Fig:Normallog}. We note that the left-hand figures look almost identical, but the right-hand (semi-log plot) ones show a distinct difference at the lower end.
\subsection{Uniform Distribution of Times}\label{sec:Uniform}
\begin{figure}[h]
\caption{Data from Section \ref{sec:Uniform} --- Uniform distribution\label{Fig:Uniform}}
\includegraphics[scale=0.4]{Runif20.jpg}
\includegraphics[scale=0.4]{Rlogunif20.jpg}
\end{figure}
We then considered uniform distributions, with the lower bounds being $t_0=1,\ldots,10$, and the upper bounds being 10 times that. We used the same hypothetical solvers as before.
The data are in Figure \ref{Fig:Uniform}.
Again, one could say that we should be uniform in $\log(t)$, and we did these computations.
The data are in Figure \ref{Fig:Uniformlog}.
\begin{figure}[h]
\caption{Data from Section \ref{sec:Uniform} --- log Uniform distribution\label{Fig:Uniformlog}}
\includegraphics[scale=0.4]{Runiflog20.jpg}
\includegraphics[scale=0.4]{Rloguniflog20.jpg}
\end{figure}
It might seem from these that running twice and running thrice were very similar, and in fact that running twice was almost half the time of running once, thus meaning that they were almost equivalent in cost. In fact, this model is susceptible to algebraic treatment,
and the formulae (running from 1 to $B$ seconds, with numeric values for $B=10$) are as follows:
\begin{equation*}
\begin{array}{rcccl}
\hbox{once}&=&\frac{B-1}{\log B}&\approx&3.9087\\
\hbox{twice}&=&\frac{2}{(\log B)^2}(B-(\log B +1))&\approx&2.5264\\
\hbox{thrice}&=&\frac{6}{(\log B)^3}\left(B-(\frac12\log B+\log B +1)\right)&\approx&1.9887\\
\end{array}
\end{equation*}
Hence in fact the ``running thrice'' number is approximately correct, at one-half the elapsed time of running once.
%\subsection{New}
%Ideas to compare normal and uniform times distributions. Both when $t$ is distributed that way, and when $\log(t)$ is. Also we should look at issues of racing multiple copies, in both cases.
%Normal distrbutions, $t=1,ldots,9$ with standard deviations $t/10,2t/10,3t/10,4t/10$, applied directly or to log.
%Uniform distributions, lower bounds $1,\ldots,10$, upper bounds 10 times that
%\afterpage{
\begin{figure}[h]
\caption{Data from Section \ref{sec:Pr}\label{Fig:S2}}
\hbox{\hskip-60pt\includegraphics[scale=0.35]{Fig2a.jpg}}
\hbox{\hskip-60pt\includegraphics[scale=0.35]{Fig2b.jpg}}
\end{figure}
\clearpage
\section{Case Studies}
%\ednote{Alberto asked ``what's the point''? Good question. I think the first two sections stand as a base case. Then see subsection ``New''.}
For the first three tests we used a vector of baseline times (notionally in seconds) of \\\verb+cat(2,[1.1:0.002:2],[2:1:50],[50:5:300]);+ in MatLab speak, i.e. 1.1 to 2 in steps of 0.002, 2 to 50 in step of 1, and 50 to 300 in steps of 5.
\subsection{Predictable}\label{sec:Pr}
We first measure four solvers: baseline, baseline less 1 second, 40\% of baseline and a hybrid of 70\% of (baseline less 0.5 seconds). The results are shown in Figure \ref{Fig:S2}. ``1 second shorter'' was quickest 284 times, and ``60\% faster'' 267 times. However, ``60\% faster'' took 48.3 seconds longer than the Virtual Best (which took 4311 seconds),``1 second shorter'' 6036 seconds longer, hybrid 3125 seconds longer and the baseline 6572 seconds longer.
\subsection{Predictable plus Fuzz}\label{sec:P+f}
\begin{figure}[h]
\caption{Data from Section \ref{sec:P+f}\label{Fig:S3}}
\includegraphics[scale=0.60]{Fig3a.jpg}
\includegraphics[scale=0.60]{Fig3b.jpg}
\end{figure}
What happens if we multiply each time by a random variable, uniform in [0.8,1.2]?
