forked from cilium/ebpf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linker.go
391 lines (323 loc) · 9.84 KB
/
linker.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
package ebpf
import (
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/btf"
"github.com/cilium/ebpf/internal"
)
// handles stores handle objects to avoid gc cleanup
type handles []*btf.Handle
func (hs *handles) add(h *btf.Handle) (int, error) {
if h == nil {
return 0, nil
}
if len(*hs) == math.MaxInt16 {
return 0, fmt.Errorf("can't add more than %d module FDs to fdArray", math.MaxInt16)
}
*hs = append(*hs, h)
// return length of slice so that indexes start at 1
return len(*hs), nil
}
func (hs handles) fdArray() []int32 {
// first element of fda is reserved as no module can be indexed with 0
fda := []int32{0}
for _, h := range hs {
fda = append(fda, int32(h.FD()))
}
return fda
}
func (hs handles) close() {
for _, h := range hs {
h.Close()
}
}
// splitSymbols splits insns into subsections delimited by Symbol Instructions.
// insns cannot be empty and must start with a Symbol Instruction.
//
// The resulting map is indexed by Symbol name.
func splitSymbols(insns asm.Instructions) (map[string]asm.Instructions, error) {
if len(insns) == 0 {
return nil, errors.New("insns is empty")
}
if insns[0].Symbol() == "" {
return nil, errors.New("insns must start with a Symbol")
}
var name string
progs := make(map[string]asm.Instructions)
for _, ins := range insns {
if sym := ins.Symbol(); sym != "" {
if progs[sym] != nil {
return nil, fmt.Errorf("insns contains duplicate Symbol %s", sym)
}
name = sym
}
progs[name] = append(progs[name], ins)
}
return progs, nil
}
// The linker is responsible for resolving bpf-to-bpf calls between programs
// within an ELF. Each BPF program must be a self-contained binary blob,
// so when an instruction in one ELF program section wants to jump to
// a function in another, the linker needs to pull in the bytecode
// (and BTF info) of the target function and concatenate the instruction
// streams.
//
// Later on in the pipeline, all call sites are fixed up with relative jumps
// within this newly-created instruction stream to then finally hand off to
// the kernel with BPF_PROG_LOAD.
//
// Each function is denoted by an ELF symbol and the compiler takes care of
// register setup before each jump instruction.
// hasFunctionReferences returns true if insns contains one or more bpf2bpf
// function references.
func hasFunctionReferences(insns asm.Instructions) bool {
for _, i := range insns {
if i.IsFunctionReference() {
return true
}
}
return false
}
// applyRelocations collects and applies any CO-RE relocations in insns.
//
// Passing a nil target will relocate against the running kernel. insns are
// modified in place.
func applyRelocations(insns asm.Instructions, target *btf.Spec, bo binary.ByteOrder) error {
var relos []*btf.CORERelocation
var reloInsns []*asm.Instruction
iter := insns.Iterate()
for iter.Next() {
if relo := btf.CORERelocationMetadata(iter.Ins); relo != nil {
relos = append(relos, relo)
reloInsns = append(reloInsns, iter.Ins)
}
}
if len(relos) == 0 {
return nil
}
if bo == nil {
bo = internal.NativeEndian
}
fixups, err := btf.CORERelocate(relos, target, bo)
if err != nil {
return err
}
for i, fixup := range fixups {
if err := fixup.Apply(reloInsns[i]); err != nil {
return fmt.Errorf("fixup for %s: %w", relos[i], err)
}
}
return nil
}
// flattenPrograms resolves bpf-to-bpf calls for a set of programs.
//
// Links all programs in names by modifying their ProgramSpec in progs.
func flattenPrograms(progs map[string]*ProgramSpec, names []string) {
// Pre-calculate all function references.
refs := make(map[*ProgramSpec][]string)
for _, prog := range progs {
refs[prog] = prog.Instructions.FunctionReferences()
}
// Create a flattened instruction stream, but don't modify progs yet to
// avoid linking multiple times.
flattened := make([]asm.Instructions, 0, len(names))
for _, name := range names {
flattened = append(flattened, flattenInstructions(name, progs, refs))
}
// Finally, assign the flattened instructions.
for i, name := range names {
progs[name].Instructions = flattened[i]
}
}
// flattenInstructions resolves bpf-to-bpf calls for a single program.
//
// Flattens the instructions of prog by concatenating the instructions of all
// direct and indirect dependencies.
//
// progs contains all referenceable programs, while refs contain the direct
// dependencies of each program.
func flattenInstructions(name string, progs map[string]*ProgramSpec, refs map[*ProgramSpec][]string) asm.Instructions {
prog := progs[name]
insns := make(asm.Instructions, len(prog.Instructions))
copy(insns, prog.Instructions)
// Add all direct references of prog to the list of to be linked programs.
pending := make([]string, len(refs[prog]))
copy(pending, refs[prog])
// All references for which we've appended instructions.
linked := make(map[string]bool)
// Iterate all pending references. We can't use a range since pending is
// modified in the body below.
for len(pending) > 0 {
var ref string
ref, pending = pending[0], pending[1:]
if linked[ref] {
// We've already linked this ref, don't append instructions again.
continue
}
progRef := progs[ref]
if progRef == nil {
// We don't have instructions that go with this reference. This
// happens when calling extern functions.
continue
}
insns = append(insns, progRef.Instructions...)
linked[ref] = true
// Make sure we link indirect references.
pending = append(pending, refs[progRef]...)
