-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
260 lines (223 loc) · 13.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import logging
from super_gradients.training import models
from super_gradients.common.object_names import Models
#import torch
import cv2
from queue import Queue # needed to store the camera frames so as to always use the latest one
from threading import Thread # fill the queue in a background thread
from time import sleep, time
from subprocess import Popen, PIPE
#from numpy import argmax
from sys import exit as EXIT
from os import chdir
import target
import variables
import scanner
logging.basicConfig(filename='detector.log', filemode='w',
format='%(asctime)s %(levelname)s %(message)s', datefmt='%d/%m/%Y %H:%M:%S :', level=logging.DEBUG)
class Scan:
def __init__(self):
# instantiate the model
chdir('data')
#self.model = torch.hub.load('ultralytics/yolov5', 'yolov5x6', pretrained=True) #already downloaded when building the docker image.
#DEVICE = 'cuda' if torch.cuda.is_available() else "CPU"
self.model = models.get(Models.YOLO_NAS_M, pretrained_weights="coco").to('cuda')
#self.model.conf = 0.70
self.model.eval()
self.model.prep_model_for_conversion(input_size=[1, 3, 1000, 1000])
#otherwise, going to take some time, it's 269Mo.
#self.model.eval()
with open('coco.names', 'rt') as f:
self.classes = f.read().rstrip('\n').split('\n')
# set camera resolution.
self.width = variables.width
self.height = variables.height
# SSH user and camera IP
self.user = variables.user
self.ip = variables.ip
self.port = variables.port
# start pigpio on the rpi
self.start_pigpio_daemon()
# create a queue object, acting as a buffer containing only the latest image received from the camera.
# if reading directly from the OpenCV stream, the oldest frame in the buffer is read, causing delays to accumulate
self.queue = Queue(maxsize=1) # only need the latest frame
# queue thread starting all video streaming and processing.
self.queue_thread = Thread(target=self.video_stream_to_queue, daemon=True)
self.stream_thread_is_running = False
def exit(self):
variables.exit = True #to let the run() thread know that it should exit too.
EXIT()
def start_pigpio_daemon(self):
"""Start the pigpio daemon on the remote RPI to allow controlling the GPIO pins remotely"""
Popen(["ssh", f"{self.user}@{self.ip}", "sudo pigpiod"])
sleep(0.5)
if len(str(Popen(["ssh", f"{self.user}@{self.ip}", "ps aux | grep pigpiod | grep -v grep"], stderr=PIPE,
stdout=PIPE).communicate()[0])) == 0:
logging.critical('Pigpio daemon failed to start on the remote raspberry.\nSystem will *NOT* work. Exiting.')
self.exit()
def video_stream_to_queue(self):
"""Start the video capture on the RPI, open the video stream in OpenCV, start the queue
and use it as a buffer containing the latest frame"""
Popen(["ssh", f"{self.user}@{self.ip}", "sudo killall raspivid"]) # kill any stray processes
sleep(1)
start_raspivid_process = Popen(
["ssh", f"{self.user}@{self.ip}", f"raspivid --codec MJPEG -fps 15 -w {self.width}\
-h {self.height} -awb greyworld -n -pf baseline -ih -t 0 -l -o tcp://0.0.0.0:{self.port}"],
stderr=PIPE,stdout=PIPE) # 15 fps is enough. # the 'greyworld' option prevents a red tint on the image
#Let raspivid start (or fail anyway)
sleep(0.5)
### ensure raspivid is running, then kill the start_raspivid_process (after the streaming started - line 100-something)
timeout = 0
while not Popen(["ssh", f"{self.user}@{self.ip}", "ps aux | grep raspivid | grep -v grep"], stderr=PIPE,
stdout=PIPE).communicate()[0].decode('UTF-8'):
sleep(0.5)
timeout += 1
if timeout == 3:
logging.critical('Raspivid failed to start on the remote raspberry.\nSystem will *NOT* work. Exiting.')
Popen(["ssh", f"{self.user}@{self.ip}", "sudo killall pigpiod"]) #the pigpio daemon uses CPU permanently.
Popen(["ssh", f"{self.user}@{self.ip}", "sudo killall raspivid"]) #just in case
sleep(0.5)
self.exit()
sleep(0.5) # just to let raspivid properly start or something. The below line fails regularly otherwise.
self.stream = cv2.VideoCapture(f"tcp://{self.ip}:{self.port}")
# stream is encoded in MJPEG instead of H264: this eliminates the need for OpenCV to decode each frame as it is natively JPEG. I think.
# either way, it makes the frame processing significantly faster.
self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
# don't need to store many frames in the buffer, as only the most recent is used.
self.stream.set(cv2.CAP_PROP_BUFFERSIZE, 2)
### ensure that the stream object is actually receiving images.
timeout = 0
while True:
(run, _) = self.stream.read()
if run:
break
elif timeout == 4:
logging.critical("Streaming isn't working.\nSystem will *NOT* work. Exiting.")
Popen(["ssh", f"{self.user}@{self.ip}", "sudo killall raspivid"])
Popen(["ssh", f"{self.user}@{self.ip}", "sudo killall pigpiod"])
sleep(0.5)
self.exit()
sleep(0.5)
timeout += 1
start_raspivid_process.terminate() # once the stream is running, we can kill the process
start_raspivid_process.wait()
self.stream_thread_is_running = True
### Now populate the Queue object with the latest stream frame.
while self.stream_thread_is_running:
try:
(_, img) = self.stream.read()
if not self.queue.empty():
self.queue.get_nowait()
self.queue.put(img)
except:
pass
sleep(0.01) # 15 fps = 1/15. To test further, but that way it should be synced with the frames coming in and save some CPU.
# update : not really. Framerate is nearly halved whatever the original camera fps. Still, 15 fps is fine.
# update 2 : now the framerate remains nearly identical to the original one (14.97 FPS on the processed frames)
# The 'stream_thread_is_running' flag allows the run function to wait until the stream is running and the queue populated.
def run(self):
"""Main function. Pass the video frames through YOLO V4, searching for living things from the COCO classes,
except persons. """
###start the queue
self.queue_thread.start()
while not self.stream_thread_is_running:
sleep(0.25)
if variables.exit:
self.exit()
### start the pan routine
scanner.PanCamera().start()
#TODO: remove below block for production ########
font = cv2.QT_FONT_NORMAL
starting_time = time() # time + frame number to calculate the FPS.
frame_id = 0
######################################
variables.analysis_is_running = True
# count frames before resuming the pan routine after targeting an object.
resume_pan_timeout = 0
while True: # Main loop, won't exit until the program is killed.
frame = self.queue.get() # always process the latest image received from the camera.
#TODO: remove below block for production ########
frame_id += 1
######################################
if variables.analysis_is_running:
try:
### run each frame through the model.
results = list(self.model.predict(frame, iou=0.2, conf=0.50)._images_prediction_lst)[0] #a tensor with all the detected objects as arrays (coords, class)
###filter the objects pertaining to the relevant COCO classes (living stuff) and select the target with highest confidence
#TODO: remove class 0 ('person') for production
#print(results.xywh[0])
#targets = [i for i in results.xywh[0]if i[5] in [0, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]]#[0, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]]
targets = []
for i in range(len(results.prediction.labels)):
if results.prediction.labels[i] in [0, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]:
targets.append([results.prediction.labels[i], results.prediction.confidence[i], results.prediction.bboxes_xyxy[i]])
#If nothing is detected, the above gives an empty list. No exception is raised.
if targets:
main_target = [i for i in targets if i[0] == 15] #look for a cat.
if not main_target: #if no cat, pick the target with highest confidence. results are already ordered by decreasing confidence. Index 0 is always the right one
main_target = [targets[0]]
#print(self.classes[int(main_target[5].item())], str(round(main_target[4].item(), 2)))
#get center coordinates
#x,y = round(main_target[0].item()), round(main_target[1].item())
x, y = round((main_target[0][2][2] + main_target[0][2][0]) / 2), round((main_target[0][2][3] + main_target[0][2][1]) / 2)
if variables.preview == 'on': #below block not executed if the live video isn't displayed
#cv2.putText(frame, self.classes[int(main_target[5].item())] + " " + str(round(main_target[4].item(), 2)),
# (x,y + 30), font, 2, (0, 255, 0), 3)
# display a dot at the center of the detected object.
#cv2.rectangle(frame,(int(targets[0][2][0]), int(targets[0][2][1])), (int(targets[0][2][2]), int(targets[0][2][3])), color=(0, 0, 255), thickness=1)
cv2.circle(frame, (x,y), radius=5, color=(0, 0, 255), thickness=-1),
######################################
variables.pan_is_running = False # stop the pan routine and break the analysis loop,
variables.analysis_is_running = False # as something was detected.
resume_pan_timeout = 0 # if the value started increasing after the previous targeting, reset it.
### start the targeting function.
variables.tilt_servo_position = scanner.tilt_servo.angle
variables.pan_servo_position = scanner.pan_servo.angle
Thread(target=target.Target(x,y).run).start()
#break # can't target multiple objects at once, so.
else:
variables.target_detected = False
except KeyboardInterrupt:
break
except Exception as e: # whatever the exception may be. Just log it and try to continue the program.
logging.critical(f"Error: {str(e)}")
pass
# pan routine was stopped when detecting a target. Resume it after a few frames being analyzed at the
# same location, as the previous object might still be there.
if not variables.pan_is_running:
resume_pan_timeout += 1
if resume_pan_timeout == 20: # this is less than 2 seconds, normally.
resume_pan_timeout = 0
variables.pan_is_running = True
scanner.PanCamera().start()
else:
# analysis was stopped because a target was detected. If the targeting is done, resume analysis.
sleep(0.05) # need more reactivity #sleep(0.25)
if not variables.targeting:
variables.analysis_is_running = True
if variables.preview == 'on':
elapsed_time = time() - starting_time
fps = frame_id / elapsed_time
cv2.putText(frame, "FPS: " + str(round(fps, 2)), (10, 50), font, 2, (0, 0, 0), 3)
try:
cv2.imshow("Image", frame) # display the video stream and detected objects.
except: #sometimes there's an error on an image, just skip it.
pass
key = cv2.waitKey(1)
if key == 27:
break
self.stream_thread_is_running = False
variables.pan_is_running = False
variables.analysis_is_running = False
scanner.valve.off()
scanner.pan_servo.angle = 90
scanner.tilt_servo.angle = 90
self.stream.release()
if variables.preview == 'on':
cv2.destroyAllWindows()
Popen(["ssh", f"{self.user}@{self.ip}", "sudo killall pigpiod"])
sleep(0.5)
self.exit()
########################################################
if __name__ == '__main__':
Scan().run()