%``1 second faster'' was quickest 292 times, hybrid 8 times and ``60\% faster'' 251 times.
40 runs of this experiment give a mean VBS time of 4299 seconds, with a standard deviation of 53.455. In the counts of how often each solver was VBS, hybrid appeared, showing up between 5 and 17 times, with corresponding adjustments to the others. ``1 second shorter'' was always the most common, with the ratio of it over ``60\% faster'' ranging from 1.09 to 1.34. The plots (linear and semilogx) are in Figure \ref{Fig:S3}.
\subsection{Predictable plus Random}\label{sec:P+J}
\begin{figure}[h]
\caption{Data from Section \ref{sec:P+J}\label{Fig:S4}}
\hbox{\hskip-60pt\includegraphics[scale=0.35]{Fig4a.jpg}}
\hbox{\hskip-60pt\includegraphics[scale=0.35]{Fig4b.jpg}}
\end{figure}
To the previous solvers, we add a ``joker'', that, on one problem in 10, takes 10\% as long as the baseline. The results are shown in Figure \ref{Fig:S4}. The joker was quickest 55 times, ``1 second shorter'' was quickest 256 times, and ``60\% faster'' 240 times. The time differences are that ``60\% faster'' took 402 seconds longer than the Virtual Best, ``1 second shorter'' 6390 seconds, hybrid 3479 seconds, the joker 5865 seconds and the baseline 6941 seconds.
\subsection{Judgement}\label{sec:J}
\begin{figure}[h]
\caption{Data from Section \ref{sec:J}\label{Fig:S5}}
\includegraphics[scale=0.60]{Fig5a.jpg}
\includegraphics[scale=0.60]{Fig5b.jpg}
\end{figure}
The data used so far had 500 ``fast'' problems ($<2$ seconds), 50 ``medium'' (between 2 and 50) and 5 hard (over 50). What happens if, instead, we have equal numbers in each bracket. The results from this, otherwise using the same methodology as section \ref{sec:P+J}, are in Figure \ref{Fig:S5}: the reader can see the difference from Figure \ref{Fig:S4}: the current figure is dominated by the slow problems. The joker was quickest 593 times, ``1 second shorter'' was quickest 256 times, and ``60\% faster'' 5084 times.
%\subsection{Predictable}
%\section{Martin Brain adds}
\begin{figure}[t]
\vbox{\centering\vskip-100pt
\includegraphics[scale=1.6]{scatter.pdf}}
\caption{Scatter Plot Example.\label{Fig:scatter}}
\end{figure}
\section{Pairwise comparisons}
%\begin{enumerate}
%\item
%The SAT competition has taken to including a "virtual best solver"
%which is synthesised from the other results by taking the minimum (across all solvers tested) time taken to solve every given benchmark.
%Thus the VBS is always equal to the time of some solver, but which one will change by the benchmark (measuring how often each solver is the VBS is also an %interesting metric). The VBS can be added to the cactus plot to get a feeling for the variability between solvers.
%\item
Scatter plots are used to compare pairs of solvers. For each benchmark you plot (sometimes using different colours or marks for SAT and UNSAT) a point with x location the time taken by solver 1 and y the time taken by solver 2. To make things easier to follow, people commonly add the diagonal (sometimes annotated with "solver 1 is faster"
and "solver 2 is faster" on the relevant sides / corners) and the time-out lines.
An example is shown in Figure \ref{Fig:scatter}, from which one might reasonably conclude that Solver 1 is typically 10 times slower than Solver 2, and that Solver 2 never timed out, whereas Solver 1 sometimes did. loglog plots are usually used, since ratios are the usual deduction.
\section{Real Life}\label{sec:RL}
This section is drawn from Florian Schanda's joint work with Martin Brain, and the authors are very grateful to him for permission to include the slides. Figure \ref{CVC16} is a standard tabular presentation of the summary numerical data from his benchmarking. From this one can certainly deduce that Z3 is slightly more often the winner in terms of \%age of problems solved in each category.
On the Schanda set (Figure \ref{CVC21}), Z3 is the winner, but Colibri is faster while it's in the race. The virtual best solver has a surprisingly good performance, remaining almost flat much longer than Colibri, and solving significantly more than any individual solver.
\par
Nevertheless, Z3 is not a winner on the Griggio set, and this is clearly shown in Figure \ref{CVC22}. Also shown here is the fact the the Virtual Best Solver, while tracking Colibri closely, solves a few more.
%However, the data are not always so clear: consider Heizmann. Here Figure \ref{CVC16} tells is that Z3 comes third, beating MATHSAT(ACDL). However, a look at Figure \ref{CVC23} shows that it's not so clear: yes, Z3 ultimately solves more, but takes a lot longer doing it.
\begin{figure}[h]
\caption{Numerical Data for ``Real Life''\label{CVC16}}
\vskip-160pt
{\hskip-180pt\includegraphics{ExtractCVC16trimv2.pdf}}\vskip-200pt
\end{figure}\iffalse
\begin{figure}[h]
\caption{Numerical Data v2\label{CVC16}}
\begin{center}
\begin{tikzpicture}
\node[anchor=west] at (0.000, 0.000) {\tiny Benchmark};
\node[anchor=west,rotate=65] at (2.750, 0.000) {\tiny Alt-Ergo FPA};
\node[anchor=west,rotate=65] at (3.750, 0.000) {\tiny Colibri};
\node[anchor=west,rotate=65] at (4.750, 0.000) {\tiny {\sc cvc4} (${\mathbb F}$)};
\node[anchor=west,rotate=65] at (5.750, 0.000) {\tiny MathSAT};
\node[anchor=west,rotate=65] at (6.750, 0.000) {\tiny {\sc cvc4} (${\mathbb R}$)};
\node[anchor=west,rotate=65] at (7.750, 0.000) {\tiny Virtual best};
\node[anchor=west,rotate=65] at (8.750, 0.000) {\tiny Z3};
\draw[Altran2,thick] (0.000, -0.125) -- (9.500, -0.125);
\node[anchor=west] at (0.000, -0.350) {\tiny Schanda};
\node[anchor=west] at (7.500, -0.350) {\tiny 92.4\%$^*$};
\node[anchor=west] at (5.500, -0.350) {\tiny 67.2\%$^*$};
\node[anchor=west] at (4.500, -0.350) {\tiny 63.6\%};
\node[anchor=west] at (3.500, -0.350) {\tiny 75.3\%};
\node[anchor=west] at (8.500, -0.350) {\tiny {\color{AnSecondaryGreen}81.8\%}};
\node[anchor=west] at (0.000, -0.700) {\tiny Griggio};
\node[anchor=west] at (7.500, -0.700) {\tiny 68.2\%};
\node[anchor=west] at (5.500, -0.700) {\tiny 48.6\%};
\node[anchor=west] at (4.500, -0.700) {\tiny 19.6\%};
\node[anchor=west] at (3.500, -0.700) {\tiny {\color{AnSecondaryGreen}63.6\%}};
\node[anchor=west] at (8.500, -0.700) {\tiny 35.5\%};
\node[anchor=west] at (0.000, -1.050) {\tiny Heizmann};
\node[anchor=west] at (7.500, -1.050) {\tiny 87.9\%};
\node[anchor=west] at (5.500, -1.050) {\tiny 58.5\%};
\node[anchor=west] at (4.500, -1.050) {\tiny {\color{AnSecondaryGreen}70.0\%}};
\node[anchor=west] at (3.500, -1.050) {\tiny 12.1\%};
\node[anchor=west] at (8.500, -1.050) {\tiny 40.6\%};
\node[anchor=west] at (0.000, -1.400) {\tiny Industrial\_2};
\node[anchor=west] at (7.500, -1.400) {\tiny 76.3\%$^*$};
\node[anchor=west] at (4.500, -1.400) {\tiny {\color{AnSecondaryGreen}69.4\%}};