}
return insns
}
// fixupAndValidate is called by the ELF reader right before marshaling the
// instruction stream. It performs last-minute adjustments to the program and
// runs some sanity checks before sending it off to the kernel.
func fixupAndValidate(insns asm.Instructions) error {
iter := insns.Iterate()
for iter.Next() {
ins := iter.Ins
// Map load was tagged with a Reference, but does not contain a Map pointer.
needsMap := ins.Reference() != "" || ins.Metadata.Get(kconfigMetaKey{}) != nil
if ins.IsLoadFromMap() && needsMap && ins.Map() == nil {
return fmt.Errorf("instruction %d: %w", iter.Index, asm.ErrUnsatisfiedMapReference)
}
fixupProbeReadKernel(ins)
}
return nil
}
// fixupKfuncs loops over all instructions in search for kfunc calls.
// If at least one is found, the current kernels BTF and module BTFis are searched to set Instruction.Constant
// and Instruction.Offset to the correct values.
func fixupKfuncs(insns asm.Instructions) (handles, error) {
iter := insns.Iterate()
for iter.Next() {
ins := iter.Ins
if ins.IsKfuncCall() {
goto fixups
}
}
return nil, nil
fixups:
// only load the kernel spec if we found at least one kfunc call
kernelSpec, err := btf.LoadKernelSpec()
if err != nil {
return nil, err
}
fdArray := make(handles, 0)
for {
ins := iter.Ins
if !ins.IsKfuncCall() {
if !iter.Next() {
// break loop if this was the last instruction in the stream.
break
}
continue
}
// check meta, if no meta return err
kfm, _ := ins.Metadata.Get(kfuncMeta{}).(*btf.Func)
if kfm == nil {
return nil, fmt.Errorf("kfunc call has no kfuncMeta")
}
target := btf.Type((*btf.Func)(nil))
spec, module, err := findTargetInKernel(kernelSpec, kfm.Name, &target)
if errors.Is(err, btf.ErrNotFound) {
return nil, fmt.Errorf("kfunc %q: %w", kfm.Name, ErrNotSupported)
}
if err != nil {
return nil, err
}
if err := btf.CheckTypeCompatibility(kfm.Type, target.(*btf.Func).Type); err != nil {
return nil, &incompatibleKfuncError{kfm.Name, err}
}
id, err := spec.TypeID(target)
if err != nil {
return nil, err
}
idx, err := fdArray.add(module)
if err != nil {
return nil, err
}
ins.Constant = int64(id)
ins.Offset = int16(idx)
if !iter.Next() {
break
}
}
return fdArray, nil
}
type incompatibleKfuncError struct {
name string
err error
}
func (ike *incompatibleKfuncError) Error() string {
return fmt.Sprintf("kfunc %q: %s", ike.name, ike.err)
}
// fixupProbeReadKernel replaces calls to bpf_probe_read_{kernel,user}(_str)
// with bpf_probe_read(_str) on kernels that don't support it yet.
func fixupProbeReadKernel(ins *asm.Instruction) {
if !ins.IsBuiltinCall() {
return
}
// Kernel supports bpf_probe_read_kernel, nothing to do.
if haveProbeReadKernel() == nil {
return
}
switch asm.BuiltinFunc(ins.Constant) {
case asm.FnProbeReadKernel, asm.FnProbeReadUser:
ins.Constant = int64(asm.FnProbeRead)
case asm.FnProbeReadKernelStr, asm.FnProbeReadUserStr:
ins.Constant = int64(asm.FnProbeReadStr)
}
}
// resolveKconfigReferences creates and populates a .kconfig map if necessary.
//
// Returns a nil Map and no error if no references exist.
func resolveKconfigReferences(insns asm.Instructions) (_ *Map, err error) {
closeOnError := func(c io.Closer) {
if err != nil {
c.Close()
}
}
var spec *MapSpec
iter := insns.Iterate()
for iter.Next() {
meta, _ := iter.Ins.Metadata.Get(kconfigMetaKey{}).(*kconfigMeta)
if meta != nil {
spec = meta.Map
break
}
}
if spec == nil {
return nil, nil
}
cpy := spec.Copy()
if err := resolveKconfig(cpy); err != nil {
return nil, err
}
kconfig, err := NewMap(cpy)
if err != nil {
return nil, err
}
defer closeOnError(kconfig)
// Resolve all instructions which load from .kconfig map with actual map
// and offset inside it.
iter = insns.Iterate()
for iter.Next() {
meta, _ := iter.Ins.Metadata.Get(kconfigMetaKey{}).(*kconfigMeta)
if meta == nil {
continue
}
if meta.Map != spec {
return nil, fmt.Errorf("instruction %d: reference to multiple .kconfig maps is not allowed", iter.Index)
}
if err := iter.Ins.AssociateMap(kconfig); err != nil {
return nil, fmt.Errorf("instruction %d: %w", iter.Index, err)
}
// Encode a map read at the offset of the var in the datasec.
iter.Ins.Constant = int64(uint64(meta.Offset) << 32)
iter.Ins.Metadata.Set(kconfigMetaKey{}, nil)
}
return kconfig, nil
}