Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

8 домашняя работа по формальным языкам #7

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,10 +9,10 @@ jobs:
steps:
- name: Set up Git repository
uses: actions/checkout@v2
- name: Set up Python 3.9
- name: Set up Python 3.10.12
uses: actions/setup-python@v2
with:
python-version: "3.9"
python-version: "3.10.12"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
Expand Down
206 changes: 138 additions & 68 deletions project/task3.py
Original file line number Diff line number Diff line change
@@ -1,84 +1,154 @@
from scipy.sparse import dok_matrix, kron
from pyformlang.finite_automaton import (
DeterministicFiniteAutomaton as DFA,
NondeterministicFiniteAutomaton as NDFA,
NondeterministicFiniteAutomaton as NFA,
State,
Symbol,
)
from networkx import MultiDiGraph
from scipy.sparse import dok_matrix, kron
from typing import Iterable
from functools import reduce

from project.task2 import regex_to_dfa, graph_to_nfa


class FiniteAutomaton:
def __init__(self, dfa=None):
if not isinstance(dfa, DFA) and not isinstance(dfa, NDFA):
def __init__(self, fa=None) -> None:
self.lbl = True
self.matrices = {}
if fa is None:
self.start_states = set()
self.final_states = set()
self.state_to_index = {}
return

states = dfa.to_dict()
self.mapping = {v: i for i, v in enumerate(dfa.states)}
self.sparse = dict()

for label in dfa.symbols:
self.sparse[label] = dok_matrix(
(len(dfa.states), len(dfa.states)), dtype=bool
)
for u, edges in states.items():
if label in edges:
for v in (
edges[label]
if isinstance(edges[label], set)
else {edges[label]}
):
self.sparse[label][self.mapping[u], self.mapping[v]] = True

self.start_states = dfa.start_states
self.final_states = dfa.final_states

def accepts(self, word):
return self.to_ndfa().accepts("".join(list(word)))

def is_empty(self):
return len(self.sparse) == 0

def mapping_for(self, u):
return self.mapping[State(u)]

def to_ndfa(self):
ndfa = NDFA()
for label in self.sparse.keys():
m_size = self.sparse[label].shape[0]
for u in range(m_size):
for v in range(m_size):
if self.sparse[label][u, v]:
ndfa.add_transition(
self.mapping_for(u), label, self.mapping_for(v)
)

for s in self.start_states:
ndfa.add_start_state(self.mapping_for(s))
for s in self.final_states:
ndfa.add_final_state(self.mapping_for(s))
return ndfa


def intersect_automata(fa1: FiniteAutomaton, fa2: FiniteAutomaton):
labels = fa1.sparse.keys() & fa2.sparse.keys()
fa = FiniteAutomaton()
fa.sparse = dict()
fa.start_states = set()
fa.final_states = set()
fa.mapping = dict()
self.start_states = fa.start_states
self.final_states = fa.final_states

self.state_to_index = {state: index for index, state in enumerate(fa.states)}
self.index_to_state = {
index: state for state, index in self.state_to_index.items()
}
n_states = len(fa.states)

for from_state, transitions in fa.to_dict().items():
for symbol, to_states in transitions.items():
if symbol not in self.matrices.keys():
self.matrices[symbol] = dok_matrix((n_states, n_states), dtype=bool)
if isinstance(fa, DFA):
self.matrices[symbol][
self.state_to_index[from_state], self.state_to_index[to_states]
] = True
else:
for to_state in to_states:
self.matrices[symbol][
self.state_to_index[from_state],
self.state_to_index[to_state],
] = True

def to_nfa(self) -> NFA:
nfa = NFA()

for state in self.start_states:
nfa.add_start_state(state)

for state in self.final_states:
nfa.add_final_state(state)

for label, matrix in self.matrices.items():
n, m = matrix.shape
for from_state in range(n):
for to_state in range(m):
if matrix[from_state, to_state]:
nfa.add_transition(State(from_state), label, State(to_state))

return nfa

def set_state_to_index(self, new_state_to_index):
self.state_to_index = new_state_to_index
self.index_to_state = {
index: state for state, index in self.state_to_index.items()
}

def set_true(self, label, row, column):
self.matrices[label][row, column] = True

def add_label_if_not_exist(self, label, dim=None):
if label not in self.matrices:
dim = dim or len(self)
self.matrices[label] = dok_matrix((dim, dim), dtype=bool)

def accepts(self, word: Iterable[Symbol]) -> bool:
return self.to_nfa().accepts(word)

def is_empty(self) -> bool:
return self.to_nfa().is_empty()

def get_index(self, state) -> int:
return self.state_to_index.get(state, 0)

def get_state_by_index(self, index: int):
return self.index_to_state[index]

def __len__(self):
return len(self.state_to_index)

def labels(self):
return self.state_to_index.keys() if self.lbl else self.matrices.keys()

def get_transitive_closure(self):
if len(self.matrices.values()) == 0:
return dok_matrix((0, 0), dtype=bool)

closure = reduce(lambda x, y: x + y, self.matrices.values())

while True:
prev_zero_count = closure.count_nonzero()
closure += closure @ closure
if prev_zero_count == closure.count_nonzero():
return closure


def intersect_automata(
auto1: FiniteAutomaton, auto2: FiniteAutomaton, lbl: bool = True
) -> FiniteAutomaton:
auto1.lbl = auto2.lbl = not lbl
res = FiniteAutomaton()

for state1, index1 in auto1.state_to_index.items():
for state2, index2 in auto2.state_to_index.items():
index = len(auto2) * index1 + index2
res.state_to_index[index] = index

if state1 in auto1.start_states and state2 in auto2.start_states:
res.start_states.add(State(index))

if state1 in auto1.final_states and state2 in auto2.final_states:
res.final_states.add(State(index))

labels = auto1.labels() & auto2.labels()
for label in labels:
fa.sparse[label] = kron(fa1.sparse[label], fa2.sparse[label], "csr")
res.matrices[label] = kron(auto1.matrices[label], auto2.matrices[label], "csr")

return res

for u, i in fa1.mapping.items():
for v, j in fa2.mapping.items():

k = len(fa2.mapping) * i + j
fa.mapping[k] = k
def paths_ends(
graph: MultiDiGraph, start: set[int], final: set[int], regex: str
) -> list[tuple[object, object]]:
dfa = FiniteAutomaton(regex_to_dfa(regex))
nfa = FiniteAutomaton(graph_to_nfa(graph, start, final))
intersection = intersect_automata(nfa, dfa, lbl=False)

if u in fa1.start_states and v in fa2.start_states:
fa.start_states.add(State(k))
if intersection.is_empty():
return []

if u in fa1.final_states and v in fa2.final_states:
fa.final_states.add(State(k))
from_states, to_states = intersection.get_transitive_closure().nonzero()
n = len(dfa)

return fa
return [
(nfa.get_state_by_index(from_state // n), nfa.get_state_by_index(to_state // n))
for from_state, to_state in zip(from_states, to_states)
if from_state in intersection.start_states
and to_state in intersection.final_states
]
25 changes: 25 additions & 0 deletions project/task4.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
from project.task3 import FiniteAutomaton, intersect_automata


def reachability_with_constraints(
fa: FiniteAutomaton, constraints_fa: FiniteAutomaton
) -> dict[int, set[int]]:
intersection = intersect_automata(fa, constraints_fa, lbl=False)
res = {state: set() for state in fa.start_states}

if intersection.is_empty():
return res

from_states, to_states = intersection.get_transitive_closure().nonzero()
n = len(constraints_fa)

for from_state, to_state in zip(from_states, to_states):
if (
from_state in intersection.start_states
and to_state in intersection.final_states
):
res[fa.get_state_by_index(from_state // n)].add(
fa.get_state_by_index(to_state // n)
)

return res
57 changes: 57 additions & 0 deletions project/task6.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
from pyformlang.cfg import CFG, Variable, Terminal, Epsilon

from collections import defaultdict
from typing import Tuple


def cfg_to_weak_normal_form(initCfg, start="S") -> CFG:
elimCfg = initCfg.eliminate_unit_productions().remove_useless_symbols()
return CFG(
productions=set(
elimCfg._decompose_productions(
elimCfg._get_productions_with_only_single_terminals()
)
),
start_symbol=Variable(start),
)


def cfpq_with_hellings(cfg, graph, start_nodes=None, final_nodes=None):
terminal, epsilon, mult, temp = defaultdict(set), set(), defaultdict(set), set()
for prod in cfg_to_weak_normal_form(cfg).productions:
if len(prod.body) == 2:
mult[prod.head].add((prod.body[0], prod.body[1]))
elif len(prod.body) == 1 and isinstance(prod.body[0], Terminal):
terminal[prod.head].add(prod.body[0])
elif len(prod.body) == 1 and isinstance(prod.body[0], Epsilon):
epsilon.add(prod.body[0])

cur = {
(n, start, end)
for (start, end, label) in graph.edges.data("label")
for n in terminal
if label in terminal[n]
}.union({(n, node, node) for n in epsilon for node in graph.nodes})

copy = cur.copy()
while len(copy) != 0:
n1, v1, u1 = copy.pop()
for n2, v2, u2 in cur:
if v1 == u2:
for N_k in mult:
if (n2, n1) in mult[N_k] and (N_k, v2, v1) not in r:
copy.add((N_k, v2, u1))
temp.add((N_k, v2, u1))

return {
(start, end)
for (n, start, end) in cur.union(temp)
if Variable(n) == cfg.start_symbol
and (start_nodes is None or start in start_nodes)
and (final_nodes is None or end in final_nodes)
}


def read_cfgrammar(filePath, start="S"):
with open(filePath, "r") as file:
return CFG.from_text(file.read(), Variable(start))
48 changes: 48 additions & 0 deletions project/task7.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
from scipy.sparse import lil_matrix
from pyformlang.cfg import CFG, Terminal
import networkx as nx
from typing import Set, Tuple
from project.task6 import cfg_to_weak_normal_form


def cfpq_with_matrix(cfg, graph, start_nodes=None, final_nodes=None):
wnf = cfg_to_weak_normal_form(cfg)
mapVarIndex = {
variable: index
for index, variable in enumerate(
{production.head for production in wnf.productions}
)
}

matrices = {}
n = graph.number_of_nodes()
for production in wnf.productions:
matrices[production.head] = lil_matrix((n, n), dtype=bool)
if len(production.body) == 1 and isinstance(production.body[0], Terminal):
for start, end, label in graph.edges.data("label"):
if str(production.body[0]) == str(label):
matrices[production.head][start, end] = True

changed = True
while changed:
changed = False
for production in wnf.productions:
if (
len(production.body) == 2
and production.body[0] in mapVarIndex
and production.body[1] in mapVarIndex
):
prev = matrices[production.head].nnz
matrices[production.head] += (
matrices[production.body[0]] * matrices[production.body[1]]
)
changed = changed or (prev != matrices[production.head].nnz)

return {
(row, column)
for variable, matrix in matrices.items()
for row, column in zip(matrix.tocoo().row, matrix.tocoo().col)
if variable == wnf.start_symbol
and (start_nodes is None or row in start_nodes)
and (final_nodes is None or column in final_nodes)
}
Loading
Loading