\node[anchor=west] at (2.500, -1.400) {\tiny 68.9\%$^*$};
\node[anchor=west] at (6.500, -1.400) {\tiny 57.0\%$^*$};
\node[anchor=west] at (8.500, -1.400) {\tiny 64.9\%};
\node[anchor=west] at (0.000, -1.750) {\tiny Industrial\_2\_qf};
\node[anchor=west] at (7.500, -1.750) {\tiny 99.7\%};
\node[anchor=west] at (5.500, -1.750) {\tiny 88.9\%};
\node[anchor=west] at (4.500, -1.750) {\tiny 88.1\%};
\node[anchor=west] at (3.500, -1.750) {\tiny {\color{AnSecondaryGreen}96.0\%}};
\node[anchor=west] at (8.500, -1.750) {\tiny 85.0\%};
\node[anchor=west] at (0.000, -2.100) {\tiny NyxBrain};
\node[anchor=west] at (7.500, -2.100) {\tiny 99.9\%};
\node[anchor=west] at (5.500, -2.100) {\tiny 95.4\%};
\node[anchor=west] at (4.500, -2.100) {\tiny 99.8\%};
\node[anchor=west] at (3.500, -2.100) {\tiny 99.2\%};
\node[anchor=west] at (8.500, -2.100) {\tiny {\color{AnSecondaryGreen}99.9\%}};
\node[anchor=west] at (0.000, -2.450) {\tiny PyMPF};
\node[anchor=west] at (7.500, -2.450) {\tiny 99.8\%};
\node[anchor=west] at (5.500, -2.450) {\tiny 39.3\%};
\node[anchor=west] at (4.500, -2.450) {\tiny {\color{AnSecondaryGreen}99.6\%}};
\node[anchor=west] at (3.500, -2.450) {\tiny 84.4\%};
\node[anchor=west] at (8.500, -2.450) {\tiny 98.6\%};
\node[anchor=west] at (0.000, -2.800) {\tiny {\sc Spark~FP}};
\node[anchor=west] at (7.500, -2.800) {\tiny 87.4\%$^*$};
\node[anchor=west] at (4.500, -2.800) {\tiny 78.4\%};
\node[anchor=west] at (2.500, -2.800) {\tiny 63.7\%$^*$};
\node[anchor=west] at (6.500, -2.800) {\tiny 55.3\%$^*$};
\node[anchor=west] at (8.500, -2.800) {\tiny {\color{AnSecondaryGreen}82.3\%}$^*$};
\node[anchor=west] at (0.000, -3.150) {\tiny {\sc Spark~ALL}};
\node[anchor=west] at (7.500, -3.150) {\tiny 91.9\%$^*$};
\node[anchor=west] at (4.500, -3.150) {\tiny 89.3\%};
\node[anchor=west] at (2.500, -3.150) {\tiny 83.2\%$^*$};
\node[anchor=west] at (8.500, -3.150) {\tiny {\color{AnSecondaryGreen}90.1\%}$^*$};
\node[anchor=west] at (0.000, -3.500) {\tiny {\sc Spark~QF~FP}};
\node[anchor=west] at (7.500, -3.500) {\tiny 99.7\%};
\node[anchor=west] at (5.500, -3.500) {\tiny 76.9\%};
\node[anchor=west] at (4.500, -3.500) {\tiny 87.5\%};
\node[anchor=west] at (3.500, -3.500) {\tiny {\color{AnSecondaryGreen}95.1\%}};
\node[anchor=west] at (8.500, -3.500) {\tiny 90.6\%};
\node[anchor=west] at (0.000, -3.850) {\tiny Wintersteiger};
\node[anchor=west] at (7.500, -3.850) {\tiny $\checkmark$};
\node[anchor=west] at (5.500, -3.850) {\tiny 85.8\%};
\node[anchor=west] at (4.500, -3.850) {\tiny {\color{AnSecondaryGreen}$\checkmark$}};
