forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NetworkRoutingSat.cs
1148 lines (968 loc) · 39.4 KB
/
NetworkRoutingSat.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2019 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using Google.OrTools.Sat;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
/// <summary>
/// This model solves a multicommodity mono-routing problem with
/// capacity constraints and a max usage cost structure. This means
/// that given a graph with capacity on edges, and a set of demands
/// (source, destination, traffic), the goal is to assign one unique
/// path for each demand such that the cost is minimized. The cost is
/// defined by the maximum ratio utilization (traffic/capacity) for all
/// arcs. There is also a penalty associated with an traffic of an arc
/// being above the comfort zone, 85% of the capacity by default.
/// Please note that constraint programming is well suited here because
/// we cannot have multiple active paths for a single demand.
/// Otherwise, a approach based on a linear solver is a better match.
/// A random problem generator is also included.
/// </summary>
public class NetworkRoutingSat
{
private static int clients = 0; // Number of network clients nodes. If equal to zero, then all backbones nodes are also client nodes.
private static int backbones = 0; // "Number of backbone nodes"
private static int demands = 0; // "Number of network demands."
private static int trafficMin = 0; // "Min traffic of a demand."
private static int trafficMax = 0; // "Max traffic of a demand."
private static int minClientDegree = 0; //"Min number of connections from a client to the backbone."
private static int maxClientDegree = 0; //"Max number of connections from a client to the backbone."
private static int minBackboneDegree = 0; //"Min number of connections from a backbone node to the rest of the backbone nodes."
private static int maxBackboneDegree = 0; // "Max number of connections from a backbone node to the rest of the backbone nodes."
private static int maxCapacity = 0; //"Max traffic on any arc."
private static int fixedChargeCost = 0; //"Fixed charged cost when using an arc."
private static int seed = 0; //"Random seed"
private static double comfortZone = 0.85; // "Above this limit in 1/1000th, the link is said to be congested."
private static int extraHops = 6; // "When creating all paths for a demand, we look at paths with maximum length 'shortest path + extra_hops'"
private static int maxPaths = 1200; //"Max number of possible paths for a demand."
private static bool printModel = false; //"Print details of the model."
private static string parameters = ""; // "Sat parameters."
private const long kDisconnectedDistance = -1L;
static void Main(string[] args)
{
readArgs(args);
var builder = new NetworkRoutingDataBuilder();
var data = builder.BuildModelFromParameters(clients, backbones, demands, trafficMin, trafficMax,
minClientDegree, maxClientDegree, minBackboneDegree, maxBackboneDegree, maxCapacity, fixedChargeCost, seed);
var solver = new NetworkRoutingSolver();
solver.Init(data, extraHops, maxPaths);
var cost = solver.Solve();
Console.WriteLine($"Final cost = {cost}");
}
private static void readArgs(string[] args)
{
readInt(args, ref clients, nameof(clients));
readInt(args, ref backbones, nameof(backbones));
readInt(args, ref demands, nameof(demands));
readInt(args, ref trafficMin, nameof(trafficMin));
readInt(args, ref trafficMax, nameof(trafficMax));
readInt(args, ref minClientDegree, nameof(minClientDegree));
readInt(args, ref maxClientDegree, nameof(maxClientDegree));
readInt(args, ref minBackboneDegree, nameof(minBackboneDegree));
readInt(args, ref maxBackboneDegree, nameof(maxBackboneDegree));
readInt(args, ref maxCapacity, nameof(maxCapacity));
readInt(args, ref fixedChargeCost, nameof(fixedChargeCost));
readInt(args, ref seed, nameof(seed));
readDouble(args, ref comfortZone, nameof(comfortZone));
readInt(args, ref extraHops, nameof(extraHops));
readInt(args, ref maxPaths, nameof(maxPaths));
readBoolean(args, ref printModel, nameof(printModel));
readString(args, ref parameters, nameof(parameters));
}
private static void readDouble(string[] args, ref double setting, string arg)
{
var v = getArgValue(args, arg);
if (v.IsSet)
{
setting = Convert.ToDouble(v.Value);
}
}
private static void readInt(string[] args, ref int setting, string arg)
{
var v = getArgValue(args, arg);
if (v.IsSet)
{
setting = Convert.ToInt32(v.Value);
}
}
private static void readBoolean(string[] args, ref bool setting, string arg)
{
var v = getArgValue(args, arg);
if (v.IsSet)
{
setting = Convert.ToBoolean(v.Value);
}
}
private static void readString(string[] args, ref string setting, string arg)
{
var v = getArgValue(args, arg);
if (v.IsSet)
{
setting = v.Value;
}
}
private static (bool IsSet, string Value) getArgValue(string[] args, string arg)
{
string lookup = $"--{arg}=";
var item = args.FirstOrDefault(x => x.StartsWith(lookup));
if (string.IsNullOrEmpty(item))
{
return (false, string.Empty);
}
return (true, item.Replace(lookup, string.Empty));
}
/// <summary>
/// Contains problem data. It assumes capacities are symmetrical:
/// (capacity(i->j) == capacity(j->i)).
