forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglpk_interface.cc
996 lines (905 loc) · 34.7 KB
/
glpk_interface.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#if defined(USE_GLPK)
#include <cmath>
#include <cstddef>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/strings/str_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/hash.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/timer.h"
#include "ortools/linear_solver/linear_solver.h"
extern "C" {
#include "glpk.h"
}
namespace operations_research {
// Class to store information gathered in the callback
class GLPKInformation {
public:
explicit GLPKInformation(bool maximize) : num_all_nodes_(0) {
ResetBestObjectiveBound(maximize);
}
void Reset(bool maximize) {
num_all_nodes_ = 0;
ResetBestObjectiveBound(maximize);
}
void ResetBestObjectiveBound(bool maximize) {
if (maximize) {
best_objective_bound_ = std::numeric_limits<double>::infinity();
} else {
best_objective_bound_ = -std::numeric_limits<double>::infinity();
}
}
int num_all_nodes_;
double best_objective_bound_;
};
// Function to be called in the GLPK callback
void GLPKGatherInformationCallback(glp_tree* tree, void* info) {
CHECK(tree != nullptr);
CHECK(info != nullptr);
GLPKInformation* glpk_info = reinterpret_cast<GLPKInformation*>(info);
switch (glp_ios_reason(tree)) {
// The best bound and the number of nodes change only when GLPK
// branches, generates cuts or finds an integer solution.
case GLP_ISELECT:
case GLP_IROWGEN:
case GLP_IBINGO: {
// Get total number of nodes
glp_ios_tree_size(tree, nullptr, nullptr, &glpk_info->num_all_nodes_);
// Get best bound
int node_id = glp_ios_best_node(tree);
if (node_id > 0) {
glpk_info->best_objective_bound_ = glp_ios_node_bound(tree, node_id);
}
break;
}
default:
break;
}
}
// ----- GLPK Solver -----
namespace {
// GLPK indexes its variables and constraints starting at 1.
int MPSolverIndexToGlpkIndex(int index) { return index + 1; }
} // namespace
class GLPKInterface : public MPSolverInterface {
public:
// Constructor that takes a name for the underlying glpk solver.
GLPKInterface(MPSolver* const solver, bool mip);
~GLPKInterface() override;
// Sets the optimization direction (min/max).
void SetOptimizationDirection(bool maximize) override;
// ----- Solve -----
// Solve the problem using the parameter values specified.
MPSolver::ResultStatus Solve(const MPSolverParameters& param) override;
// ----- Model modifications and extraction -----
// Resets extracted model
void Reset() override;
// Modify bounds.
void SetVariableBounds(int mpsolver_var_index, double lb, double ub) override;
void SetVariableInteger(int mpsolver_var_index, bool integer) override;
void SetConstraintBounds(int mpsolver_constraint_index, double lb,
double ub) override;
// Add Constraint incrementally.
void AddRowConstraint(MPConstraint* const ct) override;
// Add variable incrementally.
void AddVariable(MPVariable* const var) override;
// Change a coefficient in a constraint.
void SetCoefficient(MPConstraint* const constraint,
const MPVariable* const variable, double new_value,
double old_value) override;
// Clear a constraint from all its terms.
void ClearConstraint(MPConstraint* const constraint) override;
// Change a coefficient in the linear objective
void SetObjectiveCoefficient(const MPVariable* const variable,
double coefficient) override;
// Change the constant term in the linear objective.
void SetObjectiveOffset(double value) override;
// Clear the objective from all its terms.
void ClearObjective() override;
// ------ Query statistics on the solution and the solve ------
// Number of simplex iterations
int64 iterations() const override;
// Number of branch-and-bound nodes. Only available for discrete problems.
int64 nodes() const override;
// Best objective bound. Only available for discrete problems.
double best_objective_bound() const override;
// Returns the basis status of a row.
MPSolver::BasisStatus row_status(int constraint_index) const override;
// Returns the basis status of a column.
