diff --git a/figures/MAM2EBRAINS/M2E_compute_corrcoeff.py b/figures/MAM2EBRAINS/M2E_compute_corrcoeff.py index 35db199..98d1b23 100644 --- a/figures/MAM2EBRAINS/M2E_compute_corrcoeff.py +++ b/figures/MAM2EBRAINS/M2E_compute_corrcoeff.py @@ -42,7 +42,6 @@ def compute_corrcoeff(M, data_path, label): LvR_list = [] N = [] for pop in M.structure[area]: - print(area, pop) fp = '-'.join((label, 'spikes', # assumes that the default label for spike files was used area, @@ -55,14 +54,15 @@ def compute_corrcoeff(M, data_path, label): dat = ch.sort_gdf_by_id(spikes, idmin=ids[0], idmax=ids[0]+subsample+1000) bins, hist = ch.instantaneous_spike_count(dat[1], resolution, tmin=tmin, tmax=T) rates = ch.strip_binned_spiketrains(hist)[:subsample] - print(rates) - print("test") - print(rates.shape) + + # test if only 1 of the neurons is firing, if yes, print warning message and continue + if rates.shape[0] < 2: + # print(area, pop) + print(f"WARNING: There are less than 2 neurons firing in the population: {area} {pop} due to a very small value being assigned to the parameter scale_down_to, the corresponding cross-correlation will not be computed.", area, pop) + continue + + # compute cross correlation coefficient cc = np.corrcoef(rates) - print(cc.shape) - print(cc[0].size) - # print(cc[0]) - # print(cc) cc = np.extract(1-np.eye(cc[0].size), cc) cc[np.where(np.isnan(cc))] = 0. cc_dict[area][pop] = np.mean(cc) diff --git a/multi-area-model.ipynb b/multi-area-model.ipynb index bd3da0c..cfb394e 100644 --- a/multi-area-model.ipynb +++ b/multi-area-model.ipynb @@ -450,7 +450,7 @@ "output_type": "stream", "text": [ "Initializing network from dictionary.\n", - "RAND_DATA_LABEL 3441\n", + "RAND_DATA_LABEL 8294\n", "\n", "\n", "========================================\n", @@ -525,10 +525,85 @@ "execution_count": 9, "id": "15778e9c", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prepared simulation in 0.00 seconds.\n", + "Rank 0: created area V1 with 0 local nodes\n", + "Memory after V1 : 1611.34 MB\n", + "Rank 0: created area V2 with 0 local nodes\n", + "Memory after V2 : 1639.26 MB\n", + "Rank 0: created area VP with 0 local nodes\n", + "Memory after VP : 1669.84 MB\n", + "Rank 0: created area V3 with 0 local nodes\n", + "Memory after V3 : 1699.47 MB\n", + "Rank 0: created area V3A with 0 local nodes\n", + "Memory after V3A : 1720.84 MB\n", + "Rank 0: created area MT with 0 local nodes\n", + "Memory after MT : 1748.19 MB\n", + "Rank 0: created area V4t with 0 local nodes\n", + "Memory after V4t : 1774.80 MB\n", + "Rank 0: created area V4 with 0 local nodes\n", + "Memory after V4 : 1803.38 MB\n", + "Rank 0: created area VOT with 0 local nodes\n", + "Memory after VOT : 1830.27 MB\n", + "Rank 0: created area MSTd with 0 local nodes\n", + "Memory after MSTd : 1853.73 MB\n", + "Rank 0: created area PIP with 0 local nodes\n", + "Memory after PIP : 1876.94 MB\n", + "Rank 0: created area PO with 0 local nodes\n", + "Memory after PO : 1900.03 MB\n", + "Rank 0: created area DP with 0 local nodes\n", + "Memory after DP : 1922.12 MB\n", + "Rank 0: created area MIP with 0 local nodes\n", + "Memory after MIP : 1945.68 MB\n", + "Rank 0: created area MDP with 0 local nodes\n", + "Memory after MDP : 1968.92 MB\n", + "Rank 0: created area VIP with 0 local nodes\n", + "Memory after VIP : 1992.72 MB\n", + "Rank 0: created area LIP with 0 local nodes\n", + "Memory after LIP : 2018.71 MB\n", + "Rank 0: created area PITv with 0 local nodes\n", + "Memory after PITv : 2045.72 MB\n", + "Rank 0: created area PITd with 0 local nodes\n", + "Memory after PITd : 2072.66 MB\n", + "Rank 0: created area MSTl with 0 local nodes\n", + "Memory after MSTl : 2095.90 MB\n", + "Rank 0: created area CITv with 0 local nodes\n", + "Memory after CITv : 2117.05 MB\n", + "Rank 0: created area CITd with 0 local nodes\n", + "Memory after CITd : 2138.37 MB\n", + "Rank 0: created area FEF with 0 local nodes\n", + "Memory after FEF : 2161.42 MB\n", + "Rank 0: created area TF with 0 local nodes\n", + "Memory after TF : 2178.45 MB\n", + "Rank 0: created area AITv with 0 local nodes\n", + "Memory after AITv : 2203.34 MB\n", + "Rank 0: created area FST with 0 local nodes\n", + "Memory after FST : 2222.09 MB\n", + "Rank 0: created area 7a with 0 local nodes\n", + "Memory after 7a : 2245.62 MB\n", + "Rank 0: created area STPp with 0 local nodes\n", + "Memory after STPp : 2266.24 MB\n", + "Rank 0: created area STPa with 0 local nodes\n", + "Memory after STPa : 2287.40 MB\n", + "Rank 0: created area 46 with 0 local nodes\n", + "Memory after 46 : 2304.28 MB\n", + "Rank 0: created area AITd with 0 local nodes\n", + "Memory after AITd : 2329.16 MB\n", + "Rank 0: created area TH with 0 local nodes\n", + "Memory after TH : 2343.14 MB\n", + "Created areas and internal connections in 2.46 seconds.\n", + "Created cortico-cortical connections in 20.98 seconds.\n", + "Simulated network in 141.34 seconds.\n" + ] + } + ], "source": [ "# Run the simulation, depending on the model parameter and downscale ratio, the running time varies largely.\n", - "# M.simulation.simulate()" + "M.simulation.simulate()" ] }, { @@ -602,7 +677,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "ae19bcc3", "metadata": { "tags": [] @@ -612,3046 +687,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "V1 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(192, 3500)\n", - "(192, 192)\n", - "192\n", - "V1 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(63, 3500)\n", - "(63, 63)\n", - "63\n", - "V1 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(350, 3500)\n", - "(350, 350)\n", - "350\n", - "V1 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(87, 3500)\n", - "(87, 87)\n", - "87\n", - "V1 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(103, 3500)\n", - "(103, 103)\n", - "103\n", - "V1 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(22, 3500)\n", - "(22, 22)\n", - "22\n", - "V1 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(99, 3500)\n", - "(99, 99)\n", - "99\n", - "V1 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(20, 3500)\n", - "(20, 20)\n", - "20\n", - "V2 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(196, 3500)\n", - "(196, 196)\n", - "196\n", - "V2 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(68, 3500)\n", - "(68, 68)\n", - "68\n", - "V2 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(181, 3500)\n", - "(181, 181)\n", - "181\n", - "V2 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(45, 3500)\n", - "(45, 45)\n", - "45\n", - "V2 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(94, 3500)\n", - "(94, 94)\n", - "94\n", - "V2 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(20, 3500)\n", - "(20, 20)\n", - "20\n", - "V2 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(94, 3500)\n", - "(94, 94)\n", - "94\n", - "V2 6I\n", - "[[0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(19, 3500)\n", - "(19, 19)\n", - "19\n", - "VP 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(206, 3500)\n", - "(206, 206)\n", - "206\n", - "VP 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(70, 3500)\n", - "(70, 70)\n", - "70\n", - "VP 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]]\n", - "test\n", - "(244, 3500)\n", - "(244, 244)\n", - "244\n", - "VP 4I\n", - "[[0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(61, 3500)\n", - "(61, 61)\n", - "61\n", - "VP 5E\n", - "[[0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(78, 3500)\n", - "(78, 78)\n", - "78\n", - "VP 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(17, 3500)\n", - "(17, 17)\n", - "17\n", - "VP 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(94, 3500)\n", - "(94, 94)\n", - "94\n", - "VP 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(19, 3500)\n", - "(19, 19)\n", - "19\n", - "V3 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(238, 3500)\n", - "(238, 238)\n", - "238\n", - "V3 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]]\n", - "test\n", - "(81, 3500)\n", - "(81, 81)\n", - "81\n", - "V3 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(234, 3500)\n", - "(234, 234)\n", - "234\n", - "V3 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(57, 3500)\n", - "(57, 57)\n", - "57\n", - "V3 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(60, 3500)\n", - "(60, 60)\n", - "60\n", - "V3 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(13, 3500)\n", - "(13, 13)\n", - "13\n", - "V3 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(68, 3500)\n", - "(68, 68)\n", - "68\n", - "V3 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(14, 3500)\n", - "(14, 14)\n", - "14\n", - "V3A 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(171, 3500)\n", - "(171, 171)\n", - "171\n", - "V3A 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(54, 3500)\n", - "(54, 54)\n", - "54\n", - "V3A 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(116, 3500)\n", - "(116, 116)\n", - "116\n", - "V3A 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(27, 3500)\n", - "(27, 27)\n", - "27\n", - "V3A 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(60, 3500)\n", - "(60, 60)\n", - "60\n", - "V3A 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(13, 3500)\n", - "(13, 13)\n", - "13\n", - "V3A 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]]\n", - "test\n", - "(57, 3500)\n", - "(57, 57)\n", - "57\n", - "V3A 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "MT 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(229, 3500)\n", - "(229, 229)\n", - "229\n", - "MT 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(79, 3500)\n", - "(79, 79)\n", - "79\n", - "MT 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(134, 3500)\n", - "(134, 134)\n", - "134\n", - "MT 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]]\n", - "test\n", - "(34, 3500)\n", - "(34, 34)\n", - "34\n", - "MT 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(68, 3500)\n", - "(68, 68)\n", - "68\n", - "MT 5I\n", - "[[0 1 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 1]]\n", - "test\n", - "(14, 3500)\n", - "(14, 14)\n", - "14\n", - "MT 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(56, 3500)\n", - "(56, 56)\n", - "56\n", - "MT 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "V4t 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(194, 3500)\n", - "(194, 194)\n", - "194\n", - "V4t 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(62, 3500)\n", - "(62, 62)\n", - "62\n", - "V4t 4E\n", - "[[0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(171, 3500)\n", - "(171, 171)\n", - "171\n", - "V4t 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(40, 3500)\n", - "(40, 40)\n", - "40\n", - "V4t 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(73, 3500)\n", - "(73, 73)\n", - "73\n", - "V4t 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "V4t 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(62, 3500)\n", - "(62, 62)\n", - "62\n", - "V4t 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(17, 3500)\n", - "(17, 17)\n", - "17\n", - "V4 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(275, 3500)\n", - "(275, 275)\n", - "275\n", - "V4 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 1 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(89, 3500)\n", - "(89, 89)\n", - "89\n", - "V4 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(169, 3500)\n", - "(169, 169)\n", - "169\n", - "V4 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(42, 3500)\n", - "(42, 42)\n", - "42\n", - "V4 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(68, 3500)\n", - "(68, 68)\n", - "68\n", - "V4 5I\n", - "[[0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "V4 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(56, 3500)\n", - "(56, 56)\n", - "56\n", - "V4 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 1 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]]\n", - "test\n", - "(12, 3500)\n", - "(12, 12)\n", - "12\n", - "VOT 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(149, 3500)\n", - "(149, 149)\n", - "149\n", - "VOT 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(57, 3500)\n", - "(57, 57)\n", - "57\n", - "VOT 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(167, 3500)\n", - "(167, 167)\n", - "167\n", - "VOT 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(43, 3500)\n", - "(43, 43)\n", - "43\n", - "VOT 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(75, 3500)\n", - "(75, 75)\n", - "75\n", - "VOT 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "VOT 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(80, 3500)\n", - "(80, 80)\n", - "80\n", - "VOT 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(18, 3500)\n", - "(18, 18)\n", - "18\n", - "MSTd 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(173, 3500)\n", - "(173, 173)\n", - "173\n", - "MSTd 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(58, 3500)\n", - "(58, 58)\n", - "58\n", - "MSTd 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 1 0]]\n", - "test\n", - "(107, 3500)\n", - "(107, 107)\n", - "107\n", - "MSTd 4I\n", - "[[0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]]\n", - "test\n", - "(26, 3500)\n", - "(26, 26)\n", - "26\n", - "MSTd 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(69, 3500)\n", - "(69, 69)\n", - "69\n", - "MSTd 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "MSTd 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(38, 3500)\n", - "(38, 38)\n", - "38\n", - "MSTd 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(18, 3500)\n", - "(18, 18)\n", - "18\n", - "PIP 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(171, 3500)\n", - "(171, 171)\n", - "171\n", - "PIP 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(60, 3500)\n", - "(60, 60)\n", - "60\n", - "PIP 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(112, 3500)\n", - "(112, 112)\n", - "112\n", - "PIP 4I\n", - "[[0 1 0 ... 1 0 0]\n", - " [0 0 1 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(27, 3500)\n", - "(27, 27)\n", - "27\n", - "PIP 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(68, 3500)\n", - "(68, 68)\n", - "68\n", - "PIP 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "PIP 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(53, 3500)\n", - "(53, 53)\n", - "53\n", - "PIP 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(18, 3500)\n", - "(18, 18)\n", - "18\n", - "PO 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(153, 3500)\n", - "(153, 153)\n", - "153\n", - "PO 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(54, 3500)\n", - "(54, 54)\n", - "54\n", - "PO 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(108, 3500)\n", - "(108, 108)\n", - "108\n", - "PO 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(28, 3500)\n", - "(28, 28)\n", - "28\n", - "PO 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(68, 3500)\n", - "(68, 68)\n", - "68\n", - "PO 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "PO 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(53, 3500)\n", - "(53, 53)\n", - "53\n", - "PO 6I\n", - "[[0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(18, 3500)\n", - "(18, 18)\n", - "18\n", - "DP 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(154, 3500)\n", - "(154, 154)\n", - "154\n", - "DP 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(59, 3500)\n", - "(59, 59)\n", - "59\n", - "DP 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(89, 3500)\n", - "(89, 89)\n", - "89\n", - "DP 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(21, 3500)\n", - "(21, 21)\n", - "21\n", - "DP 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(61, 3500)\n", - "(61, 61)\n", - "61\n", - "DP 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "DP 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(46, 3500)\n", - "(46, 46)\n", - "46\n", - "DP 6I\n", - "[[0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(17, 3500)\n", - "(17, 17)\n", - "17\n", - "MIP 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(162, 3500)\n", - "(162, 162)\n", - "162\n", - "MIP 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(56, 3500)\n", - "(56, 56)\n", - "56\n", - "MIP 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(76, 3500)\n", - "(76, 76)\n", - "76\n", - "MIP 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(19, 3500)\n", - "(19, 19)\n", - "19\n", - "MIP 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(37, 3500)\n", - "(37, 37)\n", - "37\n", - "MIP 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(8, 3500)\n", - "(8, 8)\n", - "8\n", - "MIP 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(108, 3500)\n", - "(108, 108)\n", - "108\n", - "MIP 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(34, 3500)\n", - "(34, 34)\n", - "34\n", - "MDP 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(137, 3500)\n", - "(137, 137)\n", - "137\n", - "MDP 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(57, 3500)\n", - "(57, 57)\n", - "57\n", - "MDP 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(107, 3500)\n", - "(107, 107)\n", - "107\n", - "MDP 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(28, 3500)\n", - "(28, 28)\n", - "28\n", - "MDP 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(56, 3500)\n", - "(56, 56)\n", - "56\n", - "MDP 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "MDP 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(29, 3500)\n", - "(29, 29)\n", - "29\n", - "MDP 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(12, 3500)\n", - "(12, 12)\n", - "12\n", - "VIP 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(224, 3500)\n", - "(224, 224)\n", - "224\n", - "VIP 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(76, 3500)\n", - "(76, 76)\n", - "76\n", - "VIP 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 1 ... 0 1 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(127, 3500)\n", - "(127, 127)\n", - "127\n", - "VIP 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(28, 3500)\n", - "(28, 28)\n", - "28\n", - "VIP 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(41, 3500)\n", - "(41, 41)\n", - "41\n", - "VIP 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(8, 3500)\n", - "(8, 8)\n", - "8\n", - "VIP 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(18, 3500)\n", - "(18, 18)\n", - "18\n", - "VIP 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(8, 3500)\n", - "(8, 8)\n", - "8\n", - "LIP 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(188, 3500)\n", - "(188, 188)\n", - "188\n", - "LIP 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(65, 3500)\n", - "(65, 65)\n", - "65\n", - "LIP 4E\n", - "[[0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(95, 3500)\n", - "(95, 95)\n", - "95\n", - "LIP 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(25, 3500)\n", - "(25, 25)\n", - "25\n", - "LIP 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]]\n", - "test\n", - "(57, 3500)\n", - "(57, 57)\n", - "57\n", - "LIP 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 1 0 0]]\n", - "test\n", - "(12, 3500)\n", - "(12, 12)\n", - "12\n", - "LIP 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(88, 3500)\n", - "(88, 88)\n", - "88\n", - "LIP 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(26, 3500)\n", - "(26, 26)\n", - "26\n", - "PITv 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(176, 3500)\n", - "(176, 176)\n", - "176\n", - "PITv 23I\n", - "[[0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(60, 3500)\n", - "(60, 60)\n", - "60\n", - "PITv 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(184, 3500)\n", - "(184, 184)\n", - "184\n", - "PITv 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(43, 3500)\n", - "(43, 43)\n", - "43\n", - "PITv 5E\n", - "[[0 1 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(69, 3500)\n", - "(69, 69)\n", - "69\n", - "PITv 5I\n", - "[[0 1 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "PITv 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]]\n", - "test\n", - "(63, 3500)\n", - "(63, 63)\n", - "63\n", - "PITv 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(19, 3500)\n", - "(19, 19)\n", - "19\n", - "PITd 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(163, 3500)\n", - "(163, 163)\n", - "163\n", - "PITd 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(58, 3500)\n", - "(58, 58)\n", - "58\n", - "PITd 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(177, 3500)\n", - "(177, 177)\n", - "177\n", - "PITd 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(43, 3500)\n", - "(43, 43)\n", - "43\n", - "PITd 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 1 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(77, 3500)\n", - "(77, 