/// Demands are not symmetrical.
/// </summary>
public class NetworkRoutingData
{
private Dictionary<(int source, int destination), int> _arcs = new Dictionary<(int source, int destination), int>();
private Dictionary<(int node1, int node2), int> _demands = new Dictionary<(int node1, int node2), int>();
public int NumberOfNodes { get; set; } = -1;
public int NumberOfArcs
{
get { return _arcs.Count(); }
}
public int NumberOfDemands
{
get { return _demands.Count(); }
}
public int MaximumCapacity { get; set; } = -1;
public int FixedChargeCost { get; set; } = -1;
public string Name { get; set; } = string.Empty;
public void AddDemand(int source, int destination, int traffic)
{
var pair = (source, destination);
if(!_demands.ContainsKey(pair))
_demands.Add(pair, traffic);
}
public void AddArc(int node1, int node2, int capacity)
{
_arcs.Add((Math.Min(node1, node2), Math.Max(node1, node2)), capacity);
}
public int Demand(int source, int destination)
{
var pair = (source, destination);
if (_demands.TryGetValue(pair, out var demand))
return demand;
return 0;
}
public int Capacity(int node1, int node2)
{
var pair = (Math.Min(node1, node2), Math.Max(node1, node2));
if (_arcs.TryGetValue(pair, out var capacity))
return capacity;
return 0;
}
}
/// <summary>
/// Random generator of problem. This generator creates a random
/// problem. This problem uses a special topology. There are
/// 'numBackbones' nodes and 'numClients' nodes. if 'numClients' is
/// null, then all backbones nodes are also client nodes. All traffic
/// originates and terminates in client nodes. Each client node is
/// connected to 'minClientDegree' - 'maxClientDegree' backbone
/// nodes. Each backbone node is connected to 'minBackboneDegree' -
/// 'maxBackboneDegree' other backbone nodes. There are 'numDemands'
/// demands, with a traffic between 'trafficMin' and 'trafficMax'.
/// Each arc has a capacity of 'maxCapacity'. Using an arc incurs a
/// fixed cost of 'fixedChargeCost'.
/// </summary>
public class NetworkRoutingDataBuilder
{
private List<List<bool>> _network;
private List<int> _degrees;
private Random _random;
public NetworkRoutingData BuildModelFromParameters(int numClients, int numBackbones,
int numDemands, int trafficMin,
int trafficMax, int minClientDegree,
int maxClientDegree, int minBackboneDegree,
int maxBackboneDegree, int maxCapacity,
int fixedChargeCost, int seed)
{
Debug.Assert(numBackbones >= 1);
Debug.Assert(numClients >= 0);
Debug.Assert(numDemands >= 1);
Debug.Assert(numDemands <= (numClients == 0 ? numBackbones * numBackbones : numClients * numBackbones));
Debug.Assert(maxClientDegree >= minClientDegree);
Debug.Assert(maxBackboneDegree >= minBackboneDegree);
Debug.Assert(trafficMax >= 1);
Debug.Assert(trafficMax >= trafficMin);
Debug.Assert(trafficMin >= 1);
Debug.Assert(maxBackboneDegree >= 2);
Debug.Assert(maxClientDegree >= 2);
Debug.Assert(maxClientDegree <= numBackbones);
Debug.Assert(maxBackboneDegree <= numBackbones);
Debug.Assert(maxCapacity >= 1);
int size = numBackbones + numClients;
initData(size, seed);
buildGraph(numClients, numBackbones, minClientDegree, maxClientDegree, minBackboneDegree, maxBackboneDegree);
NetworkRoutingData data = new NetworkRoutingData();
createDemands(numClients, numBackbones, numDemands, trafficMin, trafficMax, data);
fillData(numClients, numBackbones, numDemands, trafficMin, trafficMax, minClientDegree, maxClientDegree,
