forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LinearProgramming.java
132 lines (112 loc) · 5.11 KB
/
LinearProgramming.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
/**
* Linear programming example that shows how to use the API.
*
*/
public class LinearProgramming {
static {
System.loadLibrary("jniortools");
}
private static MPSolver createSolver(String solverType) {
try {
return new MPSolver(
"LinearProgrammingExample", MPSolver.OptimizationProblemType.valueOf(solverType));
} catch (java.lang.IllegalArgumentException e) {
return null;
}
}
private static void runLinearProgrammingExample(String solverType, boolean printModel) {
MPSolver solver = createSolver(solverType);
if (solver == null) {
System.out.println("Could not create solver " + solverType);
return;
}
double infinity = java.lang.Double.POSITIVE_INFINITY;
// x1, x2 and x3 are continuous non-negative variables.
MPVariable x1 = solver.makeNumVar(0.0, infinity, "x1");
MPVariable x2 = solver.makeNumVar(0.0, infinity, "x2");
MPVariable x3 = solver.makeNumVar(0.0, infinity, "x3");
// Maximize 10 * x1 + 6 * x2 + 4 * x3.
MPObjective objective = solver.objective();
objective.setCoefficient(x1, 10);
objective.setCoefficient(x2, 6);
objective.setCoefficient(x3, 4);
objective.setMaximization();
// x1 + x2 + x3 <= 100.
MPConstraint c0 = solver.makeConstraint(-infinity, 100.0);
c0.setCoefficient(x1, 1);
c0.setCoefficient(x2, 1);
c0.setCoefficient(x3, 1);
// 10 * x1 + 4 * x2 + 5 * x3 <= 600.
MPConstraint c1 = solver.makeConstraint(-infinity, 600.0);
c1.setCoefficient(x1, 10);
c1.setCoefficient(x2, 4);
c1.setCoefficient(x3, 5);
// 2 * x1 + 2 * x2 + 6 * x3 <= 300.
MPConstraint c2 = solver.makeConstraint(-infinity, 300.0);
c2.setCoefficient(x1, 2);
c2.setCoefficient(x2, 2);
c2.setCoefficient(x3, 6);
System.out.println("Number of variables = " + solver.numVariables());
System.out.println("Number of constraints = " + solver.numConstraints());
if (printModel) {
String model = solver.exportModelAsLpFormat();
System.out.println(model);
}
final MPSolver.ResultStatus resultStatus = solver.solve();
// Check that the problem has an optimal solution.
if (resultStatus != MPSolver.ResultStatus.OPTIMAL) {
System.err.println("The problem does not have an optimal solution!");
return;
}
// Verify that the solution satisfies all constraints (when using solvers
// others than GLOP_LINEAR_PROGRAMMING, this is highly recommended!).
if (!solver.verifySolution(/*tolerance=*/1e-7, /* log_errors= */ true)) {
System.err.println("The solution returned by the solver violated the"
+ " problem constraints by at least 1e-7");
return;
}
System.out.println("Problem solved in " + solver.wallTime() + " milliseconds");
// The objective value of the solution.
System.out.println("Optimal objective value = " + solver.objective().value());
// The value of each variable in the solution.
System.out.println("x1 = " + x1.solutionValue());
System.out.println("x2 = " + x2.solutionValue());
System.out.println("x3 = " + x3.solutionValue());
final double[] activities = solver.computeConstraintActivities();
System.out.println("Advanced usage:");
System.out.println("Problem solved in " + solver.iterations() + " iterations");
System.out.println("x1: reduced cost = " + x1.reducedCost());
System.out.println("x2: reduced cost = " + x2.reducedCost());
System.out.println("x3: reduced cost = " + x3.reducedCost());
System.out.println("c0: dual value = " + c0.dualValue());
System.out.println(" activity = " + activities[c0.index()]);
System.out.println("c1: dual value = " + c1.dualValue());
System.out.println(" activity = " + activities[c1.index()]);
System.out.println("c2: dual value = " + c2.dualValue());
System.out.println(" activity = " + activities[c2.index()]);
}
public static void main(String[] args) throws Exception {
System.out.println("---- Linear programming example with GLOP (recommended) ----");
runLinearProgrammingExample("GLOP_LINEAR_PROGRAMMING", true);
System.out.println("---- Linear programming example with CLP ----");
runLinearProgrammingExample("CLP_LINEAR_PROGRAMMING", false);
System.out.println("---- Linear programming example with GLPK ----");
runLinearProgrammingExample("GLPK_LINEAR_PROGRAMMING", false);
}
}