MPSolver::BasisStatus column_status(int variable_index) const override;
// Checks whether a feasible solution exists.
bool CheckSolutionExists() const override;
// Checks whether information on the best objective bound exists.
bool CheckBestObjectiveBoundExists() const override;
// ----- Misc -----
// Query problem type.
bool IsContinuous() const override { return IsLP(); }
bool IsLP() const override { return !mip_; }
bool IsMIP() const override { return mip_; }
void ExtractNewVariables() override;
void ExtractNewConstraints() override;
void ExtractObjective() override;
std::string SolverVersion() const override {
return absl::StrFormat("GLPK %s", glp_version());
}
void* underlying_solver() override { return reinterpret_cast<void*>(lp_); }
double ComputeExactConditionNumber() const override;
private:
// Configure the solver's parameters.
void ConfigureGLPKParameters(const MPSolverParameters& param);
// Set all parameters in the underlying solver.
void SetParameters(const MPSolverParameters& param) override;
// Set each parameter in the underlying solver.
void SetRelativeMipGap(double value) override;
void SetPrimalTolerance(double value) override;
void SetDualTolerance(double value) override;
void SetPresolveMode(int value) override;
void SetScalingMode(int value) override;
void SetLpAlgorithm(int value) override;
void ExtractOldConstraints();
void ExtractOneConstraint(MPConstraint* const constraint, int* const indices,
double* const coefs);
// Transforms basis status from GLPK integer code to MPSolver::BasisStatus.
MPSolver::BasisStatus TransformGLPKBasisStatus(int glpk_basis_status) const;
// Computes the L1-norm of the current scaled basis.
// The L1-norm |A| is defined as max_j sum_i |a_ij|
// This method is available only for continuous problems.
double ComputeScaledBasisL1Norm(int num_rows, int num_cols,
double* row_scaling_factor,
double* column_scaling_factor) const;
// Computes the L1-norm of the inverse of the current scaled
// basis.
// This method is available only for continuous problems.
double ComputeInverseScaledBasisL1Norm(int num_rows, int num_cols,
double* row_scaling_factor,
double* column_scaling_factor) const;
glp_prob* lp_;
bool mip_;
// Parameters
glp_smcp lp_param_;
glp_iocp mip_param_;
// For the callback
std::unique_ptr<GLPKInformation> mip_callback_info_;
};
// Creates a LP/MIP instance with the specified name and minimization objective.
GLPKInterface::GLPKInterface(MPSolver* const solver, bool mip)
: MPSolverInterface(solver), lp_(nullptr), mip_(mip) {
lp_ = glp_create_prob();
glp_set_prob_name(lp_, solver_->name_.c_str());
glp_set_obj_dir(lp_, GLP_MIN);
mip_callback_info_ = absl::make_unique<GLPKInformation>(maximize_);
}
// Frees the LP memory allocations.
GLPKInterface::~GLPKInterface() {
CHECK(lp_ != nullptr);
glp_delete_prob(lp_);
lp_ = nullptr;
}
void GLPKInterface::Reset() {
CHECK(lp_ != nullptr);
glp_delete_prob(lp_);
lp_ = glp_create_prob();
glp_set_prob_name(lp_, solver_->name_.c_str());
glp_set_obj_dir(lp_, maximize_ ? GLP_MAX : GLP_MIN);
ResetExtractionInformation();
}
// ------ Model modifications and extraction -----
// Not cached
void GLPKInterface::SetOptimizationDirection(bool maximize) {
InvalidateSolutionSynchronization();
glp_set_obj_dir(lp_, maximize ? GLP_MAX : GLP_MIN);
}
void GLPKInterface::SetVariableBounds(int mpsolver_var_index, double lb,
double ub) {
InvalidateSolutionSynchronization();
if (!variable_is_extracted(mpsolver_var_index)) {
sync_status_ = MUST_RELOAD;
return;
}
// Not cached if the variable has been extracted.
DCHECK(lp_ != nullptr);
const double infinity = solver_->infinity();
const int glpk_var_index = MPSolverIndexToGlpkIndex(mpsolver_var_index);
if (lb != -infinity) {
if (ub != infinity) {
if (lb == ub) {
glp_set_col_bnds(lp_, glpk_var_index, GLP_FX, lb, ub);
} else {
glp_set_col_bnds(lp_, glpk_var_index, GLP_DB, lb, ub);
}
} else {
glp_set_col_bnds(lp_, glpk_var_index, GLP_LO, lb, 0.0);
}
} else if (ub != infinity) {
glp_set_col_bnds(lp_, glpk_var_index, GLP_UP, 0.0, ub);
} else {
glp_set_col_bnds(lp_, glpk_var_index, GLP_FR, 0.0, 0.0);
}
}
void GLPKInterface::SetVariableInteger(int mpsolver_var_index, bool integer) {
InvalidateSolutionSynchronization();
if (mip_) {
if (variable_is_extracted(mpsolver_var_index)) {
// Not cached if the variable has been extracted.