\node[anchor=west] at (3.500, -3.850) {\tiny {\color{AnSecondaryGreen}$\checkmark$}};
\node[anchor=west] at (8.500, -3.850) {\tiny {\color{AnSecondaryGreen}$\checkmark$}};
\draw[Altran2,thick] (0.000, -3.975) -- (9.500, -3.975);
\node[anchor=west] at (0.000, -4.200) {\tiny Summary};
\node[anchor=west] at (3.500, -4.200) {\tiny 78\%};
\node[anchor=west] at (4.500, -4.200) {\tiny 79\%};
\node[anchor=west] at (6.500, -4.200) {\tiny 56\%};
\node[anchor=west] at (2.500, -4.200) {\tiny 72\%};
\node[anchor=west] at (7.500, -4.200) {\tiny 91\%};
\node[anchor=west] at (5.500, -4.200) {\tiny 70\%};
\node[anchor=west] at (8.500, -4.200) {\tiny {\color{AnSecondaryGreen}79\%}};
\end{tikzpicture}
\end{center}
$^*$) uses different VCs
\end{figure}\fi
\begin{figure}[h]
\caption{Schanda Cactus Plot\label{CVC21}}\begin{center}
\begin{tikzpicture}
\datavisualization [
scientific axes=clean,
x axis={
length=6cm,
label={instances solved},
include value=198.00,
},
y axis={
length=6cm,
label={time},
ticks={tick unit=s},
},
visualize as smooth line=sol5,
visualize as line=sol1,
visualize as line=sol2,
visualize as line=sol3,
visualize as line=sol6,
legend={right},
sol5={label in legend={text=Virtual best},style={dashed}},
sol1={label in legend={text=Colibri}},
sol2={label in legend={text={\sc cvc4} (${\mathbb F}$)}},
sol3={label in legend={text=MathSAT}},
sol6={label in legend={text=Z3}},
style sheet=altran
]
data [set=sol5] {
x, y
16.00, 0.00
24.00, 0.01
53.00, 0.02
61.00, 0.03
73.00, 0.04
77.00, 0.05
81.00, 0.06
87.00, 0.07
88.00, 0.08
89.00, 0.09
93.00, 0.10
95.00, 0.12
97.00, 0.13
99.00, 0.14
100.00, 0.15
102.00, 0.16
105.00, 0.18
106.00, 0.20
108.00, 0.22
110.00, 0.23
116.00, 0.24
123.00, 0.25
130.00, 0.26
143.00, 0.27
152.00, 0.28
156.00, 0.29
157.00, 0.30
158.00, 0.31
159.00, 0.32
160.00, 0.39
161.00, 0.40
163.00, 0.43
164.00, 0.44
165.00, 0.56
166.00, 0.58
167.00, 0.71
168.00, 0.72
169.00, 0.82
170.00, 0.90
171.00, 1.78
172.00, 1.79
173.00, 2.19
174.00, 2.87
175.00, 3.04
176.00, 3.69
177.00, 3.90
178.00, 4.88
179.00, 8.57
180.00, 12.86
181.00, 14.21
182.00, 16.34
183.00, 20.69
}
data [set=sol1] {
x, y
2.00, 0.22
7.00, 0.23
15.00, 0.24
31.00, 0.25
71.00, 0.26
108.00, 0.27
134.00, 0.28
139.00, 0.29
140.00, 0.30
141.00, 0.31
143.00, 0.32
144.00, 0.35
145.00, 0.58
146.00, 0.61
147.00, 0.90
148.00, 1.16
149.00, 4.88
}
data [set=sol2] {
x, y
16.00, 0.00
23.00, 0.01
35.00, 0.02
45.00, 0.03
56.00, 0.04
58.00, 0.05
61.00, 0.06
64.00, 0.07
68.00, 0.08
69.00, 0.09
73.00, 0.10
74.00, 0.11
77.00, 0.12
78.00, 0.13
79.00, 0.14
80.00, 0.16
81.00, 0.17
82.00, 0.24
83.00, 0.26
84.00, 0.29
85.00, 0.32
86.00, 0.34
88.00, 0.36
89.00, 0.38
90.00, 0.40
91.00, 0.41
93.00, 0.42
94.00, 0.43
95.00, 0.44
96.00, 0.51
97.00, 0.54
98.00, 0.59
100.00, 0.70
101.00, 0.71
102.00, 0.78
103.00, 0.81
104.00, 0.84
105.00, 0.99
106.00, 1.08
107.00, 1.26
108.00, 1.52
109.00, 1.55
110.00, 1.60
111.00, 1.73
112.00, 2.13
113.00, 2.19
114.00, 2.29
115.00, 2.68
116.00, 3.20
117.00, 5.37
118.00, 6.22
119.00, 10.20
120.00, 11.80
121.00, 12.56
122.00, 13.06
123.00, 14.03
124.00, 16.52
125.00, 17.06
126.00, 24.67
}
data [set=sol3] {
x, y
4.00, 0.00
12.00, 0.01
43.00, 0.02
51.00, 0.03
55.00, 0.04
57.00, 0.05
61.00, 0.06
66.00, 0.07
68.00, 0.08
70.00, 0.10
71.00, 0.11
72.00, 0.12
75.00, 0.13
78.00, 0.14
79.00, 0.15
83.00, 0.18
85.00, 0.20
86.00, 0.22
88.00, 0.24
89.00, 0.28
90.00, 0.29
91.00, 0.31
92.00, 0.35
93.00, 0.38
95.00, 0.39
96.00, 0.41
97.00, 0.43
98.00, 0.44
99.00, 0.46
100.00, 0.49
101.00, 0.51
102.00, 0.52
104.00, 0.56
105.00, 0.59
106.00, 0.60
107.00, 0.62
108.00, 0.74
109.00, 0.79
110.00, 0.82
111.00, 0.83
112.00, 0.88
113.00, 0.89
114.00, 0.92
115.00, 1.07
116.00, 1.67
117.00, 1.79
118.00, 2.15
119.00, 2.22
120.00, 2.25
121.00, 2.81
122.00, 3.65
123.00, 3.69
124.00, 6.12
125.00, 7.03
126.00, 7.46
127.00, 8.76
128.00, 9.31
129.00, 10.87
130.00, 13.82
131.00, 17.58
132.00, 29.03
133.00, 51.90
}
data [set=sol6] {
x, y
18.00, 0.04
55.00, 0.05
61.00, 0.06
72.00, 0.07
73.00, 0.09
75.00, 0.12
77.00, 0.14
78.00, 0.16
81.00, 0.18
82.00, 0.20
83.00, 0.21
85.00, 0.22
86.00, 0.25
89.00, 0.26
91.00, 0.27
92.00, 0.30
93.00, 0.34
94.00, 0.38
96.00, 0.40
98.00, 0.42
99.00, 0.44
100.00, 0.46
101.00, 0.49
102.00, 0.51
103.00, 0.56
104.00, 0.57
105.00, 0.63
106.00, 0.66
107.00, 0.70
108.00, 0.72
109.00, 0.83
110.00, 1.21
111.00, 1.25
112.00, 1.32
113.00, 1.42
115.00, 1.64
116.00, 1.74
117.00, 1.78
118.00, 1.93
119.00, 1.95
120.00, 1.97
121.00, 2.00
122.00, 2.02
123.00, 2.11
124.00, 2.12
125.00, 2.19
126.00, 2.31
127.00, 2.41
128.00, 2.42
129.00, 2.51
130.00, 2.54
131.00, 2.58
132.00, 2.62
133.00, 2.87
134.00, 2.94
135.00, 2.97
136.00, 3.03
137.00, 3.04
138.00, 3.15
139.00, 3.26
140.00, 3.64
141.00, 3.69
142.00, 3.90
143.00, 4.18
144.00, 5.17
145.00, 5.27
146.00, 6.36
147.00, 7.47
148.00, 8.34
149.00, 8.57
150.00, 11.44
151.00, 12.46
152.00, 12.86
153.00, 13.28
154.00, 14.21
155.00, 14.96
156.00, 16.34
157.00, 17.68
158.00, 19.30
159.00, 20.69
160.00, 35.09
161.00, 39.24
162.00, 49.26
}
;
\end{tikzpicture}
\end{center}
\end{figure}
\begin{figure}[h]
\caption{Griggio Cactus Plot\label{CVC22}}
\begin{center}
\begin{tikzpicture}
\datavisualization [
scientific axes=clean,
x axis={
length=6cm,
label={instances solved},
