forked from IRCVLab/AUE8088-PA1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
62 lines (51 loc) · 1.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""
[AUE8088] PA1: Image Classification
- To run: (aue8088) $ python train.py
- For better flexibility, consider using LightningCLI in PyTorch Lightning
"""
# PyTorch & Pytorch Lightning
from lightning.pytorch.loggers.wandb import WandbLogger
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from lightning import Trainer
import torch
import wandb
# Custom packages
from src.dataset import TinyImageNetDatasetModule
from src.network import SimpleClassifier
import src.config as cfg
torch.set_float32_matmul_precision('medium')
if __name__ == "__main__":
wandb.login(key='61103c383e2466af37dce7fb530359a81de3f2b4', relogin=True)
model = SimpleClassifier(
model_name = cfg.MODEL_NAME,
num_classes = cfg.NUM_CLASSES,
optimizer_params = cfg.OPTIMIZER_PARAMS,
scheduler_params = cfg.SCHEDULER_PARAMS,
)
datamodule = TinyImageNetDatasetModule(
batch_size = cfg.BATCH_SIZE,
)
wandb.init(
# set the wandb project where this run will be logged
project="deep_learning_class_hyu"
)
wandb_logger = WandbLogger(
project = cfg.WANDB_PROJECT,
save_dir = cfg.WANDB_SAVE_DIR,
entity = cfg.WANDB_ENTITY,
name = cfg.WANDB_NAME,
)
trainer = Trainer(
accelerator = cfg.ACCELERATOR,
devices = cfg.DEVICES,
precision = cfg.PRECISION_STR,
max_epochs = cfg.NUM_EPOCHS,
check_val_every_n_epoch = cfg.VAL_EVERY_N_EPOCH,
logger = wandb_logger,
callbacks = [
LearningRateMonitor(logging_interval='epoch'),
ModelCheckpoint(save_top_k=1, monitor='accuracy/val', mode='max'),
],
)
trainer.fit(model, datamodule=datamodule)
trainer.validate(ckpt_path='best', datamodule=datamodule)