glp_set_col_kind(lp_, MPSolverIndexToGlpkIndex(mpsolver_var_index),
integer ? GLP_IV : GLP_CV);
} else {
sync_status_ = MUST_RELOAD;
}
}
}
void GLPKInterface::SetConstraintBounds(int mpsolver_constraint_index,
double lb, double ub) {
InvalidateSolutionSynchronization();
if (!constraint_is_extracted(mpsolver_constraint_index)) {
sync_status_ = MUST_RELOAD;
return;
}
// Not cached if the row has been extracted
const int glpk_constraint_index =
MPSolverIndexToGlpkIndex(mpsolver_constraint_index);
DCHECK(lp_ != nullptr);
const double infinity = solver_->infinity();
if (lb != -infinity) {
if (ub != infinity) {
if (lb == ub) {
glp_set_row_bnds(lp_, glpk_constraint_index, GLP_FX, lb, ub);
} else {
glp_set_row_bnds(lp_, glpk_constraint_index, GLP_DB, lb, ub);
}
} else {
glp_set_row_bnds(lp_, glpk_constraint_index, GLP_LO, lb, 0.0);
}
} else if (ub != infinity) {
glp_set_row_bnds(lp_, glpk_constraint_index, GLP_UP, 0.0, ub);
} else {
glp_set_row_bnds(lp_, glpk_constraint_index, GLP_FR, 0.0, 0.0);
}
}
void GLPKInterface::SetCoefficient(MPConstraint* const constraint,
const MPVariable* const variable,
double new_value, double old_value) {
InvalidateSolutionSynchronization();
// GLPK does not allow to modify one coefficient at a time, so we
// extract the whole constraint again, if it has been extracted
// already and if it does not contain new variables. Otherwise, we
// cache the modification.
if (constraint_is_extracted(constraint->index()) &&
(sync_status_ == MODEL_SYNCHRONIZED ||
!constraint->ContainsNewVariables())) {
const int size = constraint->coefficients_.size();
std::unique_ptr<int[]> indices(new int[size + 1]);
std::unique_ptr<double[]> coefs(new double[size + 1]);
ExtractOneConstraint(constraint, indices.get(), coefs.get());
}
}
// Not cached
void GLPKInterface::ClearConstraint(MPConstraint* const constraint) {
InvalidateSolutionSynchronization();
// Constraint may have not been extracted yet.
if (constraint_is_extracted(constraint->index())) {
glp_set_mat_row(lp_, MPSolverIndexToGlpkIndex(constraint->index()), 0,
nullptr, nullptr);
}
}
// Cached
void GLPKInterface::SetObjectiveCoefficient(const MPVariable* const variable,
double coefficient) {
sync_status_ = MUST_RELOAD;
}
// Cached
void GLPKInterface::SetObjectiveOffset(double value) {
sync_status_ = MUST_RELOAD;
}
// Clear objective of all its terms (linear)
void GLPKInterface::ClearObjective() {
InvalidateSolutionSynchronization();
for (const auto& entry : solver_->objective_->coefficients_) {
const int mpsolver_var_index = entry.first->index();
// Variable may have not been extracted yet.
if (!variable_is_extracted(mpsolver_var_index)) {
DCHECK_NE(MODEL_SYNCHRONIZED, sync_status_);
} else {
glp_set_obj_coef(lp_, MPSolverIndexToGlpkIndex(mpsolver_var_index), 0.0);
}
}
// Constant term.
glp_set_obj_coef(lp_, 0, 0.0);
}
void GLPKInterface::AddRowConstraint(MPConstraint* const ct) {
sync_status_ = MUST_RELOAD;
}
void GLPKInterface::AddVariable(MPVariable* const var) {
sync_status_ = MUST_RELOAD;
}
// Define new variables and add them to existing constraints.
void GLPKInterface::ExtractNewVariables() {
int total_num_vars = solver_->variables_.size();
if (total_num_vars > last_variable_index_) {
glp_add_cols(lp_, total_num_vars - last_variable_index_);
for (int j = last_variable_index_; j < solver_->variables_.size(); ++j) {
MPVariable* const var = solver_->variables_[j];
set_variable_as_extracted(j, true);
if (!var->name().empty()) {
glp_set_col_name(lp_, MPSolverIndexToGlpkIndex(j), var->name().c_str());
}
SetVariableBounds(/*mpsolver_var_index=*/j, var->lb(), var->ub());
SetVariableInteger(/*mpsolver_var_index=*/j, var->integer());
// The true objective coefficient will be set later in ExtractObjective.
double tmp_obj_coef = 0.0;
glp_set_obj_coef(lp_, MPSolverIndexToGlpkIndex(j), tmp_obj_coef);
}
// Add new variables to the existing constraints.
ExtractOldConstraints();
}
}
// Extract again existing constraints if they contain new variables.
void GLPKInterface::ExtractOldConstraints() {
const int max_constraint_size =
solver_->ComputeMaxConstraintSize(0, last_constraint_index_);
// The first entry in the following arrays is dummy, to be
// consistent with glpk API.
std::unique_ptr<int[]> indices(new int[max_constraint_size + 1]);
std::unique_ptr<double[]> coefs(new double[max_constraint_size + 1]);
for (int i = 0; i < last_constraint_index_; ++i) {
MPConstraint* const ct = solver_->constraints_[i];
DCHECK(constraint_is_extracted(i));
const int size = ct->coefficients_.size();
if (size == 0) {
continue;
}
// Update the constraint's coefficients if it contains new variables.
if (ct->ContainsNewVariables()) {
ExtractOneConstraint(ct, indices.get(), coefs.get());
}
}
}
// Extract one constraint. Arrays indices and coefs must be
// preallocated to have enough space to contain the constraint's
// coefficients.
void GLPKInterface::ExtractOneConstraint(MPConstraint* const constraint,
int* const indices,
double* const coefs) {
// GLPK convention is to start indexing at 1.
int k = 1;
for (const auto& entry : constraint->coefficients_) {
DCHECK(variable_is_extracted(entry.first->index()));
indices[k] = MPSolverIndexToGlpkIndex(entry.first->index());
coefs[k] = entry.second;
++k;
}
glp_set_mat_row(lp_, MPSolverIndexToGlpkIndex(constraint->index()), k - 1,
indices, coefs);
}
// Define new constraints on old and new variables.
void GLPKInterface::ExtractNewConstraints() {
int total_num_rows = solver_->constraints_.size();
if (last_constraint_index_ < total_num_rows) {
// Define new constraints
glp_add_rows(lp_, total_num_rows - last_constraint_index_);
int num_coefs = 0;
for (int i = last_constraint_index_; i < total_num_rows; ++i) {
MPConstraint* ct = solver_->constraints_[i];
set_constraint_as_extracted(i, true);
if (ct->name().empty()) {
glp_set_row_name(lp_, MPSolverIndexToGlpkIndex(i),
absl::StrFormat("ct_%i", i).c_str());
} else {
glp_set_row_name(lp_, MPSolverIndexToGlpkIndex(i), ct->name().c_str());
}
// All constraints are set to be of the type <= limit_ .
SetConstraintBounds(/*mpsolver_constraint_index=*/i, ct->lb(), ct->ub());
num_coefs += ct->coefficients_.size();
}
// Fill new constraints with coefficients
if (last_variable_index_ == 0 && last_constraint_index_ == 0) {
// Faster extraction when nothing has been extracted yet: build
// and load whole matrix at once instead of constructing rows
// separately.
// The first entry in the following arrays is dummy, to be
// consistent with glpk API.
std::unique_ptr<int[]> variable_indices(new int[num_coefs + 1]);
std::unique_ptr<int[]> constraint_indices(new int[num_coefs + 1]);
std::unique_ptr<double[]> coefs(new double[num_coefs + 1]);
int k = 1;
for (int i = 0; i < solver_->constraints_.size(); ++i) {
MPConstraint* ct = solver_->constraints_[i];
for (const auto& entry : ct->coefficients_) {
DCHECK(variable_is_extracted(entry.first->index()));
constraint_indices[k] = MPSolverIndexToGlpkIndex(ct->index());
variable_indices[k] = MPSolverIndexToGlpkIndex(entry.first->index());
coefs[k] = entry.second;
++k;
}
}
CHECK_EQ(num_coefs + 1, k);
glp_load_matrix(lp_, num_coefs, constraint_indices.get(),
variable_indices.get(), coefs.get());
} else {
// Build each new row separately.
int max_constraint_size = solver_->ComputeMaxConstraintSize(
last_constraint_index_, total_num_rows);
// The first entry in the following arrays is dummy, to be
// consistent with glpk API.
std::unique_ptr<int[]> indices(new int[max_constraint_size + 1]);
std::unique_ptr<double[]> coefs(new double[max_constraint_size + 1]);
for (int i = last_constraint_index_; i < total_num_rows; i++) {
ExtractOneConstraint(solver_->constraints_[i], indices.get(),
coefs.get());
}
}
}
}
void GLPKInterface::ExtractObjective() {
// Linear objective: set objective coefficients for all variables
// (some might have been modified).
for (const auto& entry : solver_->objective_->coefficients_) {
glp_set_obj_coef(lp_, MPSolverIndexToGlpkIndex(entry.first->index()),
entry.second);
}
// Constant term.
glp_set_obj_coef(lp_, 0, solver_->Objective().offset());
}
// Solve the problem using the parameter values specified.
MPSolver::ResultStatus GLPKInterface::Solve(const MPSolverParameters& param) {
WallTimer timer;
timer.Start();
// Note that GLPK provides incrementality for LP but not for MIP.
if (param.GetIntegerParam(MPSolverParameters::INCREMENTALITY) ==
MPSolverParameters::INCREMENTALITY_OFF) {
Reset();
}
// Set log level.
if (quiet_) {
glp_term_out(GLP_OFF);
} else {
glp_term_out(GLP_ON);
}
ExtractModel();
VLOG(1) << absl::StrFormat("Model built in %.3f seconds.", timer.Get());
// Configure parameters at every solve, even when the model has not
// been changed, in case some of the parameters such as the time
// limit have been changed since the last solve.
ConfigureGLPKParameters(param);
// Solve
timer.Restart();
int solver_status = glp_simplex(lp_, &lp_param_);
if (mip_) {
// glp_intopt requires to solve the root LP separately.
// If the root LP was solved successfully, solve the MIP.
if (solver_status == 0) {
solver_status = glp_intopt(lp_, &mip_param_);
} else {
// Something abnormal occurred during the root LP solve. It is
// highly unlikely that an integer feasible solution is
// available at this point, so we don't put any effort in trying
// to recover it.
result_status_ = MPSolver::ABNORMAL;
if (solver_status == GLP_ETMLIM) {
result_status_ = MPSolver::NOT_SOLVED;
}
sync_status_ = SOLUTION_SYNCHRONIZED;
return result_status_;
}
}
VLOG(1) << absl::StrFormat("GLPK Status: %i (time spent: %.3f seconds).",
solver_status, timer.Get());
// Get the results.
if (mip_) {
objective_value_ = glp_mip_obj_val(lp_);
} else {
objective_value_ = glp_get_obj_val(lp_);
}
VLOG(1) << "objective=" << objective_value_;
for (int i = 0; i < solver_->variables_.size(); ++i) {
MPVariable* const var = solver_->variables_[i];
double val;
if (mip_) {
val = glp_mip_col_val(lp_, MPSolverIndexToGlpkIndex(i));
} else {
val = glp_get_col_prim(lp_, MPSolverIndexToGlpkIndex(i));
}
var->set_solution_value(val);
VLOG(3) << var->name() << ": value =" << val;
if (!mip_) {
double reduced_cost;
reduced_cost = glp_get_col_dual(lp_, MPSolverIndexToGlpkIndex(i));
var->set_reduced_cost(reduced_cost);
VLOG(4) << var->name() << ": reduced cost = " << reduced_cost;
}
}
for (int i = 0; i < solver_->constraints_.size(); ++i) {
MPConstraint* const ct = solver_->constraints_[i];
if (!mip_) {
const double dual_value =
glp_get_row_dual(lp_, MPSolverIndexToGlpkIndex(i));
ct->set_dual_value(dual_value);
VLOG(4) << "row " << MPSolverIndexToGlpkIndex(i)
<< ": dual value = " << dual_value;
}
}
// Check the status: optimal, infeasible, etc.
if (mip_) {
int tmp_status = glp_mip_status(lp_);
VLOG(1) << "GLPK result status: " << tmp_status;
if (tmp_status == GLP_OPT) {
result_status_ = MPSolver::OPTIMAL;
} else if (tmp_status == GLP_FEAS) {
result_status_ = MPSolver::FEASIBLE;
} else if (tmp_status == GLP_NOFEAS) {
// For infeasible problems, GLPK actually seems to return
// GLP_UNDEF. So this is never (?) reached. Return infeasible
// in case GLPK returns a correct status in future versions.
result_status_ = MPSolver::INFEASIBLE;
} else if (solver_status == GLP_ETMLIM) {
result_status_ = MPSolver::NOT_SOLVED;
} else {
result_status_ = MPSolver::ABNORMAL;
// GLPK does not have a status code for unbounded MIP models, so
// we return an abnormal status instead.