include value=214.00,
},
y axis={
length=6cm,
label={time},
ticks={tick unit=s},
},
visualize as smooth line=sol5,
visualize as line=sol1,
visualize as line=sol2,
visualize as line=sol3,
visualize as line=sol6,
legend={right},
sol5={label in legend={text=Virtual best},style={dashed}},
sol1={label in legend={text=Colibri}},
sol2={label in legend={text={\sc cvc4} (${\mathbb F}$)}},
sol3={label in legend={text=MathSAT}},
sol6={label in legend={text=Z3}},
style sheet=altran
]
data [set=sol5] {
x, y
2.00, 0.00
4.00, 0.01
6.00, 0.02
8.00, 0.12
9.00, 0.13
10.00, 0.14
11.00, 0.15
14.00, 0.16
15.00, 0.22
17.00, 0.26
19.00, 0.27
20.00, 0.28
21.00, 0.29
24.00, 0.30
29.00, 0.31
38.00, 0.32
40.00, 0.33
42.00, 0.34
47.00, 0.35
60.00, 0.36
61.00, 0.37
64.00, 0.38
66.00, 0.39
68.00, 0.40
69.00, 0.42
71.00, 0.44
73.00, 0.45
75.00, 0.46
76.00, 0.53
78.00, 0.54
79.00, 0.55
80.00, 0.56
81.00, 0.58
82.00, 0.59
83.00, 0.60
84.00, 0.66
85.00, 0.69
86.00, 0.72
87.00, 0.74
88.00, 0.77
89.00, 0.80
90.00, 0.86
91.00, 0.88
92.00, 0.92
93.00, 0.97
94.00, 1.13
95.00, 1.19
96.00, 1.36
97.00, 1.39
98.00, 1.42
99.00, 1.48
100.00, 1.60
101.00, 1.62
102.00, 1.66
103.00, 1.69
104.00, 1.79
105.00, 1.83
106.00, 1.97
107.00, 2.03
108.00, 2.11
109.00, 2.18
110.00, 2.41
111.00, 2.52
112.00, 2.69
113.00, 3.03
114.00, 3.06
115.00, 3.13
116.00, 3.19
117.00, 3.66
118.00, 3.82
119.00, 3.89
120.00, 3.90
121.00, 3.93
122.00, 4.51
123.00, 4.77
124.00, 4.78
125.00, 6.28
126.00, 6.32
127.00, 6.92
128.00, 7.15
129.00, 8.14
130.00, 9.16
131.00, 12.55
132.00, 12.66
133.00, 12.81
134.00, 12.94
135.00, 16.12
136.00, 16.23
137.00, 18.04
138.00, 20.56
139.00, 24.63
140.00, 27.01
141.00, 35.11
142.00, 36.33
143.00, 36.43
144.00, 36.87
145.00, 52.58
146.00, 58.00
}
data [set=sol1] {
x, y
2.00, 0.26
5.00, 0.27
9.00, 0.28
13.00, 0.29
18.00, 0.30
23.00, 0.31
33.00, 0.32
36.00, 0.33
38.00, 0.34
43.00, 0.35
56.00, 0.36
57.00, 0.37
60.00, 0.38
62.00, 0.39
64.00, 0.40
65.00, 0.42
67.00, 0.44
69.00, 0.45
71.00, 0.46
72.00, 0.53
74.00, 0.54
75.00, 0.55
76.00, 0.56
77.00, 0.58
78.00, 0.59
79.00, 0.60
80.00, 0.66
81.00, 0.69
82.00, 0.72
83.00, 0.74
84.00, 0.80
85.00, 0.86
86.00, 0.92
87.00, 0.97
88.00, 1.13
89.00, 1.19
90.00, 1.30
91.00, 1.36
92.00, 1.39
93.00, 1.42
94.00, 1.48
95.00, 1.60
96.00, 1.62
97.00, 1.66
98.00, 1.69
99.00, 1.79
100.00, 1.83
101.00, 1.97
102.00, 2.03
103.00, 2.11
104.00, 2.18
105.00, 2.41
106.00, 2.52
107.00, 2.69
108.00, 3.03
109.00, 3.06
110.00, 3.13
111.00, 3.19
112.00, 3.66
113.00, 3.74
114.00, 3.82
115.00, 3.89
116.00, 3.90
117.00, 3.93
118.00, 4.48
119.00, 4.51
120.00, 4.77
121.00, 4.78
122.00, 6.28
123.00, 6.32
124.00, 6.92
125.00, 7.15
126.00, 8.12
127.00, 8.14
128.00, 8.34
129.00, 9.16
130.00, 12.66
131.00, 12.81
132.00, 12.94
133.00, 16.12
134.00, 27.01
135.00, 36.43
136.00, 43.33
}
data [set=sol2] {
x, y
1.00, 0.00
2.00, 0.04
3.00, 0.17
4.00, 0.26
5.00, 0.44
6.00, 0.54
7.00, 0.63
9.00, 0.65
10.00, 0.67
11.00, 0.77
12.00, 0.85
13.00, 0.88
14.00, 0.91
15.00, 1.02
16.00, 1.32
18.00, 1.34
19.00, 1.52
20.00, 2.37
21.00, 2.55
22.00, 2.92
23.00, 4.65
24.00, 5.05
25.00, 6.27
26.00, 8.23
27.00, 8.24
28.00, 8.34
29.00, 8.37
31.00, 9.73
32.00, 9.82
33.00, 12.34
34.00, 13.42
35.00, 15.40
36.00, 16.34
37.00, 47.10
38.00, 50.61
39.00, 54.37
40.00, 54.68
41.00, 54.99
42.00, 58.00
}
data [set=sol3] {
x, y
2.00, 0.00
4.00, 0.01
6.00, 0.02
7.00, 0.12
8.00, 0.13
9.00, 0.14
11.00, 0.15
14.00, 0.16
15.00, 0.22
16.00, 0.27
17.00, 0.32
18.00, 0.53
19.00, 0.88
20.00, 0.96
21.00, 1.06
22.00, 1.12
23.00, 1.22
24.00, 1.29
25.00, 1.46
26.00, 1.57
27.00, 1.63
29.00, 1.71
31.00, 1.88
32.00, 2.12
33.00, 2.18
34.00, 2.27
35.00, 2.52
36.00, 3.01
37.00, 3.03
38.00, 4.39
39.00, 4.62
40.00, 6.20
41.00, 7.44
42.00, 7.46
43.00, 7.59
44.00, 7.61
45.00, 7.98
46.00, 8.07
47.00, 8.34
48.00, 8.64
49.00, 8.94
50.00, 9.38
51.00, 9.56
52.00, 10.51
53.00, 10.75
54.00, 13.42
55.00, 13.58
56.00, 13.68
57.00, 14.54
58.00, 15.33
59.00, 16.19
60.00, 16.23
61.00, 16.58
62.00, 16.78
63.00, 17.34
64.00, 17.74
65.00, 18.04
66.00, 18.93
67.00, 19.24
68.00, 20.56
69.00, 20.58
70.00, 20.67
71.00, 22.71
72.00, 23.41
73.00, 24.63
74.00, 25.24
75.00, 26.33
76.00, 27.81
77.00, 28.17
78.00, 28.20
79.00, 28.65
80.00, 28.69
81.00, 28.78
82.00, 31.10
83.00, 31.23
84.00, 32.17
85.00, 33.49
86.00, 35.11
87.00, 35.58
88.00, 35.84
89.00, 36.33
90.00, 36.59
91.00, 36.87
92.00, 37.86
93.00, 38.03
94.00, 39.19
95.00, 39.32
96.00, 40.14
97.00, 42.54
98.00, 42.59
99.00, 42.97
100.00, 47.56
101.00, 48.56
102.00, 51.01
103.00, 52.58
104.00, 55.55
}
data [set=sol6] {
x, y
2.00, 0.05
3.00, 0.12
4.00, 0.56
5.00, 0.58
6.00, 0.62
7.00, 0.66
9.00, 0.84
10.00, 0.90
11.00, 0.95
12.00, 0.98
13.00, 1.24
14.00, 2.23
15.00, 2.62
16.00, 3.62
17.00, 3.67
18.00, 3.73
19.00, 3.91
20.00, 4.07
21.00, 4.38
22.00, 4.48
23.00, 4.71
24.00, 5.20
25.00, 5.25
26.00, 5.66
27.00, 5.96
28.00, 6.02
29.00, 6.52
30.00, 6.95
31.00, 7.43
32.00, 7.44
33.00, 7.80
34.00, 8.30
35.00, 8.70
36.00, 9.28
37.00, 9.60
38.00, 10.01
39.00, 10.21
40.00, 10.24
41.00, 12.55
42.00, 12.86
43.00, 18.20
44.00, 19.80
45.00, 19.91
46.00, 21.65
47.00, 22.55
48.00, 23.16
49.00, 23.88
50.00, 24.09
51.00, 24.21
52.00, 25.89
53.00, 26.38
54.00, 26.94
55.00, 27.03