forked from cilium/ebpf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
marshalers.go
249 lines (220 loc) · 6.4 KB
/
marshalers.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
package ebpf
import (
"bytes"
"encoding"
"encoding/binary"
"errors"
"fmt"
"reflect"
"runtime"
"sync"
"unsafe"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/sys"
)
// marshalPtr converts an arbitrary value into a pointer suitable
// to be passed to the kernel.
//
// As an optimization, it returns the original value if it is an
// unsafe.Pointer.
func marshalPtr(data interface{}, length int) (sys.Pointer, error) {
if ptr, ok := data.(unsafe.Pointer); ok {
return sys.NewPointer(ptr), nil
}
buf, err := marshalBytes(data, length)
if err != nil {
return sys.Pointer{}, err
}
return sys.NewSlicePointer(buf), nil
}
// marshalBytes converts an arbitrary value into a byte buffer.
//
// Prefer using Map.marshalKey and Map.marshalValue if possible, since
// those have special cases that allow more types to be encoded.
//
// Returns an error if the given value isn't representable in exactly
// length bytes.
func marshalBytes(data interface{}, length int) (buf []byte, err error) {
if data == nil {
return nil, errors.New("can't marshal a nil value")
}
switch value := data.(type) {
case encoding.BinaryMarshaler:
buf, err = value.MarshalBinary()
case string:
buf = []byte(value)
case []byte:
buf = value
case unsafe.Pointer:
err = errors.New("can't marshal from unsafe.Pointer")
case Map, *Map, Program, *Program:
err = fmt.Errorf("can't marshal %T", value)
default:
wr := internal.NewBuffer(make([]byte, 0, length))
defer internal.PutBuffer(wr)
err = binary.Write(wr, internal.NativeEndian, value)
if err != nil {
err = fmt.Errorf("encoding %T: %v", value, err)
}
buf = wr.Bytes()
}
if err != nil {
return nil, err
}
if len(buf) != length {
return nil, fmt.Errorf("%T doesn't marshal to %d bytes", data, length)
}
return buf, nil
}
func makeBuffer(dst interface{}, length int) (sys.Pointer, []byte) {
if ptr, ok := dst.(unsafe.Pointer); ok {
return sys.NewPointer(ptr), nil
}
buf := make([]byte, length)
return sys.NewSlicePointer(buf), buf
}
var bytesReaderPool = sync.Pool{
New: func() interface{} {
return new(bytes.Reader)
},
}
// unmarshalBytes converts a byte buffer into an arbitrary value.
//
// Prefer using Map.unmarshalKey and Map.unmarshalValue if possible, since
// those have special cases that allow more types to be encoded.
//
// The common int32 and int64 types are directly handled to avoid
// unnecessary heap allocations as happening in the default case.
func unmarshalBytes(data interface{}, buf []byte) error {
switch value := data.(type) {
case unsafe.Pointer:
dst := unsafe.Slice((*byte)(value), len(buf))
copy(dst, buf)
runtime.KeepAlive(value)
return nil
case Map, *Map, Program, *Program:
return fmt.Errorf("can't unmarshal into %T", value)
case encoding.BinaryUnmarshaler:
return value.UnmarshalBinary(buf)
case *string:
*value = string(buf)
return nil
case *[]byte:
*value = buf
return nil
case *int32:
if len(buf) < 4 {
return errors.New("int32 requires 4 bytes")
}
*value = int32(internal.NativeEndian.Uint32(buf))
return nil
case *uint32:
if len(buf) < 4 {
return errors.New("uint32 requires 4 bytes")
}
*value = internal.NativeEndian.Uint32(buf)
return nil
case *int64:
if len(buf) < 8 {
return errors.New("int64 requires 8 bytes")
}
*value = int64(internal.NativeEndian.Uint64(buf))
return nil
case *uint64:
if len(buf) < 8 {
return errors.New("uint64 requires 8 bytes")
}
*value = internal.NativeEndian.Uint64(buf)
return nil
case string:
return errors.New("require pointer to string")
case []byte:
return errors.New("require pointer to []byte")
default:
rd := bytesReaderPool.Get().(*bytes.Reader)
rd.Reset(buf)
defer bytesReaderPool.Put(rd)
if err := binary.Read(rd, internal.NativeEndian, value); err != nil {
return fmt.Errorf("decoding %T: %v", value, err)
}
return nil
}
}
// marshalPerCPUValue encodes a slice containing one value per
// possible CPU into a buffer of bytes.
//
// Values are initialized to zero if the slice has less elements than CPUs.
//
// slice must have a type like []elementType.
func marshalPerCPUValue(slice interface{}, elemLength int) (sys.Pointer, error) {
sliceType := reflect.TypeOf(slice)
if sliceType.Kind() != reflect.Slice {
return sys.Pointer{}, errors.New("per-CPU value requires slice")
}
possibleCPUs, err := internal.PossibleCPUs()
if err != nil {
return sys.Pointer{}, err
}
sliceValue := reflect.ValueOf(slice)
sliceLen := sliceValue.Len()
if sliceLen > possibleCPUs {
return sys.Pointer{}, fmt.Errorf("per-CPU value exceeds number of CPUs")
}
alignedElemLength := internal.Align(elemLength, 8)
buf := make([]byte, alignedElemLength*possibleCPUs)
for i := 0; i < sliceLen; i++ {
elem := sliceValue.Index(i).Interface()
elemBytes, err := marshalBytes(elem, elemLength)
if err != nil {
return sys.Pointer{}, err
}
offset := i * alignedElemLength
copy(buf[offset:offset+elemLength], elemBytes)
}
return sys.NewSlicePointer(buf), nil
}
// unmarshalPerCPUValue decodes a buffer into a slice containing one value per
// possible CPU.
//
// valueOut must have a type like *[]elementType
func unmarshalPerCPUValue(slicePtr interface{}, elemLength int, buf []byte) error {
slicePtrType := reflect.TypeOf(slicePtr)
if slicePtrType.Kind() != reflect.Ptr || slicePtrType.Elem().Kind() != reflect.Slice {
return fmt.Errorf("per-cpu value requires pointer to slice")
}
possibleCPUs, err := internal.PossibleCPUs()
if err != nil {
return err
}
sliceType := slicePtrType.Elem()
slice := reflect.MakeSlice(sliceType, possibleCPUs, possibleCPUs)
sliceElemType := sliceType.Elem()
sliceElemIsPointer := sliceElemType.Kind() == reflect.Ptr
if sliceElemIsPointer {
sliceElemType = sliceElemType.Elem()
}
step := len(buf) / possibleCPUs
if step < elemLength {
return fmt.Errorf("per-cpu element length is larger than available data")
}
for i := 0; i < possibleCPUs; i++ {
var elem interface{}
if sliceElemIsPointer {
newElem := reflect.New(sliceElemType)
slice.Index(i).Set(newElem)
elem = newElem.Interface()
} else {
elem = slice.Index(i).Addr().Interface()
}
// Make a copy, since unmarshal can hold on to itemBytes
elemBytes := make([]byte, elemLength)
copy(elemBytes, buf[:elemLength])
err := unmarshalBytes(elem, elemBytes)
if err != nil {
return fmt.Errorf("cpu %d: %w", i, err)
}
buf = buf[step:]
}
reflect.ValueOf(slicePtr).Elem().Set(slice)
return nil
}