77)\n", - "77\n", - "PITd 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(17, 3500)\n", - "(17, 17)\n", - "17\n", - "PITd 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(81, 3500)\n", - "(81, 81)\n", - "81\n", - "PITd 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(18, 3500)\n", - "(18, 18)\n", - "18\n", - "MSTl 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(169, 3500)\n", - "(169, 169)\n", - "169\n", - "MSTl 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(57, 3500)\n", - "(57, 57)\n", - "57\n", - "MSTl 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(109, 3500)\n", - "(109, 109)\n", - "109\n", - "MSTl 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(28, 3500)\n", - "(28, 28)\n", - "28\n", - "MSTl 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(66, 3500)\n", - "(66, 66)\n", - "66\n", - "MSTl 5I\n", - "[[0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 1 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "MSTl 6E\n", - "[[0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(67, 3500)\n", - "(67, 67)\n", - "67\n", - "MSTl 6I\n", - "[[0 1 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "CITv 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(136, 3500)\n", - "(136, 136)\n", - "136\n", - "CITv 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(51, 3500)\n", - "(51, 51)\n", - "51\n", - "CITv 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(71, 3500)\n", - "(71, 71)\n", - "71\n", - "CITv 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 1 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(19, 3500)\n", - "(19, 19)\n", - "19\n", - "CITv 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(69, 3500)\n", - "(69, 69)\n", - "69\n", - "CITv 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "CITv 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(60, 3500)\n", - "(60, 60)\n", - "60\n", - "CITv 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]]\n", - "test\n", - "(17, 3500)\n", - "(17, 17)\n", - "17\n", - "CITd 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(98, 3500)\n", - "(98, 98)\n", - "98\n", - "CITd 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(37, 3500)\n", - "(37, 37)\n", - "37\n", - "CITd 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(55, 3500)\n", - "(55, 55)\n", - "55\n", - "CITd 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(9, 3500)\n", - "(9, 9)\n", - "9\n", - "CITd 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(57, 3500)\n", - "(57, 57)\n", - "57\n", - "CITd 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [1 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(14, 3500)\n", - "(14, 14)\n", - "14\n", - "CITd 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(47, 3500)\n", - "(47, 47)\n", - "47\n", - "CITd 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "FEF 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(151, 3500)\n", - "(151, 151)\n", - "151\n", - "FEF 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(55, 3500)\n", - "(55, 55)\n", - "55\n", - "FEF 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(109, 3500)\n", - "(109, 109)\n", - "109\n", - "FEF 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(24, 3500)\n", - "(24, 24)\n", - "24\n", - "FEF 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(81, 3500)\n", - "(81, 81)\n", - "81\n", - "FEF 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(18, 3500)\n", - "(18, 18)\n", - "18\n", - "FEF 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(42, 3500)\n", - "(42, 42)\n", - "42\n", - "FEF 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "TF 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 1 0 ... 0 1 0]]\n", - "test\n", - "(121, 3500)\n", - "(121, 121)\n", - "121\n", - "TF 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(43, 3500)\n", - "(43, 43)\n", - "43\n", - "TF 4E\n", - "[[1 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]]\n", - "test\n", - "(78, 3500)\n", - "(78, 78)\n", - "78\n", - "TF 4I\n", - "[[0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(20, 3500)\n", - "(20, 20)\n", - "20\n", - "TF 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(36, 3500)\n", - "(36, 36)\n", - "36\n", - "TF 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(10, 3500)\n", - "(10, 10)\n", - "10\n", - "TF 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(40, 3500)\n", - "(40, 40)\n", - "40\n", - "TF 6I\n", - "[[0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(13, 3500)\n", - "(13, 13)\n", - "13\n", - "AITv 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(147, 3500)\n", - "(147, 147)\n", - "147\n", - "AITv 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(54, 3500)\n", - "(54, 54)\n", - "54\n", - "AITv 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(79, 3500)\n", - "(79, 79)\n", - "79\n", - "AITv 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(20, 3500)\n", - "(20, 20)\n", - "20\n", - "AITv 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]]\n", - "test\n", - "(79, 3500)\n", - "(79, 79)\n", - "79\n", - "AITv 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(18, 3500)\n", - "(18, 18)\n", - "18\n", - "AITv 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(39, 3500)\n", - "(39, 39)\n", - "39\n", - "AITv 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(19, 3500)\n", - "(19, 19)\n", - "19\n", - "FST 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(56, 3500)\n", - "(56, 56)\n", - "56\n", - "FST 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 1]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(27, 3500)\n", - "(27, 27)\n", - "27\n", - "FST 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(28, 3500)\n", - "(28, 28)\n", - "28\n", - "FST 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]\n", - " [0 0 1 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(5, 3500)\n", - "(5, 5)\n", - "5\n", - "FST 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 1 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(36, 3500)\n", - "(36, 36)\n", - "36\n", - "FST 5I\n", - "[[0 0 1 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(10, 3500)\n", - "(10, 10)\n", - "10\n", - "FST 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(28, 3500)\n", - "(28, 28)\n", - "28\n", - "FST 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]]\n", - "test\n", - "(12, 3500)\n", - "(12, 12)\n", - "12\n", - "7a 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(103, 3500)\n", - "(103, 103)\n", - "103\n", - "7a 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(55, 3500)\n", - "(55, 55)\n", - "55\n", - "7a 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(54, 3500)\n", - "(54, 54)\n", - "54\n", - "7a 4I\n", - "[[0 1 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 1 ... 0 0 0]\n", - " [0 1 0 ... 0 0 1]]\n", - "test\n", - "(10, 3500)\n", - "(10, 10)\n", - "10\n", - "7a 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]]\n", - "test\n", - "(63, 3500)\n", - "(63, 63)\n", - "63\n", - "7a 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(17, 3500)\n", - "(17, 17)\n", - "17\n", - "7a 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(32, 3500)\n", - "(32, 32)\n", - "32\n", - "7a 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "STPp 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(118, 3500)\n", - "(118, 118)\n", - "118\n", - "STPp 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(43, 3500)\n", - "(43, 43)\n", - "43\n", - "STPp 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(48, 3500)\n", - "(48, 48)\n", - "48\n", - "STPp 4I\n", - "[[0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(8, 3500)\n", - "(8, 8)\n", - "8\n", - "STPp 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(60, 3500)\n", - "(60, 60)\n", - "60\n", - "STPp 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "STPp 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(41, 3500)\n", - "(41, 41)\n", - "41\n", - "STPp 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 1 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "STPa 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(144, 3500)\n", - "(144, 144)\n", - "144\n", - "STPa 23I\n", - "[[0 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(55, 3500)\n", - "(55, 55)\n", - "55\n", - "STPa 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(63, 3500)\n", - "(63, 63)\n", - "63\n", - "STPa 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 1 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "STPa 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(68, 3500)\n", - "(68, 68)\n", - "68\n", - "STPa 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(14, 3500)\n", - "(14, 14)\n", - "14\n", - "STPa 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(47, 3500)\n", - "(47, 47)\n", - "47\n", - "STPa 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(17, 3500)\n", - "(17, 17)\n", - "17\n", - "46 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]]\n", - "test\n", - "(47, 3500)\n", - "(47, 47)\n", - "47\n", - "46 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(24, 3500)\n", - "(24, 24)\n", - "24\n", - "46 4E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 1 0]]\n", - "test\n", - "(29, 3500)\n", - "(29, 29)\n", - "29\n", - "46 4I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 1 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 1 0 ... 0 0 0]]\n", - "test\n", - "(5, 3500)\n", - "(5, 5)\n", - "5\n", - "46 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(44, 3500)\n", - "(44, 44)\n", - "44\n", - "46 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(11, 3500)\n", - "(11, 11)\n", - "11\n", - "46 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(34, 3500)\n", - "(34, 34)\n", - "34\n", - "46 6I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]]\n", - "test\n", - "(15, 3500)\n", - "(15, 15)\n", - "15\n", - "AITd 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(125, 3500)\n", - "(125, 125)\n", - "125\n", - "AITd 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(50, 3500)\n", - "(50, 50)\n", - "50\n", - "AITd 4E\n", - "[[1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(73, 3500)\n", - "(73, 73)\n", - "73\n", - "AITd 4I\n", - "[[0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(14, 3500)\n", - "(14, 14)\n", - "14\n", - "AITd 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(75, 3500)\n", - "(75, 75)\n", - "75\n", - "AITd 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(16, 3500)\n", - "(16, 16)\n", - "16\n", - "AITd 6E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 1 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(30, 3500)\n", - "(30, 30)\n", - "30\n", - "AITd 6I\n", - "[[0 0 1 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 1]\n", - " ...\n", - " [0 0 0 ... 0 0 1]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(17, 3500)\n", - "(17, 17)\n", - "17\n", - "TH 23E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(107, 3500)\n", - "(107, 107)\n", - "107\n", - "TH 23I\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(34, 3500)\n", - "(34, 34)\n", - "34\n", - "TH 5E\n", - "[[0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(102, 3500)\n", - "(102, 102)\n", - "102\n", - "TH 5I\n", - "[[0 0 0 ... 0 0 0]\n", - " [1 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " ...\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]\n", - " [0 0 0 ... 0 0 0]]\n", - "test\n", - "(20, 3500)\n", - "(20, 20)\n", - "20\n", - "TH 6E\n", - "[[0 0 0 ... 0 0 0]]\n", - "test\n", - "(1, 3500)\n", - "()\n" + "WARNING: There are less than 2 neurons firing in the population: TH 6E due to a very small value being assigned to the parameter scale_down_to, the corresponding cross-correlation will not be computed. TH 6E\n" ] }, { - "ename": "IndexError", - "evalue": "invalid index to scalar variable.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[12], line 7\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# raster_areas = ['V1', 'V2']\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mM2E_visualize_resting_state\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m plot_resting_state\n\u001b[0;32m----> 7\u001b[0m plot_resting_state(M, data_path, raster_areas)\n", - "File \u001b[0;32m~/multi-area-model/./figures/MAM2EBRAINS/M2E_visualize_resting_state.py:41\u001b[0m, in \u001b[0;36mplot_resting_state\u001b[0;34m(M, data_path, raster_areas)\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplot_resting_state\u001b[39m(M, data_path, raster_areas\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mV1\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mV2\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mFEF\u001b[39m\u001b[38;5;124m'\u001b[39m]):\n\u001b[1;32m 40\u001b[0m \u001b[38;5;66;03m# Generate data for the following plotting\u001b[39;00m\n\u001b[0;32m---> 41\u001b[0m \u001b[43mgenerate_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43mM\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mM\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msimulation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlabel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mraster_areas\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 43\u001b[0m \u001b[38;5;66;03m# Simulation time\u001b[39;00m\n\u001b[1;32m 44\u001b[0m t_sim \u001b[38;5;241m=\u001b[39m M\u001b[38;5;241m.\u001b[39msimulation\u001b[38;5;241m.\u001b[39mparams[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mt_sim\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", - "File \u001b[0;32m~/multi-area-model/./figures/MAM2EBRAINS/M2E_generate_data.py:15\u001b[0m, in \u001b[0;36mgenerate_data\u001b[0;34m(M, data_path, label, raster_areas)\u001b[0m\n\u001b[1;32m 12\u001b[0m compute_pop_LvR(M, data_path, label)\n\u001b[1;32m 14\u001b[0m \u001b[38;5;66;03m# compute correlation_coefficient\u001b[39;00m\n\u001b[0;32m---> 15\u001b[0m \u001b[43mcompute_corrcoeff\u001b[49m\u001b[43m(\u001b[49m\u001b[43mM\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlabel\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;66;03m# compute rate_time_series_full\u001b[39;00m\n\u001b[1;32m 18\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m area \u001b[38;5;129;01min\u001b[39;00m raster_areas:\n", - "File \u001b[0;32m~/multi-area-model/./figures/MAM2EBRAINS/M2E_compute_corrcoeff.py:63\u001b[0m, in \u001b[0;36mcompute_corrcoeff\u001b[0;34m(M, data_path, label)\u001b[0m\n\u001b[1;32m 61\u001b[0m cc \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mcorrcoef(rates)\n\u001b[1;32m 62\u001b[0m \u001b[38;5;28mprint\u001b[39m(cc\u001b[38;5;241m.\u001b[39mshape)\n\u001b[0;32m---> 63\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mcc\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241m.\u001b[39msize)\n\u001b[1;32m 64\u001b[0m \u001b[38;5;66;03m# print(cc[0])\u001b[39;00m\n\u001b[1;32m 65\u001b[0m \u001b[38;5;66;03m# print(cc)\u001b[39;00m\n\u001b[1;32m 66\u001b[0m cc \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mextract(\u001b[38;5;241m1\u001b[39m\u001b[38;5;241m-\u001b[39mnp\u001b[38;5;241m.\u001b[39meye(cc[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39msize), cc)\n", - "\u001b[0;31mIndexError\u001b[0m: invalid index to scalar variable." + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/app-root/src/multi-area-model/./figures/MAM2EBRAINS/M2E_visualize_resting_state.py:286: UserWarning:FixedFormatter should only be used together with FixedLocator\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8oAAANSCAYAAAC9WjcaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e3xU1bn//5ncM5CEEDABgQTCJRLwQohEUC4FET0Kqa1Sj5wjQrU9Vq2i/VXOsS3UC35PFa1aa21FrVjwHlJPlRDbhItEQwANgXAJJBCBQC7MBCaZZJL5/RH3sGdn3y+z95553q9XXkn2Za1nrb3W3utZz7Oe5fD7/X4QBEEQBEEQBEEQBAEAiDJbAIIgCIIgCIIgCIKwEqQoEwRBEARBEARBEAQLUpQJgiAIgiAIgiAIggUpygRBEARBEARBEATBghRlgiAIgiAIgiAIgmBBijJBEARBEARBEARBsCBFmSAIgiAIgiAIgiBYkKJMEARBEARBEARBECxIUSYIgiAIgiAIgiAIFqQoEwRBEARBEARBEAQLUpQJgiAIgiAIwgLMnj0bDocDDocD0dHRSEpKwoQJE3D33Xdj9+7dZotHEBGFoYryG2+8EejsUVFRqK+v15zO1q1b+52fM2cOHA4HxowZA7/fj5qaGnz/+9/HpZdeGrjvscce01gagog82B9sh8OB2NhYDBs2DLfffjuOHTumOL1Zs2bB4XAgOzu737n6+npERUXB4XBg9erVaG9vx0MPPYS8vDwMGTIEiYmJGD9+PH71q1+hvb1dj+IRRMTR2dmJtWvXYtq0aUhOTobT6cT48ePx05/+FEePHlWUVn19fdD7gf0zaNCgwHVLly4VvO6FF15QlBZBRApxcXHIz8/HoEGDcPjwYbz55puYNm0a1q1bZ7ZoBBExxBiZ+Jtvvhn42+/346233sJvfvMbxencdttteOCBB3DhwgW8/fbbmDlzZuDciRMnUF5eDgC466674HA4cPjwYWzatAkTJkzAyZMnNZeDICKduLg4XHXVVfB4PKiursb777+P/fv3Y9++fYrSWbp0KbZu3YqjR49ix44dmDFjRuDc+vXr4ff74XA48J//+Z9oaWnB73//e0RHR2PcuHGBvv3kk0+iqqoK//jHP/QuJkGENW1tbZg7dy727NkDAEhKSkJ2djaOHz+OP/3pTygoKMCYMWNUpX3ppZdixIgRgf+TkpJ4r5s2bVrQ/8OGDVOdFkGEM8OGDUNFRQUAYNeuXfjhD3+IhoYG/OQnP8H06dORk5NjsoQEEf4YZlE+duwYtm3bBgCYOnUqAOCtt96C3+8Pum7VqlWBWWMhBg4ciB/84AcAgPfffx+dnZ2Bc9zBNdBnYT537hwOHDiga5kIIlJhPtjffPMNli9fDgCoqalBS0tL4JqsrCw4HA4sXbpUMJ3bbrsNAwYMAAC8/fbbQefWr18PoM/qPHr0aCQkJOB3v/sd2tracODAAZw4cQIFBQUAgE8//RRtbW16FpEgwp77778/oCT/4he/QGtrK6qrq+FyufDpp59i/PjxAICysrLAd7msrExW2j/+8Y9RUVER+NmyZQvvdexrKioqsHjxYtVpEUSkMHXqVPz+978HAPh8PrIqE0SIMExRfvPNN+H3+5GRkYHXX38dQJ/yzOc6LQdm8O1yuVBcXBw4zgy2mcE1AKSkpCA5OVmD9ARB8OHxePDtt98CAIYOHaq4n7Envd577z14vV4AwJdffomDBw8CuNjXMzIy8OijjwasSQkJCcjPzwcAREVFISbGUIcYgggrXC4X3nvvPQDAFVdcgf/3//5fUB9asGABpk+fbpZ4BEFIcN111wX+rqmpMVESgogcDFGU/X5/QIH993//d1x++eW46qqrAAS7YwPAkCFDMGHCBEyYMEE0zdmzZyMrKwvAReV4165dAauxmBWLIAhtNDQ0wOFwYMCAAfjss88QFxeHv/71r4iNjQ1ck52djQkTJvC6UrJh+mpbWxs++eQTABf79MCBA/HDH/6Q975vv/0W77//PgDgRz/6EbljEoQCDh06BJ/PB6BvwC3mxeV0OgPfZafTKSv91atXB60rLiws5L2Ou/547969qtMiiEiit7fXbBEIIuIwxCRTVlYWCPTzH//xH4Hfe/bswQcffICXX3454H55//334/7775dMk3Gt/u1vf4vPPvsMZ8+elTW4JghCO8wa5e7ubhw4cAAdHR1YunQpvvzyS2RmZgIAPv/8c1lpMZNe9fX1ePvtt7Fw4UK8++67AIAf/vCHgXcDm7q6Otx44404ffo0ZsyYgVdffVW/whFEBMBe9iSmJAPA1VdfjdraWkXpc9cVC01+c9co8/V3uWkRRCTBLGcEgIkTJ5ooCUFEDoYoymyr8ezZswEAPT09AIDz58/jgw8+wF133aU43aVLl+KJJ56Az+fD22+/jY0bNwIQHlwTBKEP7KAiBw4cwMSJE9HU1ITXXnsNTz31lKK02JNe//jHP/D222+jubkZAL9nyM6dO7Fw4UI0NzfjlltuwcaNG2VbuQiC6GPChAmIiYmBz+fD9u3bA7E99OLHP/4xVq1aJXkd8x7RIy2CiBR27dqFhx9+GAAQExODZcuWmSwRQUQGurtenz9/Hh9++GHgf5fLBZfLhfPnzweOsRXpl19+GTk5ObKi940ePTqwRuM3v/kNzpw5A4DcrgkilLAtU8waYwCYO3cucnJysHLlSsk0mO1iuru78fOf/xxAX/9mR7QHgA8++ADf+9730NzcjAceeABFRUWkJBOEClJSUnD77bcDAPbs2YP//u//DrhiA0BpaSm++OILAMBXX30V+C5/9dVXpshLEJHOqVOnUFBQgFGjRuHqq69GQ0MDYmJi8Kc//QmXXXaZ2eIRRESgu6L8/vvv48KFCwCAb775Bn6/P/Dz0ksvAQDKy8sDeyo3Nzfj4MGDgUA+UjBKMaN48w2uv/zyS4wdOxZjx44NHPvTn/6EsWPHBizcBEHIh/lgT506NRDFPioqCrfcckvgmrq6Ohw8eBCnTp2STI896cX0ZWZ7N4aTJ0/i9ttvR2dnJ+Li4vDVV19h+vTpKCgoQEFBAXbv3q1nEQki7Hn55ZcD8UKeeeYZpKWl4YorrsDgwYNx/fXX49ChQwD6gvYx32WPx6OrDEz/ZX6YfZQJggimq6sLX331Fdra2pCdnY3//M//xJdffknWZIIIIbq7Xr/11lsAgHHjxmHy5MlB577//e/jwQcf1G1PZaD/4BoAOjo6UFdXF3Ts3LlzOHfuXNAMOkEQ8ujq6sKXX34JoG9P02uuuQYrVqzArFmzVKd59913B6Lgs7d3Y+fJWK/Z+TO43W7VeRNEJJKamoovvvgCf/jDH/Duu+/iwIEDOHjwIC699FLceuutQVF1jYLbj5kt3wiC6EPulmwEQRiPw8/d2JggCIIgCIIgCIIgIhjD9lEmCIIgCIIgCIIgCDtCijJBEARBEARBEARBsCBFmSAIgiAIgiAIgiBYkKJMEARBEARBEARBECxIUSYIgiAIgiAIgiAIFqQoEwRBEARBEARBEASLsFWU/X4/3G43aPcrgrA31JcJIjygvkwQ1of6KUFcJGwV5fb2dqSkpKC9vd1sUYgQsGFzLR56vgwbNtdGVN6RAPXlPoxuZ9SOCaOhvkwQ1of6KUFcJGwVZSvR4urAhs21aHF1mC1K2DK/IBPTJmZgfkFmROVNRA5GtzM16dO7jQg1Um2O2qQ6WlwdeH3TPrxevK9f3bHrNBT1G+r8CIIghIgxW4BIoKSiAV/uPw0AuOOGHJOlCU/SUhJNq1sz8yYiB6PbmZr06d1GhBqpNkdtUh0lFQ0o39sIhx9wxscE1R27TgEYXr+hzo8gCEIIUpQNpsXVAY/Xh8ljhpDFkSBsRourAyUVDZhfkIm0lESzxTEcpeVl3mn0bou8tmIkfHXJHMvPTQfQ1+b4rjOrTdr9+c8vyISn0wc4gPzcdGzYXBsoC1+daq1fsfoyIj9CHWfaPACAS1KdJktCEOZArtcGwbgLFZXVobquGc6EGFt+PO0EuWgRWuG2IcayUVLRYLJkoUFpeRkrNL3bIq+t6Imcfsccq6xpCrQ5vuv0apNKXLxbXB147p0q7Kg+Kfn89f5O6ZVeWkoili+ahOULJ6GypimoXtl1qlf9yu0vcvITqwOhc1YdL3R2dqKwsBDjx4/HlVdeiQULFqC+vj5wvrKyEjfeeCMuXLiAadOm4YorrsAVV1zR77qsrCzk5OTgyiuvDPzs379fkSxn2zz46TOf46fPfB5QmAki0iCLskEwH4HJ2UNo/WqIIJc7QivcNhRpFtNIK6+eUN2pR06/k3tMCKUWXyUu3gDQ7ulCsjNOUha9v1NGfPdC0ZbF8lBaJrHrueeYduDp9GHP4TOormvGI3fmCbYJMzwF7r33Xtx4441wOBx4+eWXce+996KkpAQAUFRUhMLCQiQmJqK0tBRJSUkAgBdeeAErVqzARx99FEjngw8+wKRJk1TLcabVheZvDyMxaSh2VlTi+ln5cDrJskxEFqQoc9Drpcj+CJC1JTTQQJXQSqS3IbPW29vdbRWgWAVa4PY7vrqUe0wIpcqX1LtASHGXar96v2OMeGeFoi2L5aG0TGLXc8+xjRjJzji0e7pQUtEgKEuoJ+ATEhJw0003Bf4vKCjACy+8EPi/uLgYW7ZsQVRUVEBJZrZziorS10l02Z0/RO2BfbjqxodReNN/YsqUKaiqqtI1D4KwOg5/mG6U5na7kZKSApfLheTkZNn3bdhciy/3n8a0iRk06CEIC6C2L+tBpL0PzFJYI62eIxUz+3I4TMYYCbt+AATVFbfu5Nal0HVK78/PTUdlTZPsZycmL7ts3HJK3WtGu/nP//xPpKWl4fnnn8fhw4exdOlS7NixI3B+3rx5qK6uxtChQ1FSUoLhw4cD6HO9TkhIQEJCQuDar776CnFxcf3y8Hq98Hq9gf/dbjdGjhyJiblXYH/N14HjeXl52LVrlxHFJAjLQhZlDpFuUTIDsz9EBCGEHu8DJe3b7L5g1vIFeu8SRkMWf3HEIk0XldWhfG8jPJ0+FM7OxnPvVMHt6Qqcl5OmUBRtOfdX1zXD4/VJXs8gJi/7HcNuE2yX7OqjzYG8zGw3Tz/9NA4fPoxXX30VAPDxxx+jsLAw6JrS0lL09vbiqaeewpNPPolXXnklcE6u6/WaNWuwevXqfscfX/00/v2H/xb4/+GHH1ZZEoKwLxTMiwMFpwk9FASHsCp6vA+UtG+z+4JZe4LTe5cgzCU/Nx3O+Bjk56YH/d3i6kBtQyv8PX7A0feOamvvREenD+MzB2HD5locaWzj3feY732iZCcQ5v4ffG9skDySQbgcgMOPgLzs9eNC79iA8u6AJeLKPPvss/joo4/w6aefBtYFM+uTuURFReGee+7B22+/rSqvlStXwuVyBX5OnDgBAHjyN/8ddN3zzz+vKn2CsDNkUTYQs61DdoGsSYSRmN0PlbRvs/uC1axuZj87gogUKmua4PH6UFnTBABBf3d2+TAyIwmFs7IBANV1zWj3dOHDfx6Bx+sLsvgCwdZovuBa1XXNmDYxQ7JPM++jDZtrg+SRskYXzsqGMz6Gd/240DvWSnFl1q5diw0bNqC0tBSDBg0CAJw6dQrnz5/HuHHjAABNTU2IjY3F4MGDAQAbN27E5Zdfriq/+Ph4xMfH9zve29sDALjqxoex59PnEaYrNQlCFFKUDUSNG2MkDgytNjgnwguzo6Erad9C10biewEw/9kRRKQgtXcx+93zyJ15QWuH2WuIufdy1wd7vD6MvXQQPF4fWlwdqvdrF5tM5L5H2X8LvWOtMg5pbGzEI488gjFjxmDOnDkA+hTZu+++GwsXLgy67p577oHP54Pf70d2djbWr18flNYPf/jDoDXKL730Eq677jrZsrz3UTF+vmYTEpKHYsu/tmP61VdpLB1B2A8K5mUgaga3FNSGIILR2pe1KJlWUVAj9b1glfon9IHbl/meLz3z8IB5ji2uTnx14DRmXTkCAFC+txHpqU50dPmQ7IwLbM0kN/CXnDZzpLEN64pr8IPvjcWhhnP90uSe5wYLs2IbXLBgAZ588klMnTrV8LzY/bSzp8+edkkqbQtFRCZkUTYItS9as10vCSLc0GIpYCyank4fnAkxtnDfDiesYuUh9KXV1YHk5GRejwHyIggPmOcYGx0VWC8M9K0dzhyWjJNnz6Pd04Wisjo4E2IE9zXmtgehNrOj+mTg3nXFNTh4vA2vfPANkgbEBV3b4urAmjcr0dbeGTjPDRZmxTb42WefmZIvKchEpEOKskGofdHSwJAgrAPbXdAu7ttasKIlhQg/Pq88geUj00VdarkBoKTaJbVda8E8P65bNnvtcElFQ+DdKrSvMbc9CLUZZt10SUUDli3M7WdRZiipaEBcbDRSkxJw3w8v72dRFsqDIIjIhFyvDYI+2gShD2a6XuuZhh2IVBdvIjQwffnY8dPIGpku+z457ZLarj0R279ZbTpibvwtrg4UldUBDmDWlEsV7c8cKZg9fiYIK0EWZQ56DYjJMkwQ1kAPN7pI6c9kSSFCwWCF31Y57ZLarj0RC7ylFb53PzOuK9/TiOojzWht74Sn04fliy7uNxwpE6MEQUhDijIHK65NIcIT+hiHBhpAyydSJgQIeyGnXVLbjWz4xm6C737WPsvs9dNiaREEEZmQosyBBtWhx2yFMZT5s/Oij3FooAG0/TD7nUAQhL3gG7sJvfuZfZb5trUSSivS8Z49i253OwAgNjkJ8UOHmiwRQYQGUpQ50KA69JitMIYyf3Ze+bnpqK5rRn6u/LV6BBEJmP1OIAjCXqjdr37siFRNaUUC3rNnUfVfD8Df3Q0AcMTGIu+PL5GyTEQEUWYLQIQHLa4ObNhcixZXh+J75xdkYtrEDFWzt1ry1SN/LXlV1jTB4/WhsqbJ8HwJwk6Esk8S9kCPd71Z2Fn2UCG3joSuYx+XSstOz6OzsxOFhYUYP348rrzySixYsAD19fWB85WVlbjxxhtx4cIFTJs2DVdccQWuuOKKftdlZWVh3759ivP3eDyo/GInOjou1lVHRwcqv9gJj8ejpWgEYQtIUSZ0gbEAlVQ0KL6Xmb1V42KpJV898teSFykDBMFPKPskYQ/0eNebhRbZ7aTUaUFuHQldxz4ulZbd2tK9996LgwcPYu/evbj55ptx7733Bs4VFRWhsLAQiYmJKC0txddff42vv/4aCxYswIoVKzTnXVtbi+sKF+H+HVsBAD/fsRX3bS/HdYWLUFtbqzl9grA65HptIey8Ls+sNT12XktE7l0EQRDysPO7XovskbIMQe7+2UJ1KbYnNxc7LXtKSEjATTfdFPi/oKAAL7zwQuD/4uJibNmyBVFRUUhKSgIA+P1+uN1uREXJs4V5vV54vd7A/263O/A3Y0mudZ3DtcUfAQCyBiYFnSOIcIYUZQth5w+iWUofKZsEQRDhj53f9Vpkl6tAhgqj8uarI6HtnfjqUsk2U+xlT3xrlK3Miy++iFtuuQUAcPjwYSQnJyMjIyNwft68eaiursbQoUNRUlIiK801a9Zg9erVvOfY7tuBY+fbA+dmzJihsAQEYS/I9dpCRKIrbqS4lRH2hdooQRhHuPcvbvmUlpdvGYKZrsOhzNuoMVF+bnog6rWdePrpp3H48GE89dRTAICPP/4YhYWFQdeUlpbi1KlTWLx4MZ588klZ6a5cuRIulyvwc+LEicC5rKysftczFmW+cwQRbpCibCEicV2e3dYKEZEHtVGCMI5w71/c8ulRXjMn1UOZt1FjIjsG0nz22Wfx0Ucf4dNPP4XT6QRwcX0yl6ioKNxzzz14++23ZaUdHx+P5OTkoB+GxMS+us9JGYTtC29FXtoQxH3n0s2cI4hwhlyvLYid1yorxc7rzojIIBLaaCS9cwhrEe79i1s+Pcqr1JVbz/5tZxd4Bru1ubVr12LDhg0oLS3FoEGDAACnTp3C+fPnMW7cOABAU1MTYmNjMXjwYADAxo0bcfnll2vOOycnB9uKNsH72usAgN/PmIlOnw/x9y5HTo692wFByIEsyhYk3GfY2egxY2xn1z07yx5OiD0HOW3U7OeoNX+pd47Z5RPDKrJZRQ67Ee6eVNzymVHeSBpTyMFOba6xsRGPPPIIzp07hzlz5uDKK6/EtGnTsGnTJixcuDDounnz5uHyyy/H5MmTUVZWhvXr12vO3+l0In/6NUHW48TERORPvyZg2SaIcIYsyhbEbrOdZmPnIGh2lj2c0PoczH6OWvOXeueYXT4xrCKbVeQgCC40prAvI0aMgN/v73d8wYIFQWuQ8/LysHv3bsF0+IJyySV+6FDk/fEldLv7gnjFJichfuhQ1ekRhJ0gRdmChINrUyix6yCgxdUBj9eHyWOG2E52K6HFrZC5lwnqwvcc5KRvRBtUUi6t+Uu9c4zuY1qeoVX6v1XkIAguNKYIPz777LOQ5hc/dCgpx0REQq7XhO2xkxsVm5KKBlTXNcOZEGM72a2EFrdC5t7KmibBNiQnfSPaoJJyGd0HjE5fyzO0Sv+3ihwEEamILX+gpREEQaiBLMoGQgFyCDG4FihqL+rQYsmTc69ZlsJIslDm56ajuq7Zdtu1EARhHcSWP9DSCIIg1ECKsoEUldWhfG8jPJ0+LF80SfZ9pDDJx651xSc3fcjVocWtUM69ZrktRpK7JHu7lrEjUs0WhyAIGyI2uRhJE48EQegHKcpG4gAc/r7fSiCFST4lFQ3YUX0S1XXNeOTOPNsoy3zPmD7k5mHXCZdwgdo+QRBaEZtcjKSJR4Ig9IMUZQMpnJUNZ3yM4sEfDRrlM78gE9V1zWj3dKGkosE2H0K+Z0wfcvOgySlzobZPhDs0GUeEC2faPHBf6Op3PHlAHC5JpS2jiPCCFGULEupBo9YPuJkDgLSURDxyZ14gf7tAioG1oMkpgiDUIucbSJNxRDhwps2Dnz7zObp9vf3OxcZE4dXH5pKyTIQVFPXaQBi34OfeqbJ0pEU1EWfZESS593OjSxodbZKizRJaoTZEEIRapL6htBUgYTSrV6+Gw+HAvn37AACzZ8/GmDFjcOWVVwZ+SktLVaXt8Xiwe/dueDx9lmQ+JRkAun29AUsz+x6CsDOkKBvI/IJMJDvjAm7BVmV+QSamTcxQ9AFnDwy493MHDVq2fiGISIe2NeGH6oWwClLfUNoKkDCS3bt3o6KiAqNGjQo6/uKLL2Lv3r2Bn3nz5qlKv7a2Fnl5eaitrQ0c++Ld/8HO938FANj5/q/wxbv/I3kPQdgRcr02ELu4BatxA2a7qnLv57qxklsrQaiHXDb5oXoh1MDnJq11+ZDUN1TuN5DWMRNK8Xq9+NnPfoa//e1vmDNnjuo0vF5v4H+32x10vqOjbzLywIEDGNjUDldTHeAAWk5U45O1hQCAwSNy4WqqQ031ILjPJOHAgQNB9xKEXSFFmVCFkuiSRq7HpYEFIYXd24icQbbdy6gGmoAj1MA3wWL0pIvcbyBN/hBK+fWvf40lS5Zg9OjR/c49+OCDePzxxwP/FxUVISsrq991a9aswerVqwXzqK+vBwAsWbIkcOy6O5/DtnceCfyfO2sZtr3zCLa90//eGTNmyCwNQVgPUpQNhj58xhJu9csoPOFQFqtg9zYiZ5Bt9zKqgQLiEWrgm2CxyqTL/IJMeDp98Hh9aHF1RMykF6GOnTt3orKyEs888wzv+RdffBE333yzZDorV67EihUrAv+73W6MHDky8D+jXK9fvx4DB4/Ac+9UoaZ8XVAaNeXrcN2dz+GRO/MwMr3PorxkyRJexZwg7AQpygZjlQ9wuBJu9csoPKQA6Ee4tRE+IqGMdiASLft2g2+CxSqTLmkpiXAmxODL/afhjI+xhEyEdSkvL0dtbW3AmtzY2IgbbrgBf/nLXxSlEx8fj/j4eMHziYl977LLLrsMyZeMQUr6OcAPpI2cjGtuewI73/8V/L29SEnPRu7kKzB2xKB+9xKEXXH4/X6/2UIYgdvtRkpKClwuF5KTk80WhyBkQRbl/lBfJuzChs21+HL/aUybmEF9mAfqy9LQZAuhlqysLHzyySeYNGkSZs+ejUcffVSWRZkLt596PB7U1tYiJycHJ1u78PDz5YL3Pv/wLIwdMSjoHqeTtosi7AtFvSYIC2EVywZBEMpRs4MAQbChreoIvXjwwQeDtod69913VaXjdDoxZcoUOJ1OJA+IQ2wMv+oQGxOF5AFx/e4hCDtDFuUIh2avzYPqXh7UlwkiPLBTX4609zO7vABML3uk1b+VkOqnZ9o8gf2S2SQPiMMlqaQYE+EFrVEOAVZ+4YdLECAr17EQ4VL3BEEQRmLG+z3S3s/s8gIwpezMc87PTce64hq4PV2KZbDjWMBuXJLqJIWYiBhIUQ4BVv7ghkuUTSvXsRAUgIkgCEIaM97vkfZ+FosGHiqY51xd14x2TxeSnXGKZbDjWIAgCOtCinIIsPIHN1yibFq5joWg9cjaiRTrQSjKGSl1SdgPM97vkfZ+5pbXjLIzzzc/Nx2VNU2q3kV2HAsQBGFdaI0yQQNkwtKI9eVIiTIcinJGSl0S5kHf5fAhFGuaaWxiDtRPCeIiZFEmIm7mnAgfIsV6EIpyRkpdEgShnVCsaSY3amviPXsW3e72oGOxyUmIHzrUJIkIwjgiXlGmGUuCsBfcPju/INP0PnyksQ3rimuwbGEuxo5IFZVXDKFr9ZjMkpJDbR70Dr0I1QURKYRiTTNN3lkP79mzqPqvB+Dv7g467oiNRd4fXyJlmQg7In4fZWbGsqSiwWxRCIKQAbfPWqEPryuuwcHjfcoyFyXyFZXV4dOKehSV1ekuo1H1ZIX6twpUF/ahxdWBDZtr0eLqMFsUS8FXL3zH2Ps9syfZ9KxT2lNaHatXr4bD4cC+ffsAALNnz8Ynn3yiKU2Px4Pdu3fD1XSmn5IMAP7u7oCVmbnW4/FoypMgrEDEK8rzCzIxbWIGzViaiFkDFhoo2RNun7VCH162MBcTRqVi2cLcoOMtrg54vD5MHjNEnnwOwOHv+81Fa3s1qp70SlfuAN3K5Oemwxkfg/zcdLNFISSgSQ1++OpFbl0x1xWV1Un2Zbv1bbuwe/duVFRUYNSoUbqmW1tbi7y8PByq65vEvX97OX6+YysA4Oc7tuL+7eX9rq2trdVVBoIwg4h3vab1ueZTVFaH8r2N8HT6sHzRpJDla/b6J3LTVAe3z1qhD48dkYqn77u23/GSigZU1zVj2sQMWc+4cFY2nPExvEqn1vZqVD3plS5f+czuo0qprGmCx+tDZU1TPxd8wlqQWy8/Yi7VUnXFnPd4fZJ92W592w54vV787Gc/w9/+9jfMmTNH0X1erzfwv9vt7ndNR0ffhMbBujo4zrXBAaCqpRnXFn8EAMhJGYS9+/bB6TqHAwcOBN1DEHYm4hVlIyFFSCYiVjQjMXugRAOF8EdpGxNTOs1ur0ajZYBuFewmr1XhfjuN+JZaYYLNivDVi5y64kbBZib8mOP5uenwdPrg8frQ4upAfm46quuaA94XYs84FBG2w4Ff//rXWLJkCUaPHq3ovjVr1mD16tWi19TX1wMAfvzICgDA6zPnYPnWfwXO17rO4brCRf3umTFjhiJZCMJqRLzrtZGUVDRgR/VJPPdOFbkXiTBryqW49JKBmDXlUlX3q3Xh0mv9k9r8reAyTBiLnmvswn29Hl/57FZmu8lrVfjiENj9W6qnq7HatITu00M29jNj9wPmeGVNEwCgfE8jisrqgrwvmPuZZ3yksS1IHnbaQnEc5JQhnN29d+7cicrKStx3332K7125ciVcLlfg58SJE/2uycrKAgD85bm1eH3mHLy875ug8zkpg7CtaBOqqqqwfv36oHsIws6Qomwg8wsykeyMQ7uni9ZBiVBZ0wS3pwvrimtUfcDMHkSpXevGjtgcjh9uwljCadCnpSzhVA9EH3xxCMS+pUYqgHoh9J1SI6Pab47QfXqs1xaa+A06zvIeE3vG64prguQRSkNpGcJ5XXp5eTlqa2sxevRoZGVlobGxETfccAM+/fRTyXvj4+ORnJwc9MMlMbFv8m9CdjYmDEqFH0Be2hBsX3gr8tKGICE6GldOmoQpU6bgsssuC7qHIOwMKcoc9PywpqUkYtnCXCQ54yi4iwhaJxTMnJBQHKyJQzh/uAljCUXbCZWioaUsVupDVlLM7AzXMp+WkohH7szD9MnDRdfvG6EA6oXQd4pPRql2pNYbSUqZzc9NV91+hbwp2McLZ2VjwTVZKJyVLfqMly3MDZJTKA05ZVN6jV157LHHcPLkSdTX16O+vh4jRozA5s2bceONN+qSfk5ODqqqqjA+u6/eX752Fn4/YyYA4PczZuLla2f1uzYnh5Y2EPaH1ihz0HvdaCiDu9h1TTTzgWSvQQrl/VpQGqyJC61pJNQSirYTqnX0WspipT5EcQeMQ836fSu1DaHvFJ+MUu1I7fpqofuY4xs21xrafqXkZp8XGi9JlUFL/oQwTqcTU6ZMgffsWThiY3n3UY5NTgq6liDCAYff7/ebLYQRuN1upKSkwOVy8bqRCKG3shlK5ZX5yE2bmEEfgxBh18kJO6G2LxPaofatDKovcezWl816npGWL2EtpPqp9+zZwJ7JDLHJSYgfOjRUIhJEyCBFOUxocXWgqLwO8AOFs7PpI0eEDZHWlyONcBqch1NZjMBufZkmn4lIxG79lCCMRJc1ykuXLkVhYWG/462trXjggQcwYcIEOJ1OjBo1Cg8++CBcLle/azs6OuB0OlFbW4vt27djxowZSEtLQ2JiInJycvD888/rIWrYwrgAOxNiaIBGEBaC1q2KY6V1pFoRishL2JNwXtNKEARBSGNoMK+TJ0/i5MmTePbZZ1FdXY0333wTn332GZYvX97v2i1btmDkyJHIycnBgAEDcP/992Pr1q04cOAAHn/8cTz++ON47bXXjBTX1tAH3TxIEbI/Rj7DcFIEjUCPQEKWwaQ94e2Mld+ftN2XPLjPUCoKOXf7J635EQRBGIWhivKkSZPw4Ycf4pZbbkF2dja+973v4amnnsLf//53+Hy+oGs3bdqEhQsXAgCuuuoq3HHHHcjNzUVWVhaWLFmCG264Adu2bTNSXFsT6R90Mz+cahQh+tBbCyOVWZrEEod5d1XWNNl+QkEoIi8RTCvrvcf0vaKyOtF3olxlLJSwZTBSHjP3YJZzPd++10JRyHdUn8SaNyuxo/qk5DOXm5+acolhhbZFEIQ1CHnUa2bNQ0zMxax7e3vxySef4MMPP+S9Z8+ePfjiiy/w5JNPhkpMwmaYGW1WTWRVPnlpfaN5GBkdlyKtysNKEYrVQs9aHp9XnsDykX1bJjLP2+P1ib7Due9MNe98vd+xbBkAGPYN0vP7pjQtOddz+65YFPLqumb09PiR7IwDHOrqTE2kcCVQ9HqCIBhCqii3tLTgiSeewE9+8pOg4xUVFejt7cX06dODjo8YMQJnz56Fz+fDqlWr8OMf/ziU4hI2wqxBttqBl9EfekIZpOCYSzhMEoVDGULF3PyRgb+Zvtfi6oAzPkbwHS5XGRND73csnwxGfIP0/L4pTUvO9dz3p9gWTtwtssSeudz85Mopl3CYtAsVZ9o8cF/oAgAkD4jDJalOkyUiCH3RJer10qVLce7cORQVFQle43a7MX/+fKSmpqK4uBixsbGBc7/85S9x5swZvPHGG0H3HDt2DOfPn0dFRQUee+wxvPzyy7jjjjtkyURR+4hQoGdUVBpo80N9OfwJh+jC4VAGozG7L9M7liCkkdtPz7R58NNnPke3rxcAEBsThVcfm0vKMhFWhMSi3N7ejgULFmDgwIH4+OOPg5RkACguLsaaNWv63Td69GgAwOTJk9HU1IRVq1bJVpQJc1AzEGHuyc9NR2VNk60GMXrOPJNVk4hUwsGCEw5lCHfoHRt5hPvkSFZWFhISEpCQkAAAWLlyJRYvXozZs2fj+PHjQYrus88+i3nz5umSr8fjwc6KSnR2dCA6Nh4A0O3rRVPzOTQeq0VOTg6cTlKYCftjuKLsdrtxww03ID4+HsXFxYHOzHD48GHU19dj/vz5oun4/X54vV4jRSV0QI1rG3NPdV0zPF6fonvZmPFBpIEXQWgnHPpROJTBSnDf50Lvd/ZxAILfAKsoTFaRI1KIhCVNH3zwASZNmtTv+Isvvoibb77ZkDxra2tReNNsJF8yBrHxA3DNbU9g5/u/wh0lUajZ9zWqqqowZcoUQ/ImiFCim6Lscrmwd+/eoGOpqalYvHgxPB4P1q9fD7fbDbfbDQAYOnQooqOjsWnTJsybNy9o5ukPf/gDRo0ahZycvpfa9u3b8eyzz+KBBx7QS1zCINRYVZhr2RZlNUTCB5EIHUoHtEYOgKXSpsE3EW7IDd4lN6CWVb4PVpEjUiBPD2m8Xm+QIYoZp4vR0dEXEbzX142WM9X4ZG0hACA1YULQeYKwO7opymVlZbjqqquCjmVmZqKhoS98/9ixY4POHTt2DFlZWdi0aRPuuuuuoHO9vb1YuXIljh07hpiYGGRnZ+OZZ57pFwTMDkTaAFaNVYV9z9gRqYrzZLtuA/RBJPRBakDL7dtGDoCl0g7XwXekvT+JiyiJpMw9zvcNsIrCZBU5IoVI8PS488470dvbi2nTpmHNmjUYOnQoAODBBx/E448/HriuqKgIWVlZ/e5fs2YNVq9erSjP+vp6AMD51hNBx48cPhg4P2PGDEVpEoQV0SWYl1qam5sxbNgwnDhxAhkZGbqmbXbQEAYK8GI8VMfhjVl9WUpJ47a7I41tWFdcg2ULc1VN+GiRJVwVSiv17XCt41Bile+y1aG2Rsjl+PHjGDVqFLq7u/H444+juroa//jHPzB79mw8+uijslyv+SzKI0eOFO2nO3bswLXXXouBg0cGKctjx03AkcMHsX37dlKUibAg5Psos2ltbcXatWt1V5KtBM0eGw/VMWEEUpYIbrurrGmCx+tDZU2T7oqylCzhajWxUt8OV6s9YT2orRFyGTVqFAAgNjYWDz30EMaPH684jfj4eMTHxyu6JzGxbwInKiYWaSMnB9Yox8dHBZ0nCLtjqqI8fvx4VZ3aToTrANZKUB0TZsBtd1ZS6sIFK/Vtuc+XrIGEVvR+l/C1SSXtVK5Hix13rrAzFy5cQHd3NwYNGgQA2LBhQ78lkEaRk5ODon+U4U+fNgWiXl9z2xN4+qf56G4/HYgxRBB2J8psAcKdFlcHNmyuRYvL2oENzJRTS952qV8pwqUckQyj1JkxQKT2Yzxyny9jDSypaAiRZES4ofe7hK9NKmmnUtcy59cV1yhq+/Te0kZTUxPmzJmDyy+/HJMnT0Z5eTn++te/Bs4/+OCDuPLKKwM/7777rm55O51OXFOQjwSW5Tg2JgrpQwZhypQptDUUETaYalG2CkZaAOziQmWmnFrytkv9SlFS0YAd1SdRXdeMR+7Mo9l4Ht4vPYTCubmqIlCbtcZXj3TlpFFUVofyvY3wdPqwfFH/bULsip2ssxRUUB1K+6rVsaL8YgHP5LRTqWvV7lzBfL89nT44E2JEt/5S8h7nysE+xv1tpeeklDFjxmDPnj2858rKygzP/5JUJ159bC7cF7oAAMkD4nBJKinIRHhBijKMVbbs4o6pVU4tg4P5BZnwdPrg8frQ4upQdL+We63E/IJMVNc1o93ThZKKBlsr/Uax62ATnAMGyqobuVvLCF2vF3qkKysNB+Dw9/0OJ+w0EWYnWa2E0r5qdawoP98SBiXLGpTESFASn4EZb3i8Psmtv5S8x6vrmuHx+gLH2ce4v4XSIuRxSaqTlGMirCFFGcYqs1ZaYyeGVjm1DA7SUhLhTIjBl/tPwxkfo+h+LfdaibSURDxyZ15gsoHoz9QJ6bLrRu7WMkLX64Ue6cpJo3BWNpzxMbZuO3yTbXaZaATsJauVEOqj+bnp2LC51nBvDK3rd/nKo2Xy1sz92EMNM+5ocXXwvr/Uvsf5LNtiFmU+rFZXBEGYg6nbQxmJFbahiKQXrdayarnf7Ho2O/9wxwp9mTAeK20FRRiDkr6sR3uQkwbfNVrz1nK/kf2A+ph8Irmu6JtLEBchi7KBWNEFyyi0WqS13G+21T6SnjNBGAVZZAk2ofLG0Lp+V22+RtxrZtrhBtUVQRAAWZQNhSyNkQE9Z2PR2pfp+RCENbDCd5kgCHGonxLERWh7KANJS0nE/IJMlFQ00PYHYYyZ2wIR0th9ux72FirhuJ2KVJmMKrOSdMOx3gmCINTiPXsW5+uOBv14z541WyyC0B1yvTaYULnlmrlGOJKx89rqSMHuLnTsdwiAsHPzt0NEclpeQRCEHcjKykJCQgISEhIAACtXrsTixYsxe/ZsPProo7j55ps15+E9exZV//UA/N3dQccdsbHI++NLiB86VHMeBGEVyKJsMPMLMjFtYobhg3StVjM9rG6RaHXRUm9WtHQuXboUhYWF/Y63trbigQcewIQJE+B0OjFq1Cg8+OCDcLlc/a7t6OiA0+lEbW0ttm/fjhkzZiAtLQ2JiYnIycnB888/r5u83DbH1waNtPiHos2z3yGhep8oQWsdSJXJqDIrSVfutZH4DiQIwlp88MEH2Lt3L/bu3YvFixfrkqbH48Hu3bvh8XjQ7W6Hv7sb928vx893bAUA/HzHVvzsX6XodrcHXUsQdocsygYTqkBTZgYfYYhEq4tVg7bozcmTJ3Hy5Ek8++yzmDhxIhoaGvDTn/4UJ0+exAcffBB07ZYtWzBy5Ejk5ORgz549uP/++3H55ZdjwIAB2L59O37yk59gwIABuPfeezXLZfYerKHIj/sOsVrf0loHSvZo1RM995FliMR3IEEoQY0nFfseALz36+mhFWneXl6vF16vN/C/2+3ud82ePXtw7bXXYv369cgcmIRD59rgAFDV0oxriz8CAOSkDMLeffvQULETS5YsCUyUE4SdIUU5TDAz6jSDnRQ/vWCvQ1f6UTU7WrcSJk2ahA8//DDwf3Z2Np566iksWbIEPp8PMTEXXyWbNm3CwoULAQBXXXUVrrrqqsC5rKwsfPTRR9i2bZsuirLSfTb1JhLbPBeqg4tQXRBGwFXc5CiOVkXNZJKc5Sd6TlLZfcLrzjvvRG9vL6ZNm4Y1a9ZgqIQr9Jo1a7B69WrRa+rr6wEAS5YsCRx7feYcLN/6r8D/ta5zuK5wUdA9pCgTdodcrw0k0tzwtLi4aq0rM+vaii7UoYCJiMlWknt7e/HJJ59g0aJFvPfs2bMHX3zxBWbNmqWLDNw2F+rAauEWyE1NPwq3OtAC1QVhBNxvDPt/u31/1CylkLP8RM8lGlZc4iKXrVu34uuvv8bu3buRlpaGu+66S/KelStXwuVyBX5OnDjR75qsrCwAwPr167GtaBNenzkHL+/7JuianJRB2Fa0CevXrw+6hyDsDFmUDcTus5KhRGtdmVnXkWhFamlpwRNPPIGf/OQnQccrKirQ29uL6dOnBx0fMWIEzp49C5/Ph1WrVuHHP/5xKMWVRaS52/FB7yyCsB5yPGfs8v1R40klZ/mJnh5advL24jJq1CgAQGxsLB566CGMHz9e8p74+HjEx8eLXpOY2PdNvOyyyzA+ZRAcg1LhB5CXNgS/nzETP9+xFT1+P66cNAlO17mgewjCzpCibCCRqECpxQprrNVi54+qGtxuN/7t3/4NEydOxG9+85ugc5s2bcLNN9+MqKhgZ5Vt27bh/PnzqKiowGOPPYaxY8fijjvu0FUuuYqu0HVCSmIkKdD0ziIIfsx8D3C/MWriFkTSeyxSuXDhArq7uzFo0CAAwIYNG4KWPmkhJycHVVVVyMnJQe+pvu/ky9de9Az7/YyZvNcShN0hRdlAIk2B0oKWuqIBQOhob2/HggULMHDgQHz88ceIjY0NOl9cXIw1a9b0u2/06NEAgMmTJ6OpqQmrVq3SXVGWaw0Vui4/Nx3Vdc3Iz01XlS6DndsjvbO0YednT4hjd28Lu8tPSNPU1IQf/OAH6Onpgd/vx5gxY/DXv/5Vl7SdTiemTJkCAPAmJ8ERG8u7PVRschLiWdcShN0hRZmwPTQACA1utxs33HAD4uPjUVxcHNinkeHw4cOor6/H/PnzRdPx+/1BETb1Qq41VOi6ypomeLw+VNY0YeyIVMXpMlB7jFzo2cuHO6lwpLEN64prsGxhblD/E7tH6JgR2N3bQo78oYgc3eLqQFFZHeAACmdl80auzs9NR/nubwE/UDg7W7EsTFv6wffGYu/B5n55cduaWLA0O014jRkzBnv27OE9V1ZWpls+8UOHIu+PL6Hb3R50PDY5ifZQJsIOUpQ5hOoFadcXsRVhPvz5uenYsLmW6lQjLpcLe/fuDTqWmpqKxYsXw+PxYP369XC73YEtJIYOHYro6Ghs2rQJ8+bNg9PpDNz3hz/8AaNGjQq4YG3fvh3PPvssHnjgAd3llmsNFbpOaCCp1Mpq9wE1oR4rPfulS5fi3LlzKCoqCjre2tqK3/zmNygpKcGJEycwZMgQFBYW4oknnkBKSkrQtR0dHUhLS8Pu3bvR3NyMX/7yl6itrYXH40FmZiZ+8pOf4OGHH1YlH3dSYV1xDQ4e71Ngnr7vWln3CB0zArt7W8iRPxSRo0sqGlC+txEOP+CMj+GNXF1d14xvz5yH3wE4E2IUy8K0pVc++AbdPb398vrTR9U4fOIc/vRRNX734EzTtxm0I/FDh5JSTEQEpChzCNULkl7E+sEMADZsrlVdpzRBcpGysrJ+65oyMzPR0NAXVXXs2LFB544dO4asrCxs2rSpX4TN3t5erFy5EseOHUNMTAyys7PxzDPP9AsCZgX0GgibMaAWs9LYATHrk9X7Cxs7KFNW2ROdO6mwbGFuwMrHhW1pZN/DTcfK7UVMNqvIredEj1Ba+bnp2H3wDDKHJfNGrmauYSzKamRh2hLbosxOJ3NYMhpOuZE5LJlXVitNeBEEYS4Ov9/vN1sII3C73UhJSQlsYSMXUpjsixzXPSEYJXvaxAxDB7qhyifUNDc3Y9iwYThx4gQyMjJ0TVttX44kNmyuxacV9XD4gQXXZNmubQn1i3DtL6FAyKLMx/vvv48lS5bgwoULQdu9LV++HIMHD8bvfvc73vtuvfVWDBgwAG+//bYsmbh9Wa7Lq9x2YOX2IiableXmQ8v4hVtWNWlJueAD4ntLs8cKqUkJgUmYypomGpOBvrkEwYYsyhxCZRGwg+XBbpRXfYvGs+dRXvWtYkU5VDPI8wsy4en0weP1ocXVETYf5NbWVqxdu1Z3JdlIwmmyimlXXMuJXRDqf2TZCQ1ie6J/+OGHvPcwe6I/+eSTqvOV6/KqNf6AFRCTzcpy86HFI45bVjVpSbngAxBNkx2Pgrm2uq4ZHq9PVZkIgghfSFEmwgcH4PD3/VZKKCdInAkx2FF9EnWN5/DInXm2V9IAYPz48bL2a7QS4bT8IS0lEcsXTTJbDNUI9T+aUDQeM/dEl+vyqiT+wPyCTEtOgImVIVTtXK/JQTHFXioPblnVTBKI7SMtZ29pvmvZFmWCIAgGcr2GtSxLVpLFbtil7lpcHXjunSq0e7owffJwUgQkMMoNzC7txepQPVoTOa7Xbrcb8+fPR2pqKoqLi4O2e/vlL3+JM2fO4I033gi659ixY0F7or/88suyt3oLhUun3dyYQ0ko6obq3/7w9dMzbR64L3QheUAcLkl1SqRAEOEDWZRhLcuSlWSxE3YarKelJOKRO/OC1lMRoYeslfoQ7u8sO71blGDlPdG1YDc35lASirqxUv2Ha98NNWfaPPjpM5+j29eL2JgovPrYXFKWiYghymwBrMD8gkxMm5hhiRe7lWQJJS2uDmzYXIsWV4eq+5nBeklFg86SGQOjpNHHO/zR2ratjl7vLK31ZFQ9K3m32OVZM5bkuLg4S+yJLqfe5NYtvVuFCUXdqM1Dz/7P/F1UVhfou8yxI41tQb+t3lel8Hq9uP/++zFu3Djk5uZiyZIlAIDZs2djzJgxuPLKKwM/paWlqvJoaj6H5m8Po6fbi86ODuysqITH49GzGARhWciiDGtZlqwkSyjRapUycxabZq0JMcLd4qrXO0trPRlVz0reLVZ71nbZE11OvVmtbs0kHL85evZ/oC9A1+TsIYFJPPYezR6vL2yCdz322GOIiorCoUOH4HA4cOrUqcC5F198ETfffLPmPO649SbU7Psa1935HL4p/SM+fekIqqqqMGXKFM1pE4TVIUU5jDD746klf62KrpkTDGo+8GY/KyJ0WMkV0cporSej6lnJu8Vqz9oue6LLqTer1a2ZhOOkgRH9n/19Ze/RXFnTFBbBuy5cuIA33ngDjY2NcDj6opgOGzZMcTperzfIM4SZOGOIiooGAGx755HAsY4Oe1viCUIuFMwrjDA7iIaa/MNBYVRTBrOflZ2IxL5MEGZBe6Jbn3D4bhLa+eabb/D9738ft912G0pLS5GYmIhVq1Zh7ty5mD17No4fPx7Uz4qKipCVldUvnVWrVmH16tX9jjP9dNOn5Si8aXbQufXr1+POO+/Uu0gEYTnIosyDXT9CZs+4q8k/HGbG1VizzX5WBKEndn1nEv2x457okUakLtEKFXZ5n3V3d+Po0aOYOHEinnnmGXz99deYN28e9u/fD0C+6/XKlSuxYsWKwP9utxsjR44M/P+rx1b0u4dP4SaIcISCefFgt8BQDGqCaKgJoCF0j5r8mUBA+bnpYRFYQy4UcCa8sEsQJzmoKYtd35lEf8aPH6/LumO5hFPfIeyDWLsrKqvDpxX1KCqrM0Ey+WRmZiIqKipg2b3iiiswevRo1NTUKEonPj4eycnJQT9sent7AADX3fkcUtL7lmskJtLYhYgMSFHmQY8ornb5+KsZ4Oo5KGYUxsqaJhpoE7YlnBRFNWWJ1Gj9hHbktje+qMZW/76y4UZdZstuhfKI1a+UfHxl40uPG3HazMjTou3OATj8fb+tzJAhQzB37lxs3rwZANDQ0IBjx45hwoQJuuaz4aN/4Lo7n8PAwSMw/fanUPSPskBQP4IId8j1mgc93Jrs4lKsxgXYCLdhckUm7Ew4tV81ZSFXUEIJ75ceQuHcXKSlJCI/Nx3Vdc3Iz00PnOdzfS0qq0P53kZ4On1wJsTwfl/Ncpnl5ssnR0lFA3ZUn0Rp5XEkJsQEyW6F8QJf1GhGHin5uBGluWkwf3MjTrOvZyJTs4NsKfWO43v2Qs9mfOagfu2OYdaUS1HXeA6zplwqO3+zePXVV7Fs2TL88pe/RHR0NF577bVAQK8HH3wQjz/+eODalStXYvHixYrzSB8yCEMuHRfYR/magvygiPgEEc6QomwQdhk4qxngCt2jZZBCA23CzoRT+w2nshDWZNfBJjgHDAx4E3m8PlTWNGHsiFQAAoojy8on9H01S+Hk5ssnx/yCTFTXNaOnx49kZ1y/6Mzs32YgFDVa6BzfvXyRpNl/cyNOs6/nU7bvuCFH9rhC6NkLPRsmH3a7Y+Brk1ZlzJgxKCsr63ec75haLkl14tXH5sJ9oQvJA+JwSSopyUTkQFGvCd2gSM7S2CVIiJWgvkwQ4QHTl//yYWXAosz3TpR7jIuVLcpmymcHmLrhWpTljiuUWpTFLNeR/pzom0sQFyFFmdCNSP+4yIEmE5RDfVk71DcJKxDpfZn6oXKozkJPpPdTgmBDrteEbshx2Yz0j54VXOyIyMMKayAJItKhfqgcWgpCEISZUNRrIqSEU3RgNdC2UKHHChFlzUZtVGqqO8JuWLnNUnR4giAIe0GKMhFSwm2gYOVBGdFHpE/OAOonaNRs3aMWu/clu8sfLli5v+sxUUrtTH+oTgmCEIIUZSJkhKPbtZUHZUQf4TY5E0rk1p0e/cDufYnZ/ue5d6powG0i+bnpcMbH8G77YzZ6KGRG9ROjlEU77H9t93ePGXjPnsX5uqOBH+/Zs2aLRBCGQIqygVj1o2AW4fgxIiXM+pC7u3rk1p0e/cAKfUnLO3t+QSaSnXFo93SF1TsuFOj1rWxxdWBdcQ3cni5U1jQZlo9a9PgGGtVPxGSTU29C17DT1ZqHUVjh3aMXXq8X999/P8aNG4fc3FwsWbIEADB79mx88skn+uRx9iyq/usBfL3iF4Gfqv96gJRlIiyhYF4s9LZ4MhaG3QfPICdzMApnZ+s+WLeKlVaOHEYFslJTB3rVm56BRqzyLAlCKXr0AysE7dESbCktJRGP3JkX6MOEfPQKclVS0YB2T1e/fYr1zkctenwDjeonYrLJqTeha8T2Z1aah1FY4d2jF4899hiioqJw6NAhOBwOnDp1Sre0PR4PamtrMSIuHv7u7qBz/u5udLvbET90aOC6nJwcOJ205zJhb0hRZqH3i3p+QSaq65pxvKkdTW0eOBNidH8Zm/3hVyKHUR8jNXVglXpjY0WZCGuh9/6sVpqcsYIsWhWZcBpwhxK9JlHZ6fC1IbN3HbBy+xCTTU69CV3DTVdLHoQ4Fy5cwBtvvIHGxkY4HA4AwLBhw3RLv7a2Fnl5edhWtAkPbC9HtMOB38+YiZ/v2Ioevx/bONdVVVVhypQpuuVPEGZAijILvV/UjIWhqLwO8POnq3VwaJWPixY5zKiD/Nx0VNc1W2IdG1N+RhaznyVhLdj9Q2gyRe0ki1UmZ1pcHXjunSq4PV2myqJFkbGCom9X9FIgpdKxsqJqZeTUm9a6pWejnbq6OqSlpeHJJ59EaWkpEhMTsWrVKsydO1f0Pq/XC6/XG/jf7XbzXtfR0ecWf7CuDp09Pah1ncO1xR8BAHJSBmHvvn1wus7hwIEDQdcThJ0hRZmFES/qtJRELF84SfC81oGqVT4uWuQwow4qa5rg8fpQWdOEsSNSFeepJ1ZRVghrwm4fQpNCaiequPeZpexJuczaAerH2mG3PwBBbZGvbertYUEQdqa7uxtHjx7FxIkT8cwzz+Drr7/GvHnzsH//ftH71qxZg9WrV0umX19fDwD48SMr+p2rdZ3DdYWL+l0/Y8YM+QUgCAsS9sG83i89ZOlgWuEUREItZtSBlerdSrIQ1oPdPoSCa6kNWMa9z6yAe/MLMjF98nA8cmeebRUb6sfyaRWIhMy0v6KyOjz3ThV2VJ8MtEW+tinUXsMxcGS4ozWYl5L7zQ7qZhSZmZmIiorCnXfeCQC44oorMHr0aNTU1Ijet3LlSrhcrsDPiRMneK/LysoCAPzlubXISRkUdC4nZRC2FW1CVVUV1q9fH3Q9QdiZsLco7zrYBOeAgZad4beKRdhMzKgDK9W7lWQhrEco24dZSznSUhIDruVkBQx/Pq88geqG84H/uR4THq+vn4eBWFAovTwsCPPQ6pGh5P5w9f4YMmQI5s6di82bN+Omm25CQ0MDjh07hgkTJojeFx8fj/j4eMn0ExP73ssTsrOREB2NvLQhQWuUr5w0CQOzx/S7niDsTNgrylMnpNPHMgJocXUE1oIbEV2cICIBMydt7D54tbv8oWRu/kg4B7T1U3qZ9tfi6oAzPiZo0oSvbQq1VytNPkq5gYu5m0cSWic3lNwfzhMpr776KpYtW4Zf/vKXiI6OxmuvvaZbQK+cnBxUVVVhRFw8Xr52VuD472fM5L0uJ8cafZAgtBD2ivJt88YjOTmyPjiRSElFA7buboTfAUOiixMEYSx2H7zaXf5QMjglEXfccDGQolwF2I5ITaCwzwMI+WRLqBV1oYkD7jPXa505X/mYwJlt7Z1hNzExZswYlJWV9TvOd0wpTqcTU6ZMgffsWThiY4O2iHLExiI2OSnoOoIIB8JeUSYig/kFmfB4fYLRxQnCCChokH7YXTmyu/yEMUhNoMjdZ9goQq2oy/W8UOqhIWdHAKCvfNV1zfB4fYHfcvMg+ogfOhR5f3wJ3e72wLHY5CTEDx1qolQEYQwRryjTQNceSD0nqejiBCGG2veAFndbevfYA3pOhFz42orSLatCrbDxKer5uenYsLnWkDYv1/NCqYeGkvXq+bnpqKxpCvymyXXlxA8dSooxERFEvKJM68rsAT0nwkjUti8t7rbUpu0BPSdCLnZsK3yK+obNtYaVQ67nhVIPDbnr1Zm/mW0hzd4ekiAIaxPxijKtK7MH9JwII1HbvrS421KbNh49rMH0nAi5hEtbCZdyEARBaMXh9/v9ZgthBG63GykpKXC5XEhOTjZNDm9LK5q2lCL9+nmITxtsmhwEYVes0pcJ+8FYxqZNzLCNhS+csVtfJrd766Ekijg9M3XYrZ8ShJFEmS1AuNO0pRStX1WiaUup2aKENd6WVhzf+B68La0RLUOk0eLqwIbNtWhxdVgqLcIazC/IxLSJGWQZI1TBuFKXVDSYLQrxHVLPhJ4ZQRB6EvGu10aTfv28oN9WxWzLt9b8mQkJABj1o9tDmrceMhDq0HNNoB3XFxLiUCRqQgvkgmw91EQRJwiCUAspygQA85W8k5v+jrNbt6HH04HRy+5SfH/69fPQ4+lAj8cDb0urIoVXa95sGdi/CePRc1BEAyyCINjQRIv1UBpFnCAIQgvkem0wdnG9Tr9+HgZfnW+aktfT0RH4Ucv5ujq07f1aRV37Ob/VEZ82GKN+dDutRQ8hzKBIj7VoeqZFEARhR6SWoMhZosJcc6SxjfdauctclC6HUSs7+zgtwSEIgg1ZlFWgxFXXLlZGRsnTghYX5ujEBEQnJiI6MUFV3k1bSuFrP4/YpCTFdT180UJEO52Wf0YEQRCRBBOYib3fLXsiiy9wk9WDOZkpn5y8pZagyFmiwlxTXdcMj9fX71q5y1yULodRKzv7OICIX4LDxPh1u90mS0IQ0iQlJcHhcBiWPinKKlDipqyHAmoXtLhva1VW2RMSSpX0SHpGhDKsPugOJ4yo61A/P2ov+qJG4bJ6rAEz5ZOTtx5rgJlz7AkOpWkouU7u9ULn+Y5H8hKc9vZ2AMDIkSNNloQgpDE6OjttD6UCswNfWRU59RJudRdu5bEiZm5VQdsLhYYWVweee6cKbk8XZkwerltdh/r5UXsRh68vi00ukEU5fPK2CrS9lDS9vb04ePAgJk6ciBMnTlhqiyi3242RI0daTi7A2rKFM2RRtiBKLJChVqSsrriZHTRMb8KtPEQwFOArNJRUNKDd04VkZ5yudR3q50ftRTliVk52YKaxI1L73csXuMnqwZzMlM/qdRMK9HAtD3eioqJw6aWXAgCSk5MtqfRZVS7A2rIRyiFF2WBCrUiZuU2SnLz51mzrody3HzmK+jfeRNbdS5E0doyqNNRglzXohDpoYBka8nPTUV3XjGULc3W14oT6+VF7UQ5NLhChhLaXIghCCRT1Wke8La04vvE9eFtaA8dCHU1aS35aI3TLyZsvMrQekcHr33gT7YcOo/6NN1WnoYb4tMFIv34emraUBj13giDkU1nTBI/Xh8qaJrNFIUIMRZsnQolUe6P2SBAEG1KUdYRP4VO7ZRCf0i0HLVsUaVXq1eadOnUqohMTkTp1qqp8AfRZksePQ9bdS1WnoRa7bAFGKIe2CgkN8wsyMW1iRj8rDtV/ZEDPmSCsRXx8PH7zm98gPj7ebFGCsKpcgLVlI9RDwbwkUOIWrOf64OMb30PrV5UYfHV+2K99DUVZjVy7bfV14XaHgnlFLlT/4YVQX6bnfBEKJkUQBGEdaI3ydwgpO2ZtBRWqta9WUPLSr5+HHk8HejweeFtaDZHDqLXiVqg/wjhovZq5UP1HBvScL0LBpAiCIKwDuV5/h5D7rB5rjNW4UWtxoVaCnm7DWtzFo52JcO2rUS2HVN58z1GtvGzI7Tq8ofVq5hKq+ifXX/PgWlCZZ3GksU32M2E/PznPUs/nrVRebt5c2VvcnYiNjkJ+brpm2eQiVh9855TUn5z7ze5/ZudPEIR1IYvydwhZcPWwElt5CyE9LddayqlVjqYtpWj+Yidc1fswfsVD/SYY+J6jHs+FkTd16lQc3/geWZYJwoaQFc88uHXP/F9d1wyP1xc4LjcNAJLPUs/nrVReofIyfLX/NBz+vgB3fFtiGYFYffCdU1J/cu43u/+ZnT9BENaFFOXvUKMQy3W7tfIWQlZxF9cqR/r18+Cq3gdf+3k0bSmVlZYez4WRm1lnDVhvMoSQB60NjFzI9dc8uHXP/M7PTUdlTZOsZ8L3/MTu0/N5K5VXqLzMb0+nD3CEti2K1YdY3Wp9NkK/Q43Z+RMEYV0omJcGrBhwy65rZvWQ28yy27Xe7UCognlRQCGCMBYzA/MRBEEQhFJojbIGQr1HshzsumZWD7lDta7bankT+iC0RZEcaI2bPlA9EgRBmMsrr7yC0aNHIyEhAXl5edi2bVtI81+1ahUcDkfQT0ZGRuC83+/HqlWrMHz4cCQmJmL27NmoqakxRJatW7filltuwfDhw+FwOFBUVBR0Xo4sXq8XDzzwAIYMGYIBAwZg4cKFaGxsNEReQn9IUdaAlZQjJjBV6tSpqpV3PYJbqcXMSQczy01YB6HAUXKUN2aNW0lFg9FihjVUjwRhfWhCK3x599138dBDD+F//ud/sGfPHlx33XW48cYbcfz48ZDKkZubi1OnTgV+qqurA+f+93//F2vXrsXLL7+MyspKZGRk4Prrr0d7e7vucly4cAFXXHEFXn75Zd7zcmR56KGH8PHHH2Pjxo3Yvn07zp8/j5tvvhk9PT26y0voDynKFkWp8sZYZNt27VKtvNvVGq2VUJebFHN7IUd502KNJi5C9UgoxSpKm1XkCAU0oRW+rF27FsuXL8ePf/xjXHbZZXjhhRcwcuRI/PGPfwypHDExMcjIyAj8DB06FECfBfeFF17A//zP/+DWW2/FpEmT8NZbb8Hj8eBvf/ub7nLceOONePLJJ3Hrrbf2OydHFpfLhddffx3PPfcc5s2bh6uuugrr169HdXU1Sksja6xtVyJeUbaq0qJUedNikfW2tOLYurfQ1dKKlEmTTLHqqlVW9Xh+TN0xkauNbguROiFhV+Qob7SNlD5QPRJKsYrSVlRWh08r6lFUVqdbmlZVvkM9oWXVegg3urq6UFVVhfnz5wcdnz9/Pr744ouQynL48GEMHz4co0ePxo9+9CMcPXoUAHDs2DGcPn06SMb4+HjMmjUr5DLKkaWqqgrd3d1B1wwfPhyTJk0KubyEOiI+6rXRWzd5W1pxclMxAAeGL7pFtqVXaURmLVGjm7aU4uzWvjUoGQvmm+JKrjYCNfv5pV8/T1VALT0iVysJ5mXlKOhEfxjlzcpQxG4iUrFMxGIH4PD3/dYLq25bFOp3olXrIdxobm5GT08P0tOD9/BOT0/H6dOnBe7Sn2nTpuGvf/0rxo8fj6amJjz55JOYPn06ampqAnLwydjQENrJMjmynD59GnFxcUhNTe13TSjrlFBPxCvKRistfUrodgBAtDNRtgKmVvFVE305/fp56PF0APCbtkZYbcRo9j7Gh9a+gO7v1oWoqTstbUHJhIueW3IRBGDNgaQeyjtNABBSWGUiq3BWNpzxMboq7JaZBOAQ6n5p1XoIVxyO4Nkev9/f75iR3HjjjYG/J0+ejGuuuQbZ2dl46623UFBQYAkZ2aiRxUx5CWVEvOu10QG50q+fh6Ezr8XQmdeFRAlV49YbnzYYo5fdhdHLlppiTdbiisw8v7Zdu+BrP4/YpCTV9aylLVgxAjoRXi57YmXJz02HMz4G+bnpPHeagxKXWKGycdMIp+dJhBdGLBuw6lKEULu7W7Uewo0hQ4YgOjq6n6XzzJkz/aymoWTAgAGYPHkyDh8+HIh+bQUZ5ciSkZGBrq4utLW1CV5DWJuIV5SNpk8JXYrRy+6SrYBpWXdrR4VND5nTr5+HtOkFGL/iIVttD2XVNfLhQIurA8+9U4Ud1SdNX7+oB2KD0/Kqb9F49jzKq74VvF+LkqnmXiXrGIXKxk3DKutRhSBFnlCLndoOu18aLTdf+naqKzsRFxeHvLw8bNmyJej4li1bMH36dJOk6tte6cCBAxg2bBhGjx6NjIyMIBm7urpQXl4echnlyJKXl4fY2Niga06dOoV9+/aZWqeEfEhRtiB6WFitsGWVXNTIzFUw5aRhRaWUAnsZR0lFA9o9XUh2xoWFy56o4iljfaQWJVPNvUqsQEJl46Zh9SBCVlfkrQi3joXqPNyVIzu1HXa/1EtuuV4lQsek2gf7fLi3JS2sWLECf/nLX7Bu3TocOHAADz/8MI4fP46f/vSnIZPh0UcfRXl5OY4dO4Yvv/wSP/zhD+F2u3HXXXfB4XDgoYcewtNPP42PP/4Y+/btw9KlS+F0OvHv//7vusty/vx57N27F3v37gXQF8Br7969OH78uCxZUlJSsHz5cjzyyCP4/PPPsWfPHixZsgSTJ0/GvHn2MWhFMhG/RtlolKy/Za5NnToVAAV7EoO7JlhOPUutI1a7VlqPNdb0rPWHva4tHFz2xNZiylkfqWWdn9FrBOWuM7V6ECFaS6kcbh0L1bkV1+HriV3bjl5yCz1fvvT5jkm1D/Z5AGHdlrSwePFitLS04Le//S1OnTqFSZMm4R//+AcyM0PXLhsbG3HHHXegubkZQ4cORUFBASoqKgIy/H//3/+Hjo4O3HfffWhra8O0adNQUlKCpKQk3WXZtWsX5syZE/h/xYoVAIC77roLb775pixZnn/+ecTExOD2229HR0cH5s6dizfffBPR0dG6y0voj8Pv9/vNFsII3G43UlJS4HK5kJycrCoNLQoQAxNJOWXSJEQ7E0XTYq4dfHW+bYM96VFnavI5vvE9NH+xE7FJSYLu11Kyqa3/cHhuVkaPvkyEL0YGFlKaNgUfE4evL3PrTKgO7Vy3YmUEwPt3uJRdLlrLKHW/UJ2Ha30SBKEPpChzYCtTjAVSiwLEpNfj8cC1r0Y0rVApmUbCKKzRCQlIzpmA4YsWyioLu+wAFNeDt6UVh9a+AF/7eaRNLwhZxHAAaD9yFPVvvImsu5ciaewYQ/KIZEhRJsTYsLkWX+4/jWkTM0y3DllJFiti176sVYnjtgv2/wB4/2a3n3BpV3InRQiCIKwCuV5z4O7Ly/6tBmbtrLelFdFOp2ha4bBtUPr18+Cq3oeOE404e+Ysop1OWWVi1zsAxfsZx6cNxvgVDwUp20pRW/9tu3ahp6MDbbt2SSrKRu/bTRCRhpVcVq0kC6EfWt2+ue1CzJ2Y+7fQ9XZErps9QRCEVSCLMgey+GnH29KKk5v+DsAfMouymahZh26XslkBu1qhCIIIht2Xu/2xgq6wfJZGM62RZPnUB6lnGKplFIC46zU9b0IOv/rVr9DU1ITXXntNl/Rmz56NK6+8Ei+88AIAICsrCw899BAeeughXdLXQn5+PlauXIlbb73VbFFCDinKBEFYGurLBBEesPvy/+08KehyzOdqLOa+TNbI8MDIZyrk7s6XD7Uta7F06VK89dZbAIDo6GgMHz4c//Zv/4ann34aqampitI5d+4cioqKNMvU1NSEcePG4ZtvvkFWVpbm9ACgtbUVsbGxgUBgoVCUV61ahdraWmzcuFH0uuLiYjz66KOora1FVFRkbZhErtcEQRAG0eLqQFF5HeAHCmdnG2qdMMMKoleeWtJRc68RddXi6kBRWR3g6ItCTpYoceREM5Zzzu7uyMRFjHymUu7uoZKDUMeCBQvwxhtvwOfzYf/+/Vi2bBnOnTuHDRs2mCLP66+/jmuuuUY3JRkABg8OvZdhcXExfvGLX0he92//9m+45557sHnzZtx4440hkMw6RNa0gABG7q9rxb17CYIIDSUVDdi6uxHlexsN3x/V6H1Y+fYe1SvPUO/xbERdlVQ0oHxvI7buNv5ZhwPsvXi5+2Xz7cEt5xrC3hj5TMXaWyjlINQRHx+PjIwMjBgxAvPnz8fixYtRUlISON/T04Ply5dj9OjRSExMxIQJE/D73/8+cH7VqlV46623sGnTJjgcDjgcDpSVlQEAvv32WyxevBipqalIS0vDokWLUF9fLyrPxo0bsXDhwqBjH3zwASZPnozExESkpaVh3rx5uHDhAoA+a3ZhYSFWr16NSy65BMnJyfjJT36Crq6uwP2zZ88WtR6/8cYbSElJwZYtWwAA+/fvx0033YSBAwciPT0d//Ef/4Hm5mZZ8gDAiRMnsG/fvoDiu2rVKowaNQrx8fEYPnw4HnzwwcC10dHRuOmmm0ybmDATsijDuABLTCTm7vZ23dMOJ2jdLhGuzC/IhMfrA/zGWyeMtoLwBd7RK89Q7/FsRF3NL8iEp9MHOMgSRfBDa18JQjtHjx7FZ599htjY2MCx3t5ejBgxAu+99x6GDBmCL774Avfeey+GDRuG22+/HY8++igOHDgAt9uNN954A0CfBdfj8WDOnDm47rrrsHXrVsTExODJJ5/EggUL8M033yAuLq5f/m1tbdi3bx+mTp0aOHbq1Cnccccd+N///V98//vfR3t7O7Zt2wb26tbPP/8cCQkJ+Ne//oX6+nrcfffdGDJkCJ566inJMj/77LNYs2YNNm/ejIKCApw6dQqzZs3CPffcg7Vr16KjowO//OUvcfvtt+Of//ynLHmKi4sxc+ZMDBo0CB988AGef/55bNy4Ebm5uTh9+jS+/vrrIBmuvvpq/O///q/8BxUmkKKMvkjN57qA8oRxuMnVodsHrGlLKXzt5xGblKQpcna407SlFPVffY3/+zYat//4Jsn6p8EGYRfSUhKxfOGkkOVl5Ho6PuVSrzy1pKPmXiPqKi0lEcsXheZZE/aEojwThDo++eQTDBw4ED09Pejs7AQArF27NnA+NjYWq1evDvw/evRofPHFF3jvvfdw++23Y+DAgUhMTITX60VGRkbguvXr1yMqKgp/+ctf4HA4APRZbgcNGoSysjLMnz+/nywNDQ3w+/0YPnx44NipU6fg8/lw6623IjOz7xs5efLkoPvi4uKwbt06OJ1O5Obm4re//S1+8Ytf4IknnhBd97ty5Uq89dZbKCsrC6T5xz/+EVOmTMHTTz8duG7dunUYOXIkDh06hPPnz0vKs2nTJixatAgAcPz4cWRkZGDevHmIjY3FqFGjcPXVVwddf+mll+L48ePo7e2NqHXKkVNSEeLTBqMm/XJUHXPp6jKXfv08pE0vwPgVD9neUsrndqkX6dfPQ82lU1DbO0hW/RvtYqoUI+uGkIbqPzSEwh2RniURzswvyMS0iRm29zigfkqEmjlz5mDv3r348ssv8cADD+CGG27AAw88EHTNq6++iqlTp2Lo0KEYOHAg/vznP+P48eOi6VZVVeHIkSNISkrCwIEDMXDgQAwePBidnZ2oq6vjvaejo6/dJyQkBI5dccUVmDt3LiZPnozbbrsNf/7zn9HW1hZ03xVXXAGn0xn4/5prrsH58+dx4sQJQfmee+45/OlPf8L27duDFN2qqir861//Csg8cOBA5OT0Tb7V1dVJyuN2u1FeXh5wH7/tttvQ0dGBMWPG4J577sHHH38Mn88XJEtiYiJ6e3vh9XpF6zTcIEX5O4z4gDH78qpVkq30MTJSOT0fk4i4cRNw+fh0WfVvtcGG1RT3SIPqP3ygZ0mEM+Gy9tXO/dRK4ypCPgMGDMDYsWNx+eWX48UXX4TX6w2yIL/33nt4+OGHsWzZMpSUlGDv3r24++67g9YA89Hb24u8vDzs3bs36OfQoUP493//d957hgwZAgBBimd0dDS2bNmCTz/9FBMnTsRLL72ECRMm4NixY5JlYyzZfFx33XXo6enBe++910/uW265pZ/chw8fxsyZMyXl+fTTT3HZZZcFrM0jR47EwYMH8Yc//AGJiYm47777MHPmTHR3dwfybG1thdPpRGKivd9fSiFF2cIY+TFS+rEwUjktKqtD+Z5GAJA1gLDaYMNqinukQfUfPtCzJAjrY+d+amcln7jIb37zGzz77LM4efIkAGDbtm2YPn067rvvPlx11VUYO3ZsP4twXFwcenp6go5NmTIFhw8fxiWXXIKxY8cG/aSkpPDmnZ2djeTkZOzfvz/ouMPhwIwZM7B69Wrs2bMHcXFx+PjjjwPnv/7664A1GgAqKiowcOBAjBgxQrCcV199NT777DM8/fTT+N3vfhckd01NDbKysvrJPWDAAEl5Nm3a1C8YWWJiIhYuXIgXX3wRZWVl2LlzJ6qrqwPn9+3bhylTpgjKGq6QovwdVnl5shVYIz9GSstrqHLqABz+vt9K0TI7rNfMstUU90gjEuo/UqwgkfAsCcLu2Lmf2lnJJy4ye/Zs5ObmBtbojh07Frt27cLmzZtx6NAh/OpXv0JlZWXQPVlZWfjmm29w8OBBNDc3o7u7G3feeSeGDBmCRYsWYdu2bTh27BjKy8vx85//HI2Njbx5R0VFYd68edi+fXvg2Jdffomnn34au3btwvHjx/HRRx/h7NmzuOyyywLXdHV1Yfny5di/fz8+/fRT/OY3v8H9998vud73mmuuwaefforf/va3eP755wEAP/vZz9Da2oo77rgDX331FY4ePYqSkhIsW7YMPT09ovL4fD58+umngfXJAPDmm2/i9ddfx759+3D06FG8/fbbSExMDFicgb7JCL412+FO2CvKrTIHmFZ5ebIVWCM/RlLlDeXAvHBWNhZck4XCWdmKZWHqa8Pmg/jvV7bjSGMbTwr8sOs6UhSRcEOP52bUs9cz3VBN5AnJbNX+oVQuq5aDUAfzPI80ttFzNQl2n7JD/7Kzkk8Es2LFCvz5z3/GiRMn8NOf/hS33norFi9ejGnTpqGlpQX33Xdf0PX33HMPJkyYEFjHvGPHDjidTmzduhWjRo3CrbfeissuuwzLli1DR0cHkpOTBfO+9957sXHjRvT29gIAkpOTsXXrVtx0000YP348Hn/8cTz33HNBew7PnTsX48aNw8yZM3H77bfjlltuwapVq2SVdcaMGfi///s//OpXv8KLL76I4cOHY8eOHejp6cENN9yASZMm4ec//zlSUlIQFRUlKk95eTkGDhyIvLy8QPqDBg3Cn//8Z8yYMQOXX345Pv/8c/z9739HWloagL4ttL744gvcfffdch9P2ODws2OFhxFutxspKSn4y4eVqG44j2kTM0yPMiknWrNVIjpv2FyLL/ef5q23UMsoR5bdB8/g6EkXJoxKxdP3XSsr3SONbfjTR9XIHJaMxLgYVB9ttkQ7IYJh+rLL5er34RJrG3LRIw2j0w1VnxOS2ag6YqOmjErl0lIOq7yb7YxYX1YD8zyd8THweH2mvb8juW2w+xQAw98TUrCfBQDJv9nPK5KfI6EMv9+PgoICPPTQQ7jjjjskr1+6dCnOnTuHoqIi44WT4MEHH4TP58Mrr7wi+55f/OIXcLlceO211wyUzJqE/fZQc/NHwjmgzRRLMfelK7Y1BPtaKyhqYvuMhnqLCzFZ0lISMb8gEy3uvu0Cli3MlZVmi6sD64prcKrlAs60ejBzyghLeBQQytBjP1yj9h/WM12jt35iEJJZrCx6DS7VvFeU1rGWZ0Jb+1gP5jnm56ajsqbJtPd3JLcNvj5l5neU/SwASP7Nfl6R/BwJZTgcDrz22mv45ptvzBZFMZMmTcI111yj6J5LLrkEjz76qEESWZuwtyjrNXOtBq71QmxAGQqLjV5Ybdb19U37UL63EbOuHCF7H9MNm2vxRfVJJMTFICdrMApnZQfKYrXyRTpy+rK3pRVNW0qRfv083ijzYuel7tWKHukbLaMWNmyuxdd7juA6XwPm/dcdmqL8l1Q0YM6EZHRVbLdcWem9oB0rfJeNgNqGdSCLMmFFrGRRJpQR9hZlM+HOtIpZhYyyahlBqKxbslERDIxd39wPIs0q24+mLaVo/aovcMeoH90epFgCwKG1L6C7vT1wXuxeo2UzKw2jmF+QieTKz5F+9iiatpSqlo95rxzf+J7lyuptacWFLaW49fp5iKcBNMHBct/ECIb7LOT8LXQvQejFm2++abYIhEpIUTYQJS9dPV7QRs2GGj3LKpW+1PnCWdlwxsfoNslg1KQFzVbrD6MQp06dCgABxZitWAKAr/08YpOSAufZMMf4zumBUPpKrMRGy6iFtJREzPuvO4ImJpTCrgsrltXKExUEQRAEQRhD2Ee9jiSMiuJsdMTdorI6fFpRj6KyOt7zRuRfUtGAHdUn8dw7Vf3qSElUTCX1TFG29YdRYNp27cKoH90eUDjTr5+HwVfnBxSvtOkFGL/iIV6FND5tcNC9eiOUPiN705ZSWWmkXz8PTVtK4W1pNUROb0srjm98T1X6WuuQXRdGPw81sNsTYU+MjJCu5/vcyG9DOH93xMrGF5lbTqT0cK4vgiDkQRZlhI+lj20J1dN92HC3cAnXaaH8mefm6fSh+mgzPJ0+OBNiZD3H+QWZqK5rRrunC0VldbLv46KknrnPZ0f1SVTXNeORO/Ns3e7MhG195Fpo2ZY/uVZALWuBld6bfv089Hg60OPxwNvSKnmPHVzE+ZBTL3pY3Y2UkduelN5PmI/Sb6KS6/X83hq59CeclxWJlY0vwFd1XTM8Xh/v9XLSJAgiMiCLMkK3R6nRsC2heu4LLWRh1Wu2tXBWNmZeNSKQptz8Ax8xB/q2pnBA9nNMS0nEI3fmYfrk4ejo8olatMXIz02HMz4G+bnpsvJkPrYerw+JcTFo93TZvt2ZCdv6qMRCK4SWNJTeG582GNHORLj21ci6x2irplHpy6kXPazuRsto5P2E8Sj9Js4vyMTkMUPg8fokv3F6fm/1TEsqbSHrKvfbLvdbb6YFVqjeWlwd8Hh9mDxmCOYXZAau+8H3xvJ+u9llMPJZEARhD8iijL4XrKfTF/ggWt26J8cCHoqgFHrNtqalJMKZEBPYD1PN1jBpKYlocXUoWqvMTCg881Yl/D1+RcHAGCprmuDx+lBZ04SxI1Jl3VNUVofyvY24emIG0pIT6COsE3qsbdWShpp7ldwjZtXUw6LJpM+4YLPT0hI1XK86NdJqy+STOnVqv7KzEZJB7v2EeSj9Jir5Lun5vTXy281Nm/mGc62r3G+73G+9mRZYoXorqWhAdV0zpk3MCIyX7rghBxs21/J+u7llIEsyQUQ2pChDvaLGJVQu3FZxB9LDJZupM2ZWV0lazIexxdWB14v3AX6gcHa2orovqWhAZ5cPIzOSUDgrW7H8+bnpqK5rlmVRZujo8qGzU9zli5CGq7RIucfKQUsaau5l36NFEdTTbZovLbH0pfLWq06NjIbN5COVh1BZ5d5P9NHq6sD/7Txp+eVOdtqNQg1C+1BL/ZZKz0r1pXRveCuWgSAI8yBF+Tv0eDlyFVijFGervMj1mPkWUvqV1F1JRQO27m6E3wE4E+RPdDAuWVeOu0Sxgs2gxqKcGB8T+CHUo/eaWrPXmWopjxyrrdzy8aWVOnUqXNX7AtHFzYhSLbaO+eSmvwPwY/iihbKfHV99iJXF29KKHo8HKZMmCZbVihG7rcjnlSdQ3XAegLUnC8N9uyB2+djfL2655daDFetLSCalxwmCiExopP4derwcuQqsGsuvVdyqQ4WQ0q80SJbH6wP8yiYP+FyylKJm0kLv7awiFSVKiRwl0ewtgLQoWeyo2EJllFs+Pgtw265d6OnoQNuuXUgaO6ZfWqGoLyHLdNOWUpzdug0AEO10ypaFrz7ErN9NW0rh2leDwVfnC7YhPbwaIoG5+SPhHNBG70CCIAjC0pCirCNcBVauEsVWjuUqiOESqZtbZ0pdsZnrC2cptwjrYZlXM2kRThMdZqJEKZFSEuVYC41Gq5IlVUY911/rbTnVYs1noocDfsPWh6u5nhBmcEoi7rjh4nIVvu9ZuHzjCEIps2fPRnl5Oe+5jz/+GIWFhaEViCAiGFKUDUSuQsRWjuUqb1ZZp6w3TLmYrZ7kXg8orwc9FFYazNkDKSVHjrXQ6kiVUc/113pbTrVY8+PTBmP0srsU56m0DGQtNg6+93i4fuMIQi5xcXG46qqrgo4NHmzP7xNB2JWw3x6qVcE2BXpvbSA3PfYWBEJbIYndoyZPo9CaP1MuuVs9MdePzxyE/35lO440toVETgbu1mJ22EYjEhHafohB762RmMjR3pZWRefknBe6VqqMRiJHZrFrjN76Sk+0PFuCH77vGW3NQ0Q6w4YNQ0VFRdDPzJkzzRaLICKKsFeUP688Iftaof2U1So1cvdnlqscy7nHrD2hmToqKqvTlD9TrsJZ2bIGScz1G0sOYf+xVvzpo2pZ+ehVT9zBnNx0w2XvbquiVGHRU8n0trTi0NoX0PzFTt59daX23FWyJy9z7clNfzdVQROTmXkWJzf9XfAasfq3mvIpVlbaT1kdfN8zNd9FgiAIgtCTsHe9nps/Uva1Qlv9qHUBMyM6tVkRsZk6GjtiEJzxMYq2S+JDqVt05rBkNJxyI3NYsqzr9aontevS2dtybNhcS67bOqPUlVfPiNdNW0rhaz+P2KQkXguplIu0krWwzDU9Ho9lA5ExzyJlUq4qq7Fat2yjopiLlZXWMRMEoRcNDQ1wOBxBx9ra2jBo0CBzBCKICMTh9/v9ZgthBG63GykpKXC5XEhOlqc8bdhciy/3n8a0iRmqtyqKVFpcHSgqq0NtQys6unyYMXm4pnVlSuvcrs9IqM0RF1HTl5UqScz+t4OvztesaLLzBhCSLafM3tpKDK2yqb1fz2dK6IOavkwQkQYTzItvjXJpaSkGDhxokmQEEXmEvUVZCraCJWQNpCjF0qSlJMKZEIPOLh+SnXGaLbVyrPhc5diOz8gqe2KHG0oDL+lpCWTnzShrgLGW3lAEmlKrsGqVTe39ZN21HxT9OnJgP1cAgb8H+jo0T/opeVdZeZKRWaNMEIR5RLyizFXI7KhsqUXvAQhb6dOanhwFMhyiotpVwQ83jFI0w0lZM3ufaaVQlGp7wFZUPi8/gvbyf+HzC3Nw+61Xw9vSioo/bsDXMX3fAXpXhg8lFQ34es8RJFd+jgsT8/FlgwfRF9y4rOoTdLe3A1D/nlHyrrLbe40giNAS9sG8APFgXFKRNUMZnVhpXlpl0zuglJ7BV+SkxX12FEmasBrxaYORfv08NG0ptUwwKrXBsfgiU+sZaEsoLa15hCoYmNWCjtkFdgC0K9yHMfZCI65wHw6cSz97FNf5Ggz1umE/O+5zNOO5Ko2Mb8e2N78gE9f5GpB+9iiucB/GtIkZuMJ9WDS+g1yURNG3csT9U6dOoaCgIOjn3XffNVssgogoIsKiLGZ5lLLo8d0r1xKr1GKr1EKq1aJqd7df7rPTw8JMbn7WxspuckKYbbHg1plaefgstFJpKXleQmlprb9Q1b/Zz9mucL0uEhNi+x2bfP08xBv4PmY/OwBBz9GM5yqVJ/e8HjKKxVYwIu5CWkoi5v3XHYG0JqQNhrflEjR99/yZtNW885V4k1jZ86Srqwtffvll0LFTp06ZJA1BRCYRoShrUQj57pWrkBWV1aF8byM8nT4sXzRJdzm1Krrh4vbLKLdMpG0l9cFVjNUo26Rchw47KiNmu19z60xPeZg0UqdOxfGN7/UbzCp5XkJyaZU3VPVv9nO2K1xFhf13qJQYdjtu3roVKZMm9XueQm1cb7wtrejxeJAyaZJgnmzZ2NdraXtyJwu457TAfb7c/5mt9rS6YtuNsrIys0UgCOI7IsL1Wgt8LsBS7toBHIDD3/dbbV56Xm80Zrk+M8ptZU2TovpocXXguXeqsKP6ZMD9XPaz5cmf9kQ2HrPc5LS4Nuq5R7MauHWmdM9isbIzruX1b7zJu2+0kuclJJfW+gtV/Zv9nO2ImMsz97zce6Su4buHeXZtu3bBta8G0c7EwHNkn1O7RzaTZ/uRo5LvkaYtpQEZhPJktzX29XL6tFDdsPtq6tSpiE5MROrUqQAQ9L9Qn5Zb50rOSW21x61Xsfrly4fvejntiyCIyCEiLMqMIuPp9MGZEKPZ8ifXEls4KxvO+JigNbThbHlUao3Vqz6kLOtCkVSfe6cKbe2dSE1KCNyrxspudxd2O2GWm5wdLdkMSuqMr5xy3ECFBrNWdmskzOPEBx9h7KKFkpZKqfbIvoeJBcD8FrOONn+xE67qfRi/4iFBSy0XuR4DjKtw6tSpaNu1K0geV/U+9HR0BJVHTj5ieUrJJeamDSCoLth13NPRgbZdu5A0dgzadu0K/D/qR7dLuoMD8i3SzLkeTwfO19UFWY/ZZWM/J6aOezwdcO3bF6jXtt174D1zFj2eDoxedleQ2/bJTX/H2a3b0OPpq/+zW7eh5atKdLe2Ba5nysHUycDsbLj27QvIQxBE5BERijKjwHi8Pk1rWJVuXWHEGlorMz5zEEorj2N85iBZ1+tVH0w9MxZt7rPgy6ekogFt7Z3o6u7FsoW5qhX1I41tWFdcoykNwvpEilut2CBdqOxCg9lQYse165FMW9VuNDmdkkqh3PbIVY6l7nNV74Ov/TyatpTKdvWWO+nDpxSz3bcZ5VkIJh+5bVpKLm5dcH/z1YXUPXLykbqfe6zH4+k34SZUNqaOUyblYvDV+YF67WpphffMWQD+oOv68HN+s539Lh5jtw/Ab9lAXwRBhAaH3+/3S19mP9xuN1JSUuByuZCcnAxAuwVzw+ZafLn/NKZNzAgoXHzHhAh3i/J/v7IdB4+3YcKoVDx937WS1+tdH0LPQsyi3O7pwvTJw1Ur6krLTCiHry8zkILUh171YNf6ZParHnx1viLLj13La1eYvrzv9TcwdtFCXetczd65bMVVjizcPPjyVJs2F7VtWo7ccs+FEj32PhZ7PgD6/S30jKxSJwRBmE9EKcpaUWpR1jMfo5CTl1x52NbVsSNSjRK5n2xF5XWAH5iVdykqa5pk1xu7XABU1TlT5h98bywONZzTpR6JYMT6cqgGk1ZHTj3IKZ+W+lRbf3rUu9o09Gw/hDRGfJe1IPf5c119meuNbD9a+gX3XmrnBEEQ6ogI12sxlCgvfOtXhda0alGKQuWizVhV3Z4u0byk5GGXNdRW1ZKKBpTtOoFOXw8AyIouzpCWkoj5BZkoqWiAp9OH6qPNAJTV+dgRfZZkxpotdr9QPZICrR49XaL51kNaWXlmy5Z+/Tz0eDrQ4/HA29LKK6ucddZy0hFCLH2xemSvUYx2Jqqy7qhdC620/Vi5PRDKkfv8ua6+SlyS1aJlfb+Rke4JgiAiiYhXlI1SSrWkKxUcSi/LbUlFA9o9XUh2xokGopKSR+9gaWJwlcr5BZnYffAMTrVckB1dnA0j++TsIYqjXbORE9BL6JpwX7tuJHoGi+IbTFoliBefgsYn29mt2wE4AoFp2KROnQpX9b5AJFs+4tMGI9qZiNavKhHtdCoqs9hgXKwe2WsUjdhHWQyl7ccq7YHQB7nPX2gdvlWD1XH7olXlJKyJ3+9He3s7kpKS4HCoGFgRRBgREYqymMVufkEmPJ0+eLw+tLg6NCl47HzURkKWY11cV1yDg8f7lOWn77tWtUWSLaPYfXxWc76yag2WJgeuUpmWkojH7spHUVkdOrw+vF68D4WzskXLI/SclNQd2+W7cHa2rGjZQkHHKGq2NeAbTFrFEsOnoPWXrX+wGjbsyLVJY8cI5qWkzFwFXkkkXwbmvvYjR3G+7mg/RV7tMzDC+muV9hDuWM1ybzdFMxTy8q3/1bouW05eVmgP4U57e7ullkgQhJlEhKIsZrFLS0mEMyEGX+4/HdjKSS+XaTXKohzr4rKFuYF1sRs216p2G1azFZKQnHfckIMjjW2oazyH/Nx0xemJKfvMufzcdHi8PkweM6SfUlnb0Ipjp9xIjI2GMz5GtFx6PaetuxvhdwDOBPH8uBSV1aF8byM8nT4sXzRJ03MgjIXZJ9jsQRqfgsYdDA9ftBDRrEjCctLgQ+t2UmrTFFLk1Q76jbD+2k1hsitkubc+fFs+ydn+Smte1B4IggglEaEoS1ns2Oe5SoyafPJz03m3KZKixdUhqAiy4a6L1eo2rAa+Oq2saYLH60NlTZNsl3BGCRZT9hnFtrquGR6vD9MmZgTVa1FZHepPueH3+5ExZIBkPehhwZ1fkAmP1wf4VaTjABx+qHIVJ0KP1kGaHtYQOQqa1DVGKHlylG+55dfbWkvWX/sS6mcXqRZLOVG8udcBF63HQPAzkrP9lVx5mHyYGAzcvAiCIEJBRCjKUha7oPMalBgmHTmBnfgoqWhAdV1zP0VQCLVuw3rAV6dqFFA5a4TZExBMVOsgHEB8XDSGpQ3AY3flqwrKppS0lEQsX6hsIoWhcFZ2wHuB0Aep7U9ObioG4MDwRbeIDoT50hEbpMkZYMtRtM2M/KwlfTnKd6jKz0XviQE5MkaqwqU3obbcqw1EF0qElEgxBVcKbrmF6oHPesy9hvlbbFmHEnnY+XDfvVZ5JkRoOdPmgftCl+L7kgfE4ZJUpwESEZFARCjKStBDiVFrsVR6H1vhU7pO2YhIy2oUUGaNOPM3nyzsdPks1bOmXIq6xnNYtjA3pBMGauuQXK315+Smv+Ps1m3o8XT0C2TVtKX0uyBXQLQzUXQAzh0oSg3ImraUovmLnXBV78P4FQ/xKuk9Hg9SJk0SVbSZbWeYfPmukRoUitWBEoTyU2tZl2MNkkrbjEkAIRmFonMD+j0DQjtK2ozaQHShRExZ1atvCtUD33EjrLtC+chV6Inw5UybBz995nN0+3oV3xsbE4VXH5tLyjKhClKUOehlbVSThp5rhuVeH4pI1WJw14irKb8Wl28t5aZo1VZCOJBV35ZHHgAOycEdd6AmNSBLv34eXNX74Gs/j6Ytpf2uadpSCte+Ggy+Ol90yybutjN81wjJcBHxYF5yEcpPrfujmHWQUWYYN87UqVNxfON7uinp3HzEJjzkbJ0FCEfn7kOfZ0BoR0mbURuIzmi4W8Bx5dC6TRW33EL1wD1ulHIqlI9chT4c6OzsxI9+9CPs378fTqcTGRkZePXVV5GVlQUAqKysxK9//Wt88MEH+N73vofOzk4AwLBhw4Kuy8rKQkJCAhISEgJp/+1vf8PEiRNDXSTNeDwe7KyoRGdHB6Jj4xXf3+3rhftClyxF2ePxoLa2Fjk5OXA6SbEmSFEOG5Rao/Nz01Fd14yOLnWBwPS0SDNW5RZ3J17ftC8QRVrJ/ezfcmTWQ8mVypf2RzYOruIjFsgqPm0wRi9bKjs9JcphfNpgjF/xUJBLJBup+4W2nVGSBoNUMC8xpAbkgPAgWou1l6vMHN/4Hu9e1mJWeTnlErPYA/LqmCm/t6VVsJ6HL1qIvnU7fsX7UBP6opcyZWYAN27/EFJWwz3InFyFPly49957ceONN8LhcODll1/Gvffei5KSEgBAUVERCgsLkZiYiNLSUiQlJQEAXnjhBaxYsQIfffRRIJ0PPvgAkyapWyJmJWpra1F402xcd+dzSEnP5r3mi3f/B46oKFxz2xPY+f6v4O/txfTFT6nKKy8vD1VVVZgyZYpW0YkwIMpsAcyA2Z6nxdVhyfTUwFij2QqZmFyMFTYxPkZVIDBG0SypaFAtMyMf0Bc5urLmNP61+wSee6dKtC655eIru5jMRWV1soKmSSGVL7eOrNBOwgVmANm0pRTAxYGTWsWEmx6DULrellYc3/heQBkSypsdNdvb0sp7XkpuuWXTUgfs8itNR6ju5JB+/bwgSzr3fyZ9174aRDsTNSjifkGLPaCs7qSuPV9Xh7a9X6uqD0IYdp/j+58L+zmxrxW6T+oapfmrLQf7f77+oCR9OeWwGlaQz0wZEhIScNNNNwX2Ly4oKMDRo0cD54uLi7Fo0SJERUUFlGS/3w+3242oKHVDeq/XC7fbHfRjJTq+i6R+vrURPd1e3mscUVFoOVGNT9YWouVENRzf1UVPtxeupjrUVH+N3bt3S/4cOHAgKE+CiEiLst4us9z0rGJJFCun1kBg7PvVlpctHxNFura+Fe2eLpRUNAg+G7Vu4+z9npUETVML1+JMrtr6YXaEZCVunXZYT6elPrXcK8dSpJdsobDuNm0pha/9PGKTksLSLdRMtKxTlROMSuoavdbJSqUjZkVWmr6cclgNK8hnBRkYXnzxRdxyyy0AgMOHDyM5ORkZGRmB8/PmzUN1dTWGDh0asDoz/PCHPwxyvf7qq68QFxfXL481a9Zg9erVBpVAO/X19QCAPZ8+L2hVvua2J/DJ2sKg/4E+5XrbO49g2zvK85wxY4ZakYkwIiIVZT22B+JLj9kWSu2+xnojVk6ta7HZ96uN8s1V1pcvnBSkdEvd5/H6ghRtKWWdkbnF1RGSqNPcOta73UUyerveKU1PifJmh/V0WupT6l6tgbiMlE1vUqdOhat6H7LuXkpu1zqjZZ0q99oeTwd6PJ4g93ipgFV6rZNl2gh3eyW91t8qLYfVsIJ8VpABAJ5++mkcPnwYr776KgDg448/RmFhYdA1paWl6O3txVNPPYUnn3wSr7zySuCcXNfrlStXYsWKFYH/3W43Ro4cqU8hdIBZd33VjQ9j4OARvNfsfP9X/f6/5rYnMHDwCFx353N45M48jExPkszrwIEDWLJkSSBPgnD4/f6wjDridruRkpICl8uF5OTkkOTJ3teYUcQiYW2qWRZ0vjXH0yZmkLU2zDCjL9sNK2+Xwqw7Hnx1vqEKtRWQW9ZIRaovc7dAOrnp7wD83639RtA5oe2RuOf4MOo5Ce033Lx1GwA/hsyciaOv/Rmdp5twyexZIY+MrraPSW2/JzdNpc9JqTxa0he6F7jYDqViXejJs88+i40bN6K0tBSDBg0CAEyfPh1vvfUWxo0b1+/606dPY9y4cWhvbwfQp1x+8sknqtYoW+2bu3v3buTl5Wlao/z8w7MwdsQg2XnRGmWCIewtyq2uDvzfzpMhUeLM3Nc4EmFbbLVaa62wvRYRnoRCAbSSqyAXudYZM8ug1zOyiiXKrnDdhs9u3QYAiP4u+qyc7ZG457iIBYfTqsjxyeGq3oeOb08CAM7XHYX3dBN6vV6ojYzObatK2q5QH5NKk+8+uYHyhPIHxJ8TV7bUqVPRtmtXIOaD2v2elcoGXGyHoVKU165diw0bNgQpyadOncL58+cDSnJTUxNiY2MxeHDfM9+4cSMuv/zykMgXanJyclD0jzL86dMmwWvYSjHjdq02r6qqKuTkkMGF6CPsFeVPth/DkdN94fONtjRqdWfmU77kKGRmK21WWHvb1t6J6rpm5Oemq6oDtdtryb2eMA+1Fg/mWq1KVCgUQCsraHLdn/nKECors5UnGiIJPhdpwK/YHZr7NxuxLdu0KFpCcnAtyszfjJVcKVrWSgu9J6TS5LtPztZ2cvKXO4Hmqt6Hnu8CLAmVQ036cu5l2mEoaGxsxCOPPIIxY8Zgzpw5AID4+HjcfffdWLhwYdB199xzD3w+H/x+P7Kzs7F+/fqgtLhrlF966SVcd911ISmHnjidTlxTkI+3ytTvo5w8oP/abKG8yJJMsAl71+uXNuxEWuogW1j+GNdttvsw3zHAfLdj7lpis62r//3Kdhw83oYJo1Lx9H3XKr6fLMrWRakbGFe5UuJmyXetVjfNUCh74eC2zEeoXJn1ci09tu4tnN26DUNnXhdyt1o7YAWXTrnPGlDvumtkH9RiUdYzzVCXd+C4cfj2o4+RdfdSJI0do0iecHg/LliwAE8++SSmfre23Uis0E/5ONPmgftCl+L7kgfEydpDmSD4CHuLMqCvKzRXQRJSmNQoUnzuw0IuxdyI0XzXKC2LErgWVT0UdLXytLg6MHzoQHT7erFsYa6qvLV6A2iFFG/1SLkJsi0FUgOm9Ovn9Qv0I9daa4Q1Wi5SViUlcrQfOYr6N95UNSDVEzn7J+sxOJa6jqnbHk8Hop2JEun5Ob8JqyHm4cA9pyWatVEYsaewmjRDFSiPyef4xvfQ09GBtl27eN9LYvUfDh4jn332mdkimM4lqU5SeImQE/b7KNccawna61frXrbcvXGF9hNWs4cu3768Qnv1zi/IDOx/LHcfYamyKKkbdv56oXZv5pKKBtQ2tCI2JgqpSQm81+i9h7Ee+0gbmV4kwd3HN/164b1Hpfb8jU8bjGhnIlz7amTt0czeb5MvbS17DCtBrMxK5ah/4020HzqM+jfe1JyWFuTsnywmi1w5pa5j6hbwS6Y3fNFCZCyYr9qtlrAvUn0wkhDbG1rpHsXM9alTp4rWr1j907MhCEItYW9RnjohPUiZk1pbKmXZ41pvhay5araMUmJV1MMCmp+bHljXCxi77lZO2dRaxucXZKK6rll0/2Whsqm15HLrTiu0dZR6uBZfrqWDbU2QYx1Wst5XKm291g5LWT2lrDtKrOKJw4ejt7sbWXcv1ZSWVrQ+K7lySl3H1K23pRXRTqdoeqHejsqueFtbAR1dOrV6FujhmcBuJ8c3vqfZbVnpNYA8V3EzggvqFWRL7HolngJKYeqM+jZBRB5hryjfNm88kpMvKkBSComUsshVUIUUVuY4e8soKQtsqANEVdY0weP1obKmCWNHpCpS1owIfqVW+U9LScQjd+aJ7r8sx4VdSd7cutOK2a7fdkaJkqi3S6FU2nopTlpdB+XK0bSlFOfr6jD46nxe90YlaWlF67OSK6fe1xHSnPlnGYbqGEFYq9utnm67WvNTew0gTwE1I7ig3kG2Qg1TZ9T/CSLyCHtFmYuUQqK3ZU9syyiuNVNvK6US2QBlyprSejLaYiolu9B5tXVOFmD7oJc1gc8CEyrlyUpWXD6sGiwn1HJZtR6sxiXfmw0gNNtyGemZILRvMjfOgVCaqVOnClqf1cqtxINCLIgXUx611mruNlJ8aUpZ3gFxS72YRV3o2bTt2iX4WyiYGblsE0TkEvaKstJ9lNNSEgORpPUIrCSmwHGtmXpbKbXIpve9VrWYqq1zLeWhwF32wgqBYKxkxeXDCnXER6jlsmo9WI347/Z+1au+tHoWqL1fyKIb7UxE61eViHY6ee9lB6gSKr9YvlyFVMmEAztdbv5iewmrtVZrTVNN2kJlYbaYEvrNdy8Tn4L6szXxnj2Lbne7afnHJichfuhQ0/InjCfsFeXPK0+guuE8APmutWrdcZUqQHLXO1uVUCl8RuZjRp0XldWhfG8jPJ0+LF80KWT5RhItrg7841+1uMJ9GBP+zRhrlZWsh3r0ESVpCFlcrGZ5CaVcLa4OlCeMwxVXWq8erIpV241cpCy6WtfHC6FlL2Wx/I0oj9Y01abNd06ORVnoXsJ6eM+eRdV/PQB/d7dpMjhiY5H3x5dIWQ5jwn4f5WPHT2Pn/jZZgz9moJifm47KmibFg06hPY/l5KnH9lJ6oCRfNeVVg5y9pJXWUSjqVyiP14v3YevuRsycMgLLF5KiLIWaPR03bK7Ftu0HMPbCCfzw6gxDrAGh2uNXDnr0RSVpWKnsViFU70M7Y9X9We2GEXspE9aks7MTP/rRj7B//344nU5kZGTg1VdfRVZWFgCgsrISv/71r/HBBx/ge9/7Hjo7OwEAw4YNC7ouKysLn3zyCSZNkh5zWLWfejwe1NbWIicnB06nE+frjuLrFb8wWyxcsfZ3GJjNH9NDT7jlJ0JD2G8PNVjB1kmMJbmypknyHr7thtRsmcTkWVRWF5SeWdsFKcmXKS8T2VuvrZeE8hEKxKWmjkJRv0J5FM7KxoJrslA4K9uwvCOd+QWZuCYvC/OuzNBkFRDbViy24DrsvLQAsQXXaRFVMh85SL175KSvpD+nX0/brXAxYsu8cEZqyyCl2whJ5aEkb73y10NWObIwXh1NW0p5t2SSm47QdUrqgq9u248cFT2mJQ85MnPzlMo71M9einvvvRcHDx7E3r17cfPNN+Pee+8NnCsqKkJhYSESExNRWlqKr7/+Gl9//TUWLFiAFStWmCi1/tTW1iIvLw+1tbW6p33/9nL8fMdWAMDPd2zF/dvLdc9DK0aWnxAm7F2vlaA16rOadatMXh6vLyg9ObIYYRVVUgfcyN6AMdG6hepVi9u0Hi7XSrcSY7Dqem27IVb/aSmJ+I/CqwBcpSkPsWUYZQddOBiVhrKDLtyRNUyxjHLzkYNUm5IbdX5+QSaee6cKbk+X6LXxaYMx4MZb8FFFA+YXJBrilRFKrxo98qJ+rQypiM187sRytkNiX9O0pRTNX+yEq3ofxq94KHAdN2/uNd6WVhxa+wK629sD+fNZbZVsKyVl9T256e84u3UbejwdGL3sLsG6Sr9+XkC2Hk8Hop2JgbLyXcOuPyaPrpY2xKWlCsrNvVdMNi5ia4OFjil1H+d7rlwZ2en1eDpwdus2tO3eA7/Ph7bde+A9c5b3Wr7ymrk9VEJCAm666abA/wUFBXjhhRcC/xcXF2PLli2IiopCUlISAMDv98PtdiMqSp4tzOv1wuv1Bv53u936CK8zHd+1lwMHDgAAPCcacehcGzIHJiEhRps6E+1woKqlGdcWfwQAyEsbInlPp8+HhvPt8O/bB6frnKb85cCUu6PDGKMUwQ8pyiyMjPoslWeLqwPO+BhFEaiN2E5K6WCvxdUBj9eHyWOGhNySEspgZHwo3UqM0Mb7pYdQODc3oMjw1b/eytX8gkx4On3weH1ocXUE0pTb7tkyigUJFHqfyCmPnnuUl1Q0oