-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
4--9 домашняя работа по формальным языкам #8
Open
IThror10
wants to merge
7
commits into
main
Choose a base branch
from
feature/hw9
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
1cc6b78
[HW-4.0] Add initial sollution for 4th task
IThror10 d1df0ee
[HW-4.1] Upgrade python version
IThror10 7a0905d
[HA-4.2] Fix code style
IThror10 3292706
[HA-6.0] Add initial sollution for 6th task
IThror10 6e20cae
[HA-7.0] Add initial sollution for 7th task
IThror10 d56a8fc
[HA-8.0] Add initial sollution for 8th task
IThror10 a204094
[HA-9.0] Add initial sollution for 9th task
IThror10 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,84 +1,154 @@ | ||
from scipy.sparse import dok_matrix, kron | ||
from pyformlang.finite_automaton import ( | ||
DeterministicFiniteAutomaton as DFA, | ||
NondeterministicFiniteAutomaton as NDFA, | ||
NondeterministicFiniteAutomaton as NFA, | ||
State, | ||
Symbol, | ||
) | ||
from networkx import MultiDiGraph | ||
from scipy.sparse import dok_matrix, kron | ||
from typing import Iterable | ||
from functools import reduce | ||
|
||
from project.task2 import regex_to_dfa, graph_to_nfa | ||
|
||
|
||
class FiniteAutomaton: | ||
def __init__(self, dfa=None): | ||
if not isinstance(dfa, DFA) and not isinstance(dfa, NDFA): | ||
def __init__(self, fa=None) -> None: | ||
self.lbl = True | ||
self.matrices = {} | ||
if fa is None: | ||
self.start_states = set() | ||
self.final_states = set() | ||
self.state_to_index = {} | ||
return | ||
|
||
states = dfa.to_dict() | ||
self.mapping = {v: i for i, v in enumerate(dfa.states)} | ||
self.sparse = dict() | ||
|
||
for label in dfa.symbols: | ||
self.sparse[label] = dok_matrix( | ||
(len(dfa.states), len(dfa.states)), dtype=bool | ||
) | ||
for u, edges in states.items(): | ||
if label in edges: | ||
for v in ( | ||
edges[label] | ||
if isinstance(edges[label], set) | ||
else {edges[label]} | ||
): | ||
self.sparse[label][self.mapping[u], self.mapping[v]] = True | ||
|
||
self.start_states = dfa.start_states | ||
self.final_states = dfa.final_states | ||
|
||
def accepts(self, word): | ||
return self.to_ndfa().accepts("".join(list(word))) | ||
|
||
def is_empty(self): | ||
return len(self.sparse) == 0 | ||
|
||
def mapping_for(self, u): | ||
return self.mapping[State(u)] | ||
|
||
def to_ndfa(self): | ||
ndfa = NDFA() | ||
for label in self.sparse.keys(): | ||
m_size = self.sparse[label].shape[0] | ||
for u in range(m_size): | ||
for v in range(m_size): | ||
if self.sparse[label][u, v]: | ||
ndfa.add_transition( | ||
self.mapping_for(u), label, self.mapping_for(v) | ||
) | ||
|
||
for s in self.start_states: | ||
ndfa.add_start_state(self.mapping_for(s)) | ||
for s in self.final_states: | ||
ndfa.add_final_state(self.mapping_for(s)) | ||
return ndfa | ||
|
||
|
||
def intersect_automata(fa1: FiniteAutomaton, fa2: FiniteAutomaton): | ||
labels = fa1.sparse.keys() & fa2.sparse.keys() | ||
fa = FiniteAutomaton() | ||
fa.sparse = dict() | ||
fa.start_states = set() | ||
fa.final_states = set() | ||
fa.mapping = dict() | ||
self.start_states = fa.start_states | ||
self.final_states = fa.final_states | ||
|
||
self.state_to_index = {state: index for index, state in enumerate(fa.states)} | ||
self.index_to_state = { | ||
index: state for state, index in self.state_to_index.items() | ||
} | ||
n_states = len(fa.states) | ||
|
||
for from_state, transitions in fa.to_dict().items(): | ||
for symbol, to_states in transitions.items(): | ||
if symbol not in self.matrices.keys(): | ||
self.matrices[symbol] = dok_matrix((n_states, n_states), dtype=bool) | ||
if isinstance(fa, DFA): | ||
self.matrices[symbol][ | ||
self.state_to_index[from_state], self.state_to_index[to_states] | ||
] = True | ||
else: | ||
for to_state in to_states: | ||
self.matrices[symbol][ | ||
self.state_to_index[from_state], | ||
self.state_to_index[to_state], | ||
] = True | ||
|
||
def to_nfa(self) -> NFA: | ||
nfa = NFA() | ||
|
||
for state in self.start_states: | ||
nfa.add_start_state(state) | ||
|
||
for state in self.final_states: | ||
nfa.add_final_state(state) | ||
|
||
for label, matrix in self.matrices.items(): | ||
n, m = matrix.shape | ||
for from_state in range(n): | ||
for to_state in range(m): | ||
if matrix[from_state, to_state]: | ||
nfa.add_transition(State(from_state), label, State(to_state)) | ||
|
||
return nfa | ||
|
||
def set_state_to_index(self, new_state_to_index): | ||
self.state_to_index = new_state_to_index | ||
self.index_to_state = { | ||
index: state for state, index in self.state_to_index.items() | ||
} | ||
|
||
def set_true(self, label, row, column): | ||
self.matrices[label][row, column] = True | ||
|
||
def add_label_if_not_exist(self, label, dim=None): | ||
if label not in self.matrices: | ||
dim = dim or len(self) | ||
self.matrices[label] = dok_matrix((dim, dim), dtype=bool) | ||
|
||
def accepts(self, word: Iterable[Symbol]) -> bool: | ||
return self.to_nfa().accepts(word) | ||
|
||
def is_empty(self) -> bool: | ||
return self.to_nfa().is_empty() | ||
|
||
def get_index(self, state) -> int: | ||
return self.state_to_index.get(state, 0) | ||
|
||
def get_state_by_index(self, index: int): | ||
return self.index_to_state[index] | ||
|
||
def __len__(self): | ||
return len(self.state_to_index) | ||
|
||
def labels(self): | ||
return self.state_to_index.keys() if self.lbl else self.matrices.keys() | ||
|
||
def get_transitive_closure(self): | ||
if len(self.matrices.values()) == 0: | ||
return dok_matrix((0, 0), dtype=bool) | ||
|
||
closure = reduce(lambda x, y: x + y, self.matrices.values()) | ||
|
||
while True: | ||
prev_zero_count = closure.count_nonzero() | ||
closure += closure @ closure | ||
if prev_zero_count == closure.count_nonzero(): | ||
return closure | ||
|
||
|
||
def intersect_automata( | ||
auto1: FiniteAutomaton, auto2: FiniteAutomaton, lbl: bool = True | ||
) -> FiniteAutomaton: | ||
auto1.lbl = auto2.lbl = not lbl | ||
res = FiniteAutomaton() | ||
|
||
for state1, index1 in auto1.state_to_index.items(): | ||
for state2, index2 in auto2.state_to_index.items(): | ||
index = len(auto2) * index1 + index2 | ||
res.state_to_index[index] = index | ||
|
||
if state1 in auto1.start_states and state2 in auto2.start_states: | ||
res.start_states.add(State(index)) | ||
|
||
if state1 in auto1.final_states and state2 in auto2.final_states: | ||
res.final_states.add(State(index)) | ||
|
||
labels = auto1.labels() & auto2.labels() | ||
for label in labels: | ||
fa.sparse[label] = kron(fa1.sparse[label], fa2.sparse[label], "csr") | ||
res.matrices[label] = kron(auto1.matrices[label], auto2.matrices[label], "csr") | ||
|
||
return res | ||
|
||
for u, i in fa1.mapping.items(): | ||
for v, j in fa2.mapping.items(): | ||
|
||
k = len(fa2.mapping) * i + j | ||
fa.mapping[k] = k | ||
def paths_ends( | ||
graph: MultiDiGraph, start: set[int], final: set[int], regex: str | ||
) -> list[tuple[object, object]]: | ||
dfa = FiniteAutomaton(regex_to_dfa(regex)) | ||
nfa = FiniteAutomaton(graph_to_nfa(graph, start, final)) | ||
intersection = intersect_automata(nfa, dfa, lbl=False) | ||
|
||
if u in fa1.start_states and v in fa2.start_states: | ||
fa.start_states.add(State(k)) | ||
if intersection.is_empty(): | ||
return [] | ||
|
||
if u in fa1.final_states and v in fa2.final_states: | ||
fa.final_states.add(State(k)) | ||
from_states, to_states = intersection.get_transitive_closure().nonzero() | ||
n = len(dfa) | ||
|
||
return fa | ||
return [ | ||
(nfa.get_state_by_index(from_state // n), nfa.get_state_by_index(to_state // n)) | ||
for from_state, to_state in zip(from_states, to_states) | ||
if from_state in intersection.start_states | ||
and to_state in intersection.final_states | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
from project.task3 import FiniteAutomaton, intersect_automata | ||
|
||
|
||
def reachability_with_constraints( | ||
fa: FiniteAutomaton, constraints_fa: FiniteAutomaton | ||
) -> dict[int, set[int]]: | ||
intersection = intersect_automata(fa, constraints_fa, lbl=False) | ||
res = {state: set() for state in fa.start_states} | ||
|
||
if intersection.is_empty(): | ||
return res | ||
|
||
from_states, to_states = intersection.get_transitive_closure().nonzero() | ||
n = len(constraints_fa) | ||
|
||
for from_state, to_state in zip(from_states, to_states): | ||
if ( | ||
from_state in intersection.start_states | ||
and to_state in intersection.final_states | ||
): | ||
res[fa.get_state_by_index(from_state // n)].add( | ||
fa.get_state_by_index(to_state // n) | ||
) | ||
|
||
return res | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
from pyformlang.cfg import CFG, Variable, Terminal, Epsilon | ||
|
||
from collections import defaultdict | ||
from typing import Tuple | ||
|
||
|
||
def cfg_to_weak_normal_form(initCfg, start="S") -> CFG: | ||
elimCfg = initCfg.eliminate_unit_productions().remove_useless_symbols() | ||
return CFG( | ||
productions=set( | ||
elimCfg._decompose_productions( | ||
elimCfg._get_productions_with_only_single_terminals() | ||
) | ||
), | ||
start_symbol=Variable(start), | ||
) | ||
|
||
|
||
def cfpq_with_hellings(cfg, graph, start_nodes=None, final_nodes=None): | ||
terminal, epsilon, mult, temp = defaultdict(set), set(), defaultdict(set), set() | ||
for prod in cfg_to_weak_normal_form(cfg).productions: | ||
if len(prod.body) == 2: | ||
mult[prod.head].add((prod.body[0], prod.body[1])) | ||
elif len(prod.body) == 1 and isinstance(prod.body[0], Terminal): | ||
terminal[prod.head].add(prod.body[0]) | ||
elif len(prod.body) == 1 and isinstance(prod.body[0], Epsilon): | ||
epsilon.add(prod.body[0]) | ||
|
||
cur = { | ||
(n, start, end) | ||
for (start, end, label) in graph.edges.data("label") | ||
for n in terminal | ||
if label in terminal[n] | ||
}.union({(n, node, node) for n in epsilon for node in graph.nodes}) | ||
|
||
copy = cur.copy() | ||
while len(copy) != 0: | ||
n1, v1, u1 = copy.pop() | ||
for n2, v2, u2 in cur: | ||
if v1 == u2: | ||
for N_k in mult: | ||
if (n2, n1) in mult[N_k] and (N_k, v2, v1) not in r: | ||
copy.add((N_k, v2, u1)) | ||
temp.add((N_k, v2, u1)) | ||
|
||
return { | ||
(start, end) | ||
for (n, start, end) in cur.union(temp) | ||
if Variable(n) == cfg.start_symbol | ||
and (start_nodes is None or start in start_nodes) | ||
and (final_nodes is None or end in final_nodes) | ||
} | ||
|
||
|
||
def read_cfgrammar(filePath, start="S"): | ||
with open(filePath, "r") as file: | ||
return CFG.from_text(file.read(), Variable(start)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
from scipy.sparse import lil_matrix | ||
from pyformlang.cfg import CFG, Terminal | ||
import networkx as nx | ||
from typing import Set, Tuple | ||
from project.task6 import cfg_to_weak_normal_form | ||
|
||
|
||
def cfpq_with_matrix(cfg, graph, start_nodes=None, final_nodes=None): | ||
wnf = cfg_to_weak_normal_form(cfg) | ||
mapVarIndex = { | ||
variable: index | ||
for index, variable in enumerate( | ||
{production.head for production in wnf.productions} | ||
) | ||
} | ||
|
||
matrices = {} | ||
n = graph.number_of_nodes() | ||
for production in wnf.productions: | ||
matrices[production.head] = lil_matrix((n, n), dtype=bool) | ||
if len(production.body) == 1 and isinstance(production.body[0], Terminal): | ||
for start, end, label in graph.edges.data("label"): | ||
if str(production.body[0]) == str(label): | ||
matrices[production.head][start, end] = True | ||
|
||
changed = True | ||
while changed: | ||
changed = False | ||
for production in wnf.productions: | ||
if ( | ||
len(production.body) == 2 | ||
and production.body[0] in mapVarIndex | ||
and production.body[1] in mapVarIndex | ||
): | ||
prev = matrices[production.head].nnz | ||
matrices[production.head] += ( | ||
matrices[production.body[0]] * matrices[production.body[1]] | ||
) | ||
changed = changed or (prev != matrices[production.head].nnz) | ||
|
||
return { | ||
(row, column) | ||
for variable, matrix in matrices.items() | ||
for row, column in zip(matrix.tocoo().row, matrix.tocoo().col) | ||
if variable == wnf.start_symbol | ||
and (start_nodes is None or row in start_nodes) | ||
and (final_nodes is None or column in final_nodes) | ||
} |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Можете объяснить почему эта функция крайне похожа на
paths_ends
?