-
Notifications
You must be signed in to change notification settings - Fork 0
/
validation_run.m
307 lines (272 loc) · 12.3 KB
/
validation_run.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
function [PUL_optim,Pflex_max,Eflex_max,theta_h_optim,theta_0_optim]=validation_run(LOADprofile,AMB,SOCflex_init,SOCflex_end,ageing_constraint_on)
%% Load Simulation profiles
%--------------------------
if length(LOADprofile)==1440 || rem(length(LOADprofile),1440)==0
[LOADprofile,~]=create_load(LOADprofile,60);% Convert transformer loadings
elseif length(AMB)==24|| rem(length(AMB),24)==0
AMB=PUL_to_1min(AMB,60);
elseif rem(length(LOADprofile),1440)==0&&rem(length(AMB),24)==0
else
error('check length of LOADprofile and/or AMB in initial_solution_approximation ')
end
dT=1; % time step of 1 minute
HorizonD = length(LOADprofile); % horizon in hours
HorizonT=length(LOADprofile)*60;% horizon in minutes
theta_a=AMB; % Change of variable for ambiant temperature
%% Similation Parameters (to set by the user)
%-------------------------------------------
SOCflex_min=0; %battery minimum SOC in %
SOCflex_max=1; %battery maximum SOC in %
% SOCflex_init=0.5; %battery initial SOC in %
% SOCflex_end=0.5; %battery initial SOC in %
% Transformer limits
current_limit=1.5; % current limit,pu
theta_h_limit = 120; % winding hot spot tempearature,degC
theta_0_limit= 105; % top oil temperature,degC
% Transformer thermal characterisitcs
Nominal_rating=500; %KVA
delta_theta_or = 55; % Top-oil (in tank) temperature rise in steady state at rated losses (no-load losses + load losses),K
delta_theta_hr = 23; % Hot-spot-to-top-oil (in tank) gradient at rated current, K
tao_0 = 180; % Average oil time constant, min
tao_w = 4; % Winding time constant, min
R = 5; % Ratio of load losses at rated current to no-load losses
x = 0.8; % Exponential power of total losses versus top-oil (in tank) temperature rise (oil exponent)
y = 1.6; % Exponential power of current versus winding temperature rise (winding exponent)
k11 = 1; % Thermal model constant
k21 = 1; % Thermal model constant
k22 = 2; % Thermal model constant
% Build simulation profiles
Pload=Nominal_rating*LOADprofile;
%% Extract PWL parameters for the transformer temp. model -- DO NOT CHANGE
%--------------------------------------------------------------------------
disp('Compute PWL coefficients...')
% Generate/Fit non linear/convex functions in the temperature model
Npt=20; % Number of samples for model fitting
Npwl=6; % Number of pwl segments
Npwl_AEQ=12;
plotoption=0; % plot fitting results - 0 : no - 1 : yes
X=linspace(0, 1.5, Npt); % X=Pgd/NominalRating
Y_f1=((1+X.^2*R)/(1+R)).^x*delta_theta_or;
Y_f2=X.^y*delta_theta_hr;
X_AEQ=0:5:120;
Y_AEQ=2.^((X_AEQ-98)/6);
% [Xbkp_f1]=computeXBKPbest(X, Y_f1, Npwl+1, plotoption);
% [Xbkp_f2]=computeXBKPbest(X, Y_f2, Npwl+1, plotoption);
Xbkp_f1=[ 1 4 7 10 13 16 20];
Xbkp_f2=[ 1 3 6 9 12 16 20];
%[Xbkp_AEQ]=computeXBKPbest(X_AEQ, Y_AEQ, Npwl_AEQ+1, plotoption);
Xbkp_AEQ=[1 11 14 16 17 18 19 20 21 22 23 24 25];
% Define parameters for PWL functions/constraints
Xk_f1=X(Xbkp_f1);
Xk_f2=X(Xbkp_f2);
Y_f1=Y_f1(Xbkp_f1);
Y_f2=Y_f2(Xbkp_f2);
%%%%%%%%%%%%%%%%%%
Xk_AEQ=X_AEQ(Xbkp_AEQ);
Y_AEQ=Y_AEQ(Xbkp_AEQ);
% Y_AEQ=2.^((Xk_AEQ-98)/6);
% Npwl_AEQ=length(Xk_AEQ)-1;
%%%%%%%%%%%%%%%%%%
Y0_f1=Y_f1(1);
Y0_f2=Y_f2(1);
Y0_AEQ=Y_AEQ(1);
Ak_f1=[];
Ak_f2=[];
Ak_AEQ=[];
Xk_f1_max=[];
Xk_f2_max=[];
Xk_AEQ_max=[];
for k=2:Npwl+1
Ak_f1(k-1) = (Y_f1(k)-Y_f1(k-1))/(Xk_f1(k)-Xk_f1(k-1));
Ak_f2(k-1) = (Y_f2(k)-Y_f2(k-1))/(Xk_f2(k)-Xk_f2(k-1));
Xk_f1_max(k-1) = Xk_f1(k)-Xk_f1(k-1);
Xk_f2_max(k-1) = Xk_f2(k)-Xk_f2(k-1);
end
for k=2:Npwl_AEQ+1
Ak_AEQ(k-1) = (Y_AEQ(k)-Y_AEQ(k-1))/(Xk_AEQ(k)-Xk_AEQ(k-1));
Xk_AEQ_max(k-1) = Xk_AEQ(k)-Xk_AEQ(k-1);
end
%% Write / Solve Problem
%---------------------------------------
% Variables
Pflex=sdpvar(HorizonD, 1,'full'); % battery charge in kW
Ptr=sdpvar(HorizonD, 1,'full'); % energy imported from grid in kW (only import --- export/feed in forbiden)
Pflex_max=sdpvar(1,1); % Maximal power of flexibility, kW
Eflex_max=sdpvar(1,1); % Maximal energy of flexibiity, kWh
% Transformer temporal variables
Xk_f1=sdpvar(HorizonT, Npwl,'full'); % for PWL of functions f1
Xk_f2=sdpvar(HorizonT, Npwl,'full'); % for PWL of functions f2
delta_theta_h1=sdpvar(HorizonT, 1,'full'); % component 1 of winding hot spot temperature rise,K
delta_theta_h2=sdpvar(HorizonT, 1,'full'); % Component 2 of winding hot spot temperature rise,K
theta_h=sdpvar(HorizonT, 1,'full'); % Winding hot spot temperature,degC
% theta_h_max=sdpvar(1, 1,'full'); % Winding hot spot temperature,degC
theta_0=sdpvar(HorizonT, 1,'full'); % Top oil temperature, degC
Xk_AEQ=sdpvar(HorizonT, Npwl_AEQ,'full'); % for PWL of functions f2
% Objective
disp('Write Objective Function...')
alfa_PWL=1e-3;
Objective = (Pflex_max + Eflex_max);
Objective = Objective + alfa_PWL*( Y0_f1*HorizonT + sum(sum(repmat(Ak_f1,HorizonT,1).*Xk_f1)));
Objective = Objective + alfa_PWL*( Y0_f2*HorizonT + sum(sum(repmat(Ak_f2,HorizonT,1).*Xk_f2)));
% Constraints
disp('Write Dispatch Constraints...')
Constraints=[];
Constraints=[Constraints ; Pflex <= Pflex_max ];
if SOCflex_init==1 && SOCflex_end==0 % energy shedding mode
Constraints=[Constraints ; Pflex >= 0 ];
elseif SOCflex_init==0.5 && SOCflex_end==0.5 % energy shifting mode
Constraints=[Constraints ; Pflex >= -Pflex_max ];
end
Constraints=[Constraints ; Ptr >= 0 ];
Constraints = [Constraints , Ptr <= current_limit*Nominal_rating ];
Constraints=[Constraints ; Pflex + Ptr == Pload ]; % power balance gen=load
% SOC constraint
for t=1:HorizonD
Constraints=[ Constraints ; SOCflex_init*Eflex_max - sum(Pflex(1:t)) <=SOCflex_max*Eflex_max];
Constraints=[ Constraints ; SOCflex_init*Eflex_max - sum(Pflex(1:t)) >=SOCflex_min*Eflex_max];
end
Constraints=[ Constraints ; SOCflex_init*Eflex_max - sum(Pflex)>= SOCflex_end*Eflex_max ];
% PWL
disp('Write PWL Constraints...')
for k=1:Npwl
Constraints = [Constraints, Xk_f1(:,k) <= Xk_f1_max(k) ];
Constraints = [Constraints, Xk_f1(:,k) >= 0 ];
Constraints = [Constraints, Xk_f2(:,k) <= Xk_f2_max(k) ];
Constraints = [Constraints, Xk_f2(:,k) >= 0 ];
end
% Ageing constraints
for k=1:Npwl_AEQ
Constraints = [Constraints, Xk_AEQ(:,k) <= Xk_AEQ_max(k) ];
Constraints = [Constraints, Xk_AEQ(:,k) >= 0 ];
end
Mat_Td_Tt=zeros(HorizonT, HorizonD);
for t=1:HorizonD
Mat_Td_Tt((HorizonT/HorizonD*(t-1)+1):HorizonT/HorizonD*t, t)=1;
end
Constraints = [Constraints , sum(Xk_f1,2)*Nominal_rating == Mat_Td_Tt*Ptr ];
Constraints = [Constraints, sum(Xk_f2,2)*Nominal_rating == Mat_Td_Tt*Ptr ];
Constraints = [Constraints, sum(Xk_AEQ,2) == theta_h ];
% Transformer constraints
disp('Write Transformer Constraints...')
%% Write MAT
MAT_V_theta0=sparse(HorizonT-1,HorizonT);
MAT_V_deltah1=sparse(HorizonT-1,HorizonT);
MAT_V_deltah2=sparse(HorizonT-1,HorizonT);
for row=1:HorizonT-1
MAT_V_theta0(row, row) =-1+dT/(k11*tao_0);
MAT_V_theta0(row, row+1) =1;
MAT_V_deltah1(row, row) =-1+dT/(k22*tao_w);
MAT_V_deltah1(row, row+1) =1;
MAT_V_deltah2(row, row) =-1+dT/(k22*tao_0);
MAT_V_deltah2(row, row+1) =1;
end
% Initialisation
Constraints=[ Constraints ; theta_0(1) == Y0_f1 + sum(Ak_f1.*Xk_f1(1,:)) + theta_a(1)];
Constraints=[ Constraints ; delta_theta_h1(1) == k21*(Y0_f2 + sum(Ak_f2.*Xk_f2(1,:)))];
Constraints=[ Constraints ; delta_theta_h2(1) == (k21-1)*(Y0_f2 + sum(Ak_f2.*Xk_f2(1,:)))];
% MAT formulation
Constraints=[ Constraints ; MAT_V_theta0*theta_0 == (dT/(k11*tao_0))*( Y0_f1 + sum(repmat(Ak_f1,HorizonT-1,1).*Xk_f1(2:end,:),2) + theta_a(2:end)) ];
Constraints=[ Constraints ; MAT_V_deltah1*delta_theta_h1 == dT/(k22*tao_w)*(k21*(Y0_f2 + sum(repmat(Ak_f2,HorizonT-1,1).*Xk_f2(2:end,:),2)))];
Constraints=[ Constraints ; MAT_V_deltah2*delta_theta_h2 == dT/(k22*tao_0)*((k21-1)*(Y0_f2 + sum(repmat(Ak_f2,HorizonT-1,1).*Xk_f2(2:end,:),2)))];
Constraints=[ Constraints ; theta_h == theta_0 + delta_theta_h1 - delta_theta_h2];
Constraints=[ Constraints ; theta_0 >= 0 ]; % Top oil temperature constraint
Constraints=[ Constraints ; theta_h >= 0 ]; % Hot spot temperature constraint
Constraints=[ Constraints ; theta_0 <= theta_0_limit ]; % Top oil temperature constraint
Constraints=[ Constraints ; theta_h <= theta_h_limit ]; % Hot spot temperature constraint
if ageing_constraint_on==1 % if ageing contraint is activated
% constraint to consider the AEQ or not
Constraints=[ Constraints ; sum(sum(Y0_AEQ + sum(repmat(Ak_AEQ, HorizonT,1).*Xk_AEQ)))/HorizonT <=1 ];
end % end of "if ageing_constraint_on==1"
%% Solve & Extract Results
%-------------------------
% Select a solver linprog
ops = sdpsettings('solver', 'linprog','savesolveroutput',1 ,'verbose',1);
% Solve the optimization problem
sol=optimize(Constraints,Objective, ops);
% Find the number of variables and constraints
[model] = export(Constraints ,Objective );
[Nvar, Ncol]=size(model.A);
disp(sol.info)
disp(['Solving Time (s): ', num2str(sol.solvertime)])
% Extract the results
Pflex=value(Pflex);
Ptr=value(Ptr);
PUL_optim=Convert2minute(Ptr/Nominal_rating);
Pflex_max=value(Pflex_max);
Eflex_max=value(Eflex_max);
Xk_f1=value(Xk_f1);
Xk_f2=value(Xk_f2);
delta_theta_h1=value(delta_theta_h1);
delta_theta_h2=value(delta_theta_h2);
theta_h=value(theta_h);
theta_h_optim=theta_h;
theta_0_optim=theta_0;
theta_0=value(theta_0);
SOCflex=zeros(HorizonD+1,1);
SOCflex(1)=SOCflex_init;
for t=1:HorizonD
SOCflex(t+1)=SOCflex_init - sum(Pflex(1:t))/Eflex_max;
end
%% PWL validation with transformer temperature model
%--------------------------------------------------------------------
[~,~,AEQ_ref,theta_h_ref,theta_0_ref]=distribution_transformer(Mat_Td_Tt*Ptr/Nominal_rating,theta_a);
[~,~,AEQ,theta_h_NoFlex,theta_0_NoFlex,]=distribution_transformer(Mat_Td_Tt*Pload/Nominal_rating,theta_a);
Y_f1_pwl=zeros(HorizonT,1);
Y_f2_pwl=zeros(HorizonT,1);
Y_f1_ref=zeros(HorizonT,1);
Y_f2_ref=zeros(HorizonT,1);
Ptr_resample=Mat_Td_Tt*Ptr;
for t=1:HorizonT
Y_f1_pwl(t)=Y0_f1 + sum(Ak_f1.*Xk_f1(t,:)) ;
Y_f2_pwl(t)=Y0_f2 + sum(Ak_f2.*Xk_f2(t,:)) ;
Y_f1_ref(t)=((1+ (Ptr_resample(t)/Nominal_rating).^2*R)/(1+R))^x*delta_theta_or;
Y_f2_ref(t)=(Ptr_resample(t)/Nominal_rating)^y*delta_theta_hr;
end
% figure()
% subplot(2,2,1), plot((0:(HorizonT-1))/60,[Y_f1_pwl Y_f1_ref ])
% subplot(2,2,2), plot((0:(HorizonT-1))/60,[Y_f2_pwl Y_f2_ref ])
disp(['PWL Error (nRMSE) for teta_o (%) = ', num2str( sqrt(1/HorizonT*sum((theta_0-theta_0_ref).^2))/mean(theta_0_ref) *100 ) ] )
disp(['PWL Error (nRMSE) for teta_h (%) = ', num2str( sqrt(1/HorizonT*sum((theta_h-theta_h_ref).^2))/mean(theta_h_ref) *100 ) ] )
%% Plot/Display Results
%------------------------
disp(['Flex Power (kW) = ', num2str(Pflex_max)])
disp(['Flex Energy (kWh) = ', num2str(Eflex_max)])
figure()
subplot(2,3,1), stairs(0:(HorizonD-1),[ Pload Ptr ]/Nominal_rating, 'linewidth', 2)
xlabel('Time (h)')
ylabel('Loading (pu)')
legend('No Flex', 'With Flex','Location','northwest')
title('Power profiles')
grid on
subplot(2,3,2), stairs(0:(HorizonD),SOCflex*100, 'linewidth', 2)
xlabel('Time (h)')
ylabel('SOCflex (%)')
title('Flex SOC ')
grid on
subplot(2,3,3), stairs(0:(HorizonD-1),Pflex , 'linewidth', 2 )
xlabel('Time (h)')
ylabel('Power (kW)')
title('Flex Power')
grid on
subplot(2,3,4), plot((0:(HorizonT-1))/60,[ theta_0_NoFlex theta_0], 'linewidth', 2)
hold on
subplot(2,3,4), plot(0:(HorizonT-1)/60, ones(HorizonD,1)*theta_0_limit, 'color', 'k', 'linewidth', 2 , 'linestyle', '--')
xlabel('Time (h)')
ylabel('T (deg)')
legend('No Flex', 'With Flex', 'Limit','Location','northwest')
title('Oil Temperature')
grid on
subplot(2,3,5), plot((0:(HorizonT-1))/60,[ theta_h_NoFlex theta_h], 'linewidth', 2)
hold on
subplot(2,3,5), plot(0:(HorizonT-1)/60, ones(HorizonD,1)*theta_h_limit, 'color', 'k', 'linewidth', 2 , 'linestyle', '--')
xlabel('Time (h)')
ylabel('T (deg)')
legend('No Flex', 'With Flex', 'Limit','Location','northwest')
title('Hot spot Temperature')
grid on
subplot(2,3,6), plot((0:(HorizonT-1))/60,[theta_a ], 'linewidth', 2)
xlabel('Time (h)')
ylabel('T (deg)')
title('Ambient Temperature')
grid on
end