}
} else {
int tmp_status = glp_get_status(lp_);
VLOG(1) << "GLPK result status: " << tmp_status;
if (tmp_status == GLP_OPT) {
result_status_ = MPSolver::OPTIMAL;
} else if (tmp_status == GLP_FEAS) {
result_status_ = MPSolver::FEASIBLE;
} else if (tmp_status == GLP_NOFEAS || tmp_status == GLP_INFEAS) {
// For infeasible problems, GLPK actually seems to return
// GLP_UNDEF. So this is never (?) reached. Return infeasible
// in case GLPK returns a correct status in future versions.
result_status_ = MPSolver::INFEASIBLE;
} else if (tmp_status == GLP_UNBND) {
// For unbounded problems, GLPK actually seems to return
// GLP_UNDEF. So this is never (?) reached. Return unbounded
// in case GLPK returns a correct status in future versions.
result_status_ = MPSolver::UNBOUNDED;
} else if (solver_status == GLP_ETMLIM) {
result_status_ = MPSolver::NOT_SOLVED;
} else {
result_status_ = MPSolver::ABNORMAL;
}
}
sync_status_ = SOLUTION_SYNCHRONIZED;
return result_status_;
}
MPSolver::BasisStatus GLPKInterface::TransformGLPKBasisStatus(
int glpk_basis_status) const {
switch (glpk_basis_status) {
case GLP_BS:
return MPSolver::BASIC;
case GLP_NL:
return MPSolver::AT_LOWER_BOUND;
case GLP_NU:
return MPSolver::AT_UPPER_BOUND;
case GLP_NF:
return MPSolver::FREE;
case GLP_NS:
return MPSolver::FIXED_VALUE;
default:
LOG(FATAL) << "Unknown GLPK basis status";
return MPSolver::FREE;
}
}
// ------ Query statistics on the solution and the solve ------
int64 GLPKInterface::iterations() const {
#if GLP_MAJOR_VERSION == 4 && GLP_MINOR_VERSION < 49
if (!mip_ && CheckSolutionIsSynchronized()) {
return lpx_get_int_parm(lp_, LPX_K_ITCNT);
}
#elif GLP_MAJOR_VERSION == 4 && GLP_MINOR_VERSION >= 53
if (!mip_ && CheckSolutionIsSynchronized()) {
return glp_get_it_cnt(lp_);
}
#endif
LOG(WARNING) << "Total number of iterations is not available";
return kUnknownNumberOfIterations;
}
int64 GLPKInterface::nodes() const {
if (mip_) {
if (!CheckSolutionIsSynchronized()) return kUnknownNumberOfNodes;
return mip_callback_info_->num_all_nodes_;
} else {
LOG(DFATAL) << "Number of nodes only available for discrete problems";
return kUnknownNumberOfNodes;
}
}
double GLPKInterface::best_objective_bound() const {
if (mip_) {
if (!CheckSolutionIsSynchronized() || !CheckBestObjectiveBoundExists()) {
return trivial_worst_objective_bound();
}
if (solver_->variables_.empty() && solver_->constraints_.empty()) {
// Special case for empty model.
return solver_->Objective().offset();
} else {
return mip_callback_info_->best_objective_bound_;
}
} else {
LOG(DFATAL) << "Best objective bound only available for discrete problems";
return trivial_worst_objective_bound();
}
}
MPSolver::BasisStatus GLPKInterface::row_status(int constraint_index) const {
DCHECK_GE(constraint_index, 0);
DCHECK_LT(constraint_index, last_constraint_index_);
const int glpk_basis_status =
glp_get_row_stat(lp_, MPSolverIndexToGlpkIndex(constraint_index));
return TransformGLPKBasisStatus(glpk_basis_status);
}
MPSolver::BasisStatus GLPKInterface::column_status(int variable_index) const {
DCHECK_GE(variable_index, 0);
DCHECK_LT(variable_index, last_variable_index_);
const int glpk_basis_status =
glp_get_col_stat(lp_, MPSolverIndexToGlpkIndex(variable_index));
return TransformGLPKBasisStatus(glpk_basis_status);
}
bool GLPKInterface::CheckSolutionExists() const {
if (result_status_ == MPSolver::ABNORMAL) {
LOG(WARNING) << "Ignoring ABNORMAL status from GLPK: This status may or may"
<< " not indicate that a solution exists.";
return true;
} else {
// Call default implementation
return MPSolverInterface::CheckSolutionExists();
}
}
bool GLPKInterface::CheckBestObjectiveBoundExists() const {
if (result_status_ == MPSolver::ABNORMAL) {
LOG(WARNING) << "Ignoring ABNORMAL status from GLPK: This status may or may"
<< " not indicate that information is available on the best"
<< " objective bound.";
return true;
} else {
// Call default implementation
return MPSolverInterface::CheckBestObjectiveBoundExists();
}
}
double GLPKInterface::ComputeExactConditionNumber() const {
if (!IsContinuous()) {
// TODO(user): support MIP.
LOG(DFATAL) << "ComputeExactConditionNumber not implemented for"
<< " GLPK_MIXED_INTEGER_PROGRAMMING";
return 0.0;
}
if (!CheckSolutionIsSynchronized()) return 0.0;
// Simplex is the only LP algorithm supported in the wrapper for
// GLPK, so when a solution exists, a basis exists.
CheckSolutionExists();
const int num_rows = glp_get_num_rows(lp_);
const int num_cols = glp_get_num_cols(lp_);
// GLPK indexes everything starting from 1 instead of 0.
std::unique_ptr<double[]> row_scaling_factor(new double[num_rows + 1]);
std::unique_ptr<double[]> column_scaling_factor(new double[num_cols + 1]);
for (int row = 1; row <= num_rows; ++row) {
row_scaling_factor[row] = glp_get_rii(lp_, row);
}
for (int col = 1; col <= num_cols; ++col) {
column_scaling_factor[col] = glp_get_sjj(lp_, col);
}
return ComputeInverseScaledBasisL1Norm(num_rows, num_cols,
row_scaling_factor.get(),
column_scaling_factor.get()) *
ComputeScaledBasisL1Norm(num_rows, num_cols, row_scaling_factor.get(),
column_scaling_factor.get());
}
double GLPKInterface::ComputeScaledBasisL1Norm(
int num_rows, int num_cols, double* row_scaling_factor,
double* column_scaling_factor) const {
double norm = 0.0;
std::unique_ptr<double[]> values(new double[num_rows + 1]);
std::unique_ptr<int[]> indices(new int[num_rows + 1]);
for (int col = 1; col <= num_cols; ++col) {
const int glpk_basis_status = glp_get_col_stat(lp_, col);
// Take into account only basic columns.
if (glpk_basis_status == GLP_BS) {
// Compute L1-norm of column 'col': sum_row |a_row,col|.
const int num_nz = glp_get_mat_col(lp_, col, indices.get(), values.get());
double column_norm = 0.0;
for (int k = 1; k <= num_nz; k++) {
column_norm += fabs(values[k] * row_scaling_factor[indices[k]]);
}
column_norm *= fabs(column_scaling_factor[col]);
// Compute max_col column_norm
norm = std::max(norm, column_norm);
}
}
// Slack variables.
for (int row = 1; row <= num_rows; ++row) {
const int glpk_basis_status = glp_get_row_stat(lp_, row);
// Take into account only basic slack variables.
if (glpk_basis_status == GLP_BS) {
// Only one non-zero coefficient: +/- 1.0 in the corresponding
// row. The row has a scaling coefficient but the slack variable
// is never scaled on top of that.
const double column_norm = fabs(row_scaling_factor[row]);
// Compute max_col column_norm
norm = std::max(norm, column_norm);
}
}
return norm;
}
double GLPKInterface::ComputeInverseScaledBasisL1Norm(
int num_rows, int num_cols, double* row_scaling_factor,
double* column_scaling_factor) const {
// Compute the LU factorization if it doesn't exist yet.
if (!glp_bf_exists(lp_)) {
const int factorize_status = glp_factorize(lp_);
switch (factorize_status) {
case GLP_EBADB: {
LOG(FATAL) << "Not able to factorize: error GLP_EBADB.";
break;
}
case GLP_ESING: {
LOG(WARNING)
<< "Not able to factorize: "
<< "the basis matrix is singular within the working precision.";
return MPSolver::infinity();
}
case GLP_ECOND: {
LOG(WARNING)
<< "Not able to factorize: the basis matrix is ill-conditioned.";
return MPSolver::infinity();
}
default:
break;
}
}
std::unique_ptr<double[]> right_hand_side(new double[num_rows + 1]);
double norm = 0.0;
// Iteratively solve B x = e_k, where e_k is the kth unit vector.
// The result of this computation is the kth column of B^-1.
// glp_ftran works on original matrix. Scale input and result to
// obtain the norm of the kth column in the inverse scaled
// matrix. See glp_ftran documentation in glpapi12.c for how the
// scaling is done: inv(B'') = inv(SB) * inv(B) * inv(R) where:
// o B'' is the scaled basis
// o B is the original basis
// o R is the diagonal row scaling matrix
// o SB consists of the basic columns of the augmented column
// scaling matrix (auxiliary variables then structural variables):
// S~ = diag(inv(R) | S).
for (int k = 1; k <= num_rows; ++k) {
for (int row = 1; row <= num_rows; ++row) {
right_hand_side[row] = 0.0;
}
right_hand_side[k] = 1.0;
// Multiply input by inv(R).
for (int row = 1; row <= num_rows; ++row) {
right_hand_side[row] /= row_scaling_factor[row];
}
glp_ftran(lp_, right_hand_side.get());
// glp_ftran stores the result in the same vector where the right
// hand side was provided.
// Multiply result by inv(SB).
for (int row = 1; row <= num_rows; ++row) {
const int k = glp_get_bhead(lp_, row);
if (k <= num_rows) {
// Auxiliary variable.
right_hand_side[row] *= row_scaling_factor[k];
} else {
// Structural variable.
right_hand_side[row] /= column_scaling_factor[k - num_rows];
}
}
// Compute sum_row |vector_row|.
double column_norm = 0.0;
for (int row = 1; row <= num_rows; ++row) {
column_norm += fabs(right_hand_side[row]);
}
// Compute max_col column_norm
norm = std::max(norm, column_norm);
}
return norm;
}
// ------ Parameters ------
void GLPKInterface::ConfigureGLPKParameters(const MPSolverParameters& param) {
if (mip_) {
glp_init_iocp(&mip_param_);
// Time limit
if (solver_->time_limit()) {
VLOG(1) << "Setting time limit = " << solver_->time_limit() << " ms.";
mip_param_.tm_lim = solver_->time_limit();
}
// Initialize structures related to the callback.
mip_param_.cb_func = GLPKGatherInformationCallback;
mip_callback_info_->Reset(maximize_);
mip_param_.cb_info = mip_callback_info_.get();
// TODO(user): switch some cuts on? All cuts are off by default!?
}
// Configure LP parameters in all cases since they will be used to
// solve the root LP in the MIP case.
glp_init_smcp(&lp_param_);
// Time limit
if (solver_->time_limit()) {
VLOG(1) << "Setting time limit = " << solver_->time_limit() << " ms.";
lp_param_.tm_lim = solver_->time_limit();
}
// Should give a numerically better representation of the problem.
glp_scale_prob(lp_, GLP_SF_AUTO);
// Use advanced initial basis (options: standard / advanced / Bixby's).
glp_adv_basis(lp_, 0);
// Set parameters specified by the user.
SetParameters(param);
}
void GLPKInterface::SetParameters(const MPSolverParameters& param) {
SetCommonParameters(param);
if (mip_) {
SetMIPParameters(param);
}
}
void GLPKInterface::SetRelativeMipGap(double value) {
if (mip_) {
mip_param_.mip_gap = value;
} else {
LOG(WARNING) << "The relative MIP gap is only available "
<< "for discrete problems.";
}
}
void GLPKInterface::SetPrimalTolerance(double value) {
lp_param_.tol_bnd = value;
}
void GLPKInterface::SetDualTolerance(double value) { lp_param_.tol_dj = value; }
void GLPKInterface::SetPresolveMode(int value) {
switch (value) {
case MPSolverParameters::PRESOLVE_OFF: {
mip_param_.presolve = GLP_OFF;
lp_param_.presolve = GLP_OFF;
break;
}
case MPSolverParameters::PRESOLVE_ON: {
mip_param_.presolve = GLP_ON;
lp_param_.presolve = GLP_ON;
break;
}
default: {
SetIntegerParamToUnsupportedValue(MPSolverParameters::PRESOLVE, value);
}
}
}
void GLPKInterface::SetScalingMode(int value) {
SetUnsupportedIntegerParam(MPSolverParameters::SCALING);
}
void GLPKInterface::SetLpAlgorithm(int value) {
switch (value) {
case MPSolverParameters::DUAL: {
// Use dual, and if it fails, switch to primal.
lp_param_.meth = GLP_DUALP;
break;
}
case MPSolverParameters::PRIMAL: {
lp_param_.meth = GLP_PRIMAL;
break;
}
case MPSolverParameters::BARRIER:
default: {
SetIntegerParamToUnsupportedValue(MPSolverParameters::LP_ALGORITHM,
value);
}
}
}
MPSolverInterface* BuildGLPKInterface(bool mip, MPSolver* const solver) {
return new GLPKInterface(solver, mip);
}
} // namespace operations_research
#endif // #if defined(USE_GLPK)