minBackboneDegree, maxBackboneDegree, maxCapacity, fixedChargeCost, seed, data);
return data;
}
private void initData(int size, int seed)
{
_network = new List<List<bool>>(size);
for (int i = 0; i < size; i++)
{
_network.Add(new List<bool>(size));
for (int j = 0; j < size; j++)
{
_network[i].Add(false);
}
}
_degrees = new List<int>(size);
for (int i = 0; i < size; i++)
{
_degrees.Add(0);
}
_random = new Random(seed);
}
private void buildGraph(int numClients, int numBackbones, int minClientDegree,
int maxClientDegree, int minBackboneDegree, int maxBackboneDegree)
{
int size = numBackbones + numClients;
for (int i = 1; i < numBackbones; i++)
{
int j = randomUniform(i);
addEdge(i, j);
}
List<int> notFull = new List<int>();
HashSet<int> toComplete = new HashSet<int>();
for (int i = 0; i < numBackbones; i++)
{
if (_degrees[i] < minBackboneDegree)
{
toComplete.Add(i);
}
if (_degrees[i] < maxBackboneDegree)
{
notFull.Add(i);
}
}
while (toComplete.Any() && notFull.Count > 1)
{
int node1 = getNextToComplete(toComplete);
int node2 = node1;
while (node2 == node1 || _degrees[node2] >= maxBackboneDegree)
{
node2 = randomUniform(numBackbones);
}
addEdge(node1, node2);
if (_degrees[node1] >= minBackboneDegree)
{
toComplete.Remove(node1);
}
if (_degrees[node2] >= minBackboneDegree)
{
toComplete.Remove(node2);
}
if (_degrees[node1] >= maxBackboneDegree)
{
notFull.Remove(node1);
}
if (_degrees[node2] >= maxBackboneDegree)
{
notFull.Remove(node2);
}
}
// Then create the client nodes connected to the backbone nodes.
// If numClient is 0, then backbone nodes are also client nodes.
for (int i = numBackbones; i < size; i++)
{
int degree = randomInInterval(minClientDegree, maxClientDegree);
while (_degrees[i] < degree)
{
int j = randomUniform(numBackbones);
if (!_network[i][j])
{
addEdge(i, j);
}
}
}
}
private int getNextToComplete(HashSet<int> toComplete)
{
return toComplete.Last();
}
private void createDemands(int numClients, int numBackbones, int numDemands,
int trafficMin, int trafficMax, NetworkRoutingData data)
{
while (data.NumberOfDemands < numDemands)
{
int source = randomClient(numClients, numBackbones);
int dest = source;
while (dest == source)
{
dest = randomClient(numClients, numBackbones);
}
int traffic = randomInInterval(trafficMin, trafficMax);
data.AddDemand(source, dest, traffic);
}
}
private void fillData(int numClients, int numBackbones, int numDemands,
int trafficMin, int trafficMax, int minClientDegree,
int maxClientDegree, int minBackboneDegree,
int maxBackboneDegree, int maxCapacity,
int fixedChargeCost, int seed,
NetworkRoutingData data)
{
int size = numBackbones + numClients;
string name = $"mp_c{numClients}_b{numBackbones}_d{numDemands}.t{trafficMin}-{trafficMax}.cd{minClientDegree}-{maxClientDegree}.bd{minBackboneDegree}-{maxBackboneDegree}.mc{maxCapacity}.fc{fixedChargeCost}.s{seed}";
data.Name = name;
data.NumberOfNodes = size;
int numArcs = 0;
for (int i = 0; i < size - 1; i++)
{
for (int j = i + 1; j < size; j++)
{
if (_network[i][j])
{
data.AddArc(i, j, maxCapacity);
numArcs++;
}
}
}
data.MaximumCapacity = maxCapacity;
data.FixedChargeCost = fixedChargeCost;
}
private void addEdge(int i, int j)
{
_degrees[i]++;
_degrees[j]++;
_network[i][j] = true;
_network[j][i] = true;
}
private int randomInInterval(int intervalMin, int intervalMax)
{
var p = randomUniform(intervalMax - intervalMin + 1) + intervalMin;
return p;
}
private int randomClient(int numClients, int numBackbones)
{
var p = (numClients == 0)
? randomUniform(numBackbones)
: randomUniform(numClients) + numBackbones;
return p;
}
private int randomUniform(int max)
{
var r = _random.Next(max);
return r;
}
}
[DebuggerDisplay("Source {Source} Destination {Destination} Traffic {Traffic}")]
public struct Demand
{
public Demand(int source, int destination, int traffic)
{
Source = source;
Destination = destination;
Traffic = traffic;
}
public int Source { get; }
public int Destination { get; }
public int Traffic { get; }
}
public class NetworkRoutingSolver
{
private List<(long source, long destination, int arcId)> _arcsData = new List<(long source, long destination, int arcId)>();
private List<int> _arcCapacity = new List<int>();
private List<Demand> _demands = new List<Demand>();
private List<int> _allMinPathLengths = new List<int>();
private List<List<int>> _capacity;
private List<List<HashSet<int>>> _allPaths;
public int NumberOfNodes { get; private set; } = -1;
private int countArcs
{
get { return _arcsData.Count / 2; }
}
public void ComputeAllPathsForOneDemandAndOnePathLength(int demandIndex, int maxLength, int maxPaths)
{
// We search for paths of length exactly 'maxLength'.
CpModel cpModel = new CpModel();
var arcVars = new List<IntVar>();
var nodeVars = new List<IntVar>();
for (int i = 0; i < maxLength; i++)
{
nodeVars.Add(cpModel.NewIntVar(0, NumberOfNodes - 1, string.Empty));
}
for (int i = 0; i < maxLength - 1; i++)
{
arcVars.Add(cpModel.NewIntVar(-1, countArcs - 1, string.Empty));
}
var arcs = getArcsData();
for (int i = 0; i < maxLength - 1; i++)
{
var tmpVars = new List<IntVar>();
tmpVars.Add(nodeVars[i]);
tmpVars.Add(nodeVars[i + 1]);
tmpVars.Add(arcVars[i]);
var table = cpModel.AddAllowedAssignments(tmpVars, arcs);
}
var demand = _demands[demandIndex];
cpModel.Add(nodeVars[0] == demand.Source);
cpModel.Add(nodeVars[maxLength - 1] == demand.Destination);
cpModel.AddAllDifferent(arcVars);
cpModel.AddAllDifferent(nodeVars);
var solver = new CpSolver();
var solutionPrinter = new FeasibleSolutionChecker(demandIndex, ref _allPaths, maxLength, arcVars, maxPaths, nodeVars);
var status = solver.SearchAllSolutions(cpModel, solutionPrinter);
}
private long[,] getArcsData()
{
long[,] arcs = new long[_arcsData.Count, 3];
for (int i = 0; i < _arcsData.Count; i++)
{
var data = _arcsData[i];
arcs[i, 0] = data.source;
arcs[i, 1] = data.destination;
arcs[i, 2] = data.arcId;
}
return arcs;
}
public int ComputeAllPaths(int extraHops, int maxPaths)
{
int numPaths = 0;
for (int demandIndex = 0; demandIndex < _demands.Count; demandIndex++)
{
int minPathLength = _allMinPathLengths[demandIndex];
for (int maxLength = minPathLength + 1; maxLength <= minPathLength + extraHops+1; maxLength++)
{
ComputeAllPathsForOneDemandAndOnePathLength(demandIndex, maxLength, maxPaths);
if (_allPaths[demandIndex].Count >= maxPaths)
break;
}
numPaths += _allPaths[demandIndex].Count;
}
return numPaths;
}
public void AddArcData(long source, long destination, int arcId)
{
_arcsData.Add((source, destination, arcId));
}
public void InitArcInfo(NetworkRoutingData data)
{
int numArcs = data.NumberOfArcs;
_capacity = new List<List<int>>(NumberOfNodes);
for (int nodeIndex = 0; nodeIndex < NumberOfNodes; nodeIndex++)
{
_capacity.Add(new List<int>(NumberOfNodes));
for (int i = 0; i < NumberOfNodes; i++)
{
_capacity[nodeIndex].Add(0);
}
}
int arcId = 0;
for (int i = 0; i < NumberOfNodes - 1; i++)
{
for (int j = i + 1; j < NumberOfNodes; j++)
{
int capacity = data.Capacity(i, j);
if (capacity > 0)
{
AddArcData(i, j, arcId);
AddArcData(j, i, arcId);
arcId++;
_arcCapacity.Add(capacity);
_capacity[i][j] = capacity;
_capacity[j][i] = capacity;
if (printModel)
{
Console.WriteLine($"Arc {i} <-> {j} with capacity {capacity}");
}
}
}
}
Debug.Assert(arcId == numArcs);
}
public int InitDemandInfo(NetworkRoutingData data)
{
int numDemands = data.NumberOfDemands;
int totalDemand = 0;
for (int i = 0; i < NumberOfNodes; i++)
{
for (int j = 0; j < NumberOfNodes; j++)
{
int traffic = data.Demand(i, j);
if (traffic > 0)
{
_demands.Add(new Demand(i, j, traffic));
totalDemand += traffic;
}
}
}
Debug.Assert(numDemands == _demands.Count);
return totalDemand;
}
public long InitShortestPaths(NetworkRoutingData data)
{
int numDemands = data.NumberOfDemands;
long totalCumulatedTraffic = 0L;
_allMinPathLengths.Clear();
var paths = new List<int>();
for (int demandIndex = 0; demandIndex < numDemands; demandIndex++)
{
paths.Clear();
var demand = _demands[demandIndex];
var r = DijkstraShortestPath(NumberOfNodes, demand.Source, demand.Destination,
((int x, int y) p) => hasArc(p.x, p.y), kDisconnectedDistance, paths);
_allMinPathLengths.Add(paths.Count - 1);
var minPathLength = _allMinPathLengths[demandIndex];
totalCumulatedTraffic += minPathLength * demand.Traffic;
}
return totalCumulatedTraffic;
}
public int InitPaths(NetworkRoutingData data, int extraHops, int maxPaths)
{
var numDemands = data.NumberOfDemands;
Console.WriteLine("Computing all possible paths ");
Console.WriteLine($" - extra hops = {extraHops}");
Console.WriteLine($" - max paths per demand = {maxPaths}");
_allPaths =new List<List<HashSet<int>>>(numDemands);
var numPaths = ComputeAllPaths(extraHops, maxPaths);
for (int demandIndex = 0; demandIndex < numDemands; demandIndex++)
{
var demand = _demands[demandIndex];
Console.WriteLine($"Demand from {demand.Source} to {demand.Destination} with traffic {demand.Traffic}, amd {_allPaths[demandIndex].Count} possible paths.");
}
return numPaths;
}
public void Init(NetworkRoutingData data, int extraHops, int maxPaths)
{
Console.WriteLine($"Model {data.Name}");
NumberOfNodes = data.NumberOfNodes;
var numArcs = data.NumberOfArcs;
var numDemands = data.NumberOfDemands;
InitArcInfo(data);
var totalDemand = InitDemandInfo(data);
var totalAccumulatedTraffic = InitShortestPaths(data);
var numPaths = InitPaths(data, extraHops, maxPaths);
Console.WriteLine("Model created:");
Console.WriteLine($" - {NumberOfNodes} nodes");
Console.WriteLine($" - {numArcs} arcs");
Console.WriteLine($" - {numDemands} demands");
Console.WriteLine($" - a total traffic of {totalDemand}");
Console.WriteLine($" - a minimum cumulated traffic of {totalAccumulatedTraffic}");
Console.WriteLine($" - {numPaths} possible paths for all demands");
}
private long hasArc(int i, int j)
{
if (_capacity[i][j] > 0)
return 1;
else
return kDisconnectedDistance;
}
public long Solve()
{
Console.WriteLine("Solving model");
var numDemands = _demands.Count;
var numArcs = countArcs;
CpModel cpModel = new CpModel();
var pathVars = new List<List<IntVar>>(numDemands);
for (int demandIndex = 0; demandIndex < numDemands; demandIndex++)
{
pathVars.Add(new List<IntVar>());
