forked from rathoresrikant/HacktoberFestContribute
-
Notifications
You must be signed in to change notification settings - Fork 0
/
coin change
44 lines (38 loc) · 1.36 KB
/
coin change
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/*
Given a value N, if we want to make change for N cents, and we have infinite supply of each of S = { S1, S2, .. , Sm} valued coins, how many ways can we make the change? The order of coins doesn’t matter.
For example, for N = 4 and S = {1,2,3}, there are four solutions: {1,1,1,1},{1,1,2},{2,2},{1,3}. So output should be 4. For N = 10 and S = {2, 5, 3, 6}, there are five solutions: {2,2,2,2,2}, {2,2,3,3}, {2,2,6}, {2,3,5} and {5,5}. So the output should be 5.
/*
// Recursive C program for
// coin change problem.
#include<stdio.h>
// Returns the count of ways we can
// sum S[0...m-1] coins to get sum n
int count( int S[], int m, int n )
{
// If n is 0 then there is 1 solution
// (do not include any coin)
if (n == 0)
return 1;
// If n is less than 0 then no
// solution exists
if (n < 0)
return 0;
// If there are no coins and n
// is greater than 0, then no
// solution exist
if (m <=0 && n >= 1)
return 0;
// count is sum of solutions (i)
// including S[m-1] (ii) excluding S[m-1]
return count( S, m - 1, n ) + count( S, m, n-S[m-1] );
}
// Driver program to test above function
int main()
{
int i, j;
int arr[] = {1, 2, 3};
int m = sizeof(arr)/sizeof(arr[0]);
printf("%d ", count(arr, m, 4));
getchar();
return 0;
}