Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

repeated indices in axes keyword for N-dimensional FFT are ignored #104

Open
vtavana opened this issue May 30, 2024 · 0 comments
Open

repeated indices in axes keyword for N-dimensional FFT are ignored #104

vtavana opened this issue May 30, 2024 · 0 comments

Comments

@vtavana
Copy link
Collaborator

vtavana commented May 30, 2024

Repeated indices in axes keyword are ignored while the transform over the repeated axis should be performed multiple times.
Result from stock NumPy

#  Name  Version   Build              Channel
# ──────────────────────────────────────────────
#  numpy  1.26.4   py310hb13e2d6_0  conda-forge

>>> import numpy
>>> in_arr = [[5, 4, 6, 3, 7], [-1, -3, -4, -7, 0]]
>>> dtype = numpy.complex64
>>> a_np = numpy.array(in_arr, dtype=dtype)
>>> numpy.fft.fft2(a_np, axes=(0,1))   
# array([[10.        +0.j        ,  8.09016994+2.17962758j,
        -3.09016994+9.23305061j, -3.09016994-9.23305061j,
         8.09016994-2.17962758j],
       [40.        +0.j        , -5.85410197+0.j        ,
         0.85410197+0.j        ,  0.85410197+0.j        ,
        -5.85410197+0.j        ]])   
		
>>> numpy.fft.fft2(a_np, axes=(0,1,1))
# array([[ 20.+0.j,  35.+0.j, -20.+0.j,  10.+0.j,   5.+0.j],
       [ 30.+0.j,  35.+0.j,  50.+0.j,  50.+0.j,  35.+0.j]])

Result from mkl_fft package (NumPy from intel channel)

#  Name        Version   Build              Channel
# ────────────────────────────────────────────────────
#  numpy       1.26.4   py310h689b997_1    intel  
#  numpy-base  1.26.4   py310h8eeea18_1    intel 
#  mkl_fft     1.3.8    py310h6b114c4_70   intel

>>> import numpy
>>> in_arr = [[5, 4, 6, 3, 7], [-1, -3, -4, -7, 0]]
>>> dtype = numpy.complex64
>>> a_np = numpy.array(in_arr, dtype=dtype)
>>> numpy.fft.fft2(a_np, axes=(0,1))   
# array([[10.        +0.j      ,  8.09017   +2.179628j,
        -3.09017   +9.233051j, -3.09017   -9.233051j,
         8.09017   -2.179628j],
       [40.        +0.j      , -5.854102  +0.j      ,
         0.85410213+0.j      ,  0.85410213+0.j      ,
        -5.854102  +0.j      ]], dtype=complex64)

>>> numpy.fft.fft2(a_np, axes=(0,1,1))	
# array([[10.        +0.j      ,  8.09017   +2.179628j,
        -3.09017   +9.233051j, -3.09017   -9.233051j,
         8.09017   -2.179628j],
       [40.        +0.j      , -5.854102  +0.j      ,
         0.85410213+0.j      ,  0.85410213+0.j      ,
        -5.854102  +0.j      ]], dtype=complex64)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant