-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrive.py
150 lines (127 loc) · 4.59 KB
/
drive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#parsing command line arguments
import argparse
#decoding camera images
import base64
#for frametimestamp saving
from datetime import datetime
#reading and writing files
import os
#high level file operations
import shutil
#matrix math
import numpy as np
#real-time server
import socketio
#concurrent networking
import eventlet
#web server gateway interface
import eventlet.wsgi
#image manipulation
from PIL import Image
#web framework
from flask import Flask
#input output
from io import BytesIO
#load our saved model
import tflearn
from tflearn.layers.conv import conv_2d
from tflearn.layers.core import fully_connected, input_data, flatten
from tflearn.layers.normalization import batch_normalization
from tflearn.layers.estimator import regression
#helper class
import utils
#model
#model
# X_train=X_train.reshape([-1,66,200,3])
# Y_train=Y_train.reshape([-1,1])
#input layer
network=input_data(shape=[None,66,200,3], name='input')
#convolutional layers
network=conv_2d(network, 24, activation='elu', strides=2, filter_size=5)
# network=batch_normalization(network)
network=conv_2d(network, 36, activation='elu', strides=2, filter_size=5)
# network=batch_normalization(network)
network=conv_2d(network, 48, activation='elu', strides=2, filter_size=5)
# network=batch_normalization(network)
network=conv_2d(network, 64, activation='elu', filter_size=3)
# network=batch_normalization(network)
network=conv_2d(network, 64, activation='elu', filter_size=3)
# network=batch_normalization(network)
#fully connected layers
network=fully_connected(network, 100, activation='elu')
# network=batch_normalization(network)
network=fully_connected(network, 50, activation='elu')
# network=batch_normalization(network)
network=fully_connected(network, 10, activation='elu')
# network=batch_normalization(network)
network=fully_connected(network, 1)
network=regression(network,optimizer='adam', learning_rate=0.0001, loss='mean_square', name='targets')
model=tflearn.DNN(network)
#initialize our server
sio = socketio.Server()
#our flask (web) app
app = Flask(__name__)
#init our model and image array as empty
prev_image_array = None
#set min/max speed for our autonomous car
MAX_SPEED = 25
MIN_SPEED = 10
#and a speed limit
speed_limit = MAX_SPEED
#registering event handler for the server
@sio.on('telemetry')
def telemetry(sid, data):
if data:
# The current steering angle of the car
steering_angle = float(data["steering_angle"])
# The current throttle of the car, how hard to push peddle
throttle = float(data["throttle"])
# The current speed of the car
speed = float(data["speed"])
# The current image from the center camera of the car
image = Image.open(BytesIO(base64.b64decode(data["image"])))
try:
image = np.asarray(image) # from PIL image to numpy array
image = utils.preprocess(image) # apply the preprocessing
image = np.array([image]) # the model expects 4D array
image=image.reshape([-1,66,200,3])
# predict the steering angle for the image
steering_angle = float(model.predict(image))
# lower the throttle as the speed increases
# if the speed is above the current speed limit, we are on a downhill.
# make sure we slow down first and then go back to the original max speed.
global speed_limit
if speed > speed_limit:
speed_limit = MIN_SPEED # slow down
else:
speed_limit = MAX_SPEED
throttle = 1.0 - steering_angle**2 - (speed/speed_limit)**2
print('{} {} {}'.format(steering_angle, throttle, speed))
send_control(steering_angle, throttle)
except Exception as e:
print(e)
# save frame
if args.image_folder != '':
timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
image_filename = os.path.join(args.image_folder, timestamp)
image.save('{}.jpg'.format(image_filename))
else:
sio.emit('manual', data={}, skip_sid=True)
@sio.on('connect')
def connect(sid, environ):
print("connect ", sid)
send_control(0, 0)
def send_control(steering_angle, throttle):
sio.emit(
"steer",
data={
'steering_angle': steering_angle.__str__(),
'throttle': throttle.__str__()
},
skip_sid=True)
if __name__ == '__main__':
#load model
model.load("autonomous-driving-car.tflearn")
app = socketio.Middleware(sio, app)
# deploy as an eventlet WSGI server
eventlet.wsgi.server(eventlet.listen(('', 4567)), app)