for (int arc = 0; arc < numArcs; arc++)
{
pathVars[demandIndex].Add(cpModel.NewBoolVar(""));
}
long[,] tuples = new long[_allPaths[demandIndex].Count, numArcs];
int pathCount = 0;
foreach (var set in _allPaths[demandIndex])
{
foreach (var arc in set)
{
tuples[pathCount, arc] = 1;
}
pathCount++;
}
var pathCt = cpModel.AddAllowedAssignments(pathVars[demandIndex], tuples);
}
var trafficVars = new List<IntVar>(numArcs);
var normalizedTrafficVars = new List<IntVar>(numArcs);
var comfortableTrafficVars = new List<IntVar>(numArcs);
long maxNormalizedTraffic = 0;
for (int arcIndex = 0; arcIndex < numArcs; arcIndex++)
{
long sumOfTraffic = 0;
var vars = new List<IntVar>();
var traffics = new List<int>();
for (int i = 0; i < pathVars.Count; i++)
{
sumOfTraffic += _demands[i].Traffic;
vars.Add(pathVars[i][arcIndex]);
traffics.Add(_demands[i].Traffic);
}
var sum = LinearExpr.ScalProd(vars, traffics);
var trafficVar = cpModel.NewIntVar(0, sumOfTraffic, $"trafficVar{arcIndex}");
trafficVars.Add(trafficVar);
cpModel.Add(sum == trafficVar);
var capacity = _arcCapacity[arcIndex];
var scaledTraffic = cpModel.NewIntVar(0, sumOfTraffic * 1000, $"scaledTrafficVar{arcIndex}");
var scaledTrafficVar = trafficVar * 1000;
cpModel.Add(scaledTrafficVar == scaledTraffic);
var normalizedTraffic =
cpModel.NewIntVar(0, sumOfTraffic * 1000 / capacity, $"normalizedTraffic{arcIndex}");
maxNormalizedTraffic = Math.Max(maxNormalizedTraffic, sumOfTraffic * 1000 / capacity);
cpModel.AddDivisionEquality(normalizedTraffic, scaledTraffic, cpModel.NewConstant(capacity));
normalizedTrafficVars.Add(normalizedTraffic);
var comfort = cpModel.NewBoolVar($"comfort{arcIndex}");
var safeCapacity = (long)(capacity * comfortZone);
cpModel.Add(trafficVar > safeCapacity).OnlyEnforceIf(comfort);
cpModel.Add(trafficVar <=safeCapacity).OnlyEnforceIf(comfort.Not());
comfortableTrafficVars.Add(comfort);
}
var maxUsageCost = cpModel.NewIntVar(0, maxNormalizedTraffic, "maxUsageCost");
cpModel.AddMaxEquality(maxUsageCost, normalizedTrafficVars);
var obj = new List<IntVar>() {maxUsageCost};
obj.AddRange(comfortableTrafficVars);
cpModel.Minimize(LinearExpr.Sum(obj));
CpSolver solver = new CpSolver();
solver.StringParameters = parameters;
CpSolverStatus status = solver.SearchAllSolutions(cpModel,
new FeasibleSolutionChecker2(maxUsageCost, comfortableTrafficVars, trafficVars));
return (long)solver.ObjectiveValue;
}
}
private class DijkstraSP
{
private const long kInfinity = long.MaxValue / 2;
private readonly Func<(int, int), long> _graph;
private readonly int[] _predecessor;
private readonly List<Element> _elements;
private readonly AdjustablePriorityQueue<Element> _frontier;
private readonly List<int> _notVisited = new List<int>();
private readonly List<int> _addedToFrontier = new List<int>();
public DijkstraSP(int nodeCount, int startNode, Func<(int,int), long> graph, long disconnectedDistance)
{
NodeCount = nodeCount;
StartNode = startNode;
this._graph = graph;
DisconnectedDistance = disconnectedDistance;
_predecessor = new int[nodeCount];
_elements = new List<Element>(nodeCount);
_frontier = new AdjustablePriorityQueue<Element>();
}
public int NodeCount { get; }
public int StartNode { get; }
public long DisconnectedDistance { get; }
public bool ShortestPath(int endNode, List<int> nodes)
{
initialize();
bool found = false;
while (!_frontier.IsEmpty)
{
long distance;
int node = selectClosestNode(out distance);
if (distance == kInfinity)
{
found = false;
break;
}
else if (node == endNode)
{
found = true;
break;
}
update(node);
}
if (found)
{
findPath(endNode, nodes);
}
return found;
}
private void initialize()
{
for (int i = 0; i < NodeCount; i++)
{
_elements.Add(new Element {Node = i});
if (i == StartNode)
{
_predecessor[i] = -1;
_elements[i].Distance = 0;
_frontier.Add(_elements[i]);
}
else
{
_elements[i].Distance = kInfinity;
_predecessor[i] = StartNode;
_notVisited.Add(i);
}
}
}
private int selectClosestNode(out long distance)
{
var node = _frontier.Top().Node;
distance = _frontier.Top().Distance;
_frontier.Pop();
_notVisited.Remove(node);
_addedToFrontier.Remove(node);
return node;
}
private void update(int node)
{
foreach (var otherNode in _notVisited)
{
var graphNode = _graph((node, otherNode));
if (graphNode != DisconnectedDistance)
{
if (!_addedToFrontier.Contains(otherNode))
{
_frontier.Add(_elements[otherNode]);
_addedToFrontier.Add(otherNode);
}
var otherDistance = _elements[node].Distance + graphNode;
if (_elements[otherNode].Distance > otherDistance)
{
_elements[otherNode].Distance = otherDistance;
_frontier.NoteChangedPriority(_elements[otherNode]);
_predecessor[otherNode] = node;
}
}
}
}
private void findPath(int dest, List<int> nodes)
{
var j = dest;
nodes.Add(j);
while (_predecessor[j] != -1)
{
nodes.Add(_predecessor[j]);
j = _predecessor[j];
}
}
}
public static bool DijkstraShortestPath(int nodeCount, int startNode, int endNode, Func<(int, int), long> graph,
long disconnectedDistance, List<int> nodes)
{
DijkstraSP bf = new DijkstraSP(nodeCount, startNode, graph, disconnectedDistance);
return bf.ShortestPath(endNode, nodes);
}
[DebuggerDisplay("Node = {Node}, HeapIndex = {HeapIndex}, Distance = {Distance}")]
private class Element : IHasHeapIndex, IComparable<Element>
{
public int HeapIndex { get; set; } = -1;
public long Distance { get; set; } = 0;
public int Node { get; set; } = -1;
public int CompareTo(Element other)
{
if (this.Distance > other.Distance)
return -1;
if (this.Distance < other.Distance)
return 1;
return 0;
}
}
private class AdjustablePriorityQueue<T> where T: class, IHasHeapIndex, IComparable<T>
{
private readonly List<T> _elems = new List<T>();
public void Add(T val)
{
_elems.Add(val);
adjustUpwards(_elems.Count - 1);
}
public void Remove(T val)
{
var i = val.HeapIndex;
if (i == _elems.Count - 1)
{
_elems.RemoveAt(_elems.Count - 1);
return;
}
_elems[i] = _elems.Last();
_elems[i].HeapIndex = i;
_elems.RemoveAt(_elems.Count - 1);
NoteChangedPriority(_elems[i]);
}
public bool Contains(T val)
{
var i = val.HeapIndex;
if (i < 0 || i >= _elems.Count || _elems[i].CompareTo(val) != 0)
return false;
return true;
}
public T Top()
{
return _elems[0];
}
public void Pop()
{
Remove(Top());
}
public int Size()
{
return _elems.Count;
}
public bool IsEmpty
{
get { return !_elems.Any(); }
}
public void Clear()
{
_elems.Clear();
}
public void CheckValid()
{
for (int i = 0; i < _elems.Count; i++)
{
var leftChild = 1 + 2 * i;
if (leftChild < _elems.Count)
{
var compare = _elems[i].CompareTo(_elems[leftChild]);
Debug.Assert(compare >=0);
}
int rightChild = leftChild + 1;
if (rightChild < _elems.Count)
{
var compare = _elems[i].CompareTo(_elems[rightChild]);
Debug.Assert(compare >= 0);
}
}
}
public void NoteChangedPriority(T val)
{
if (_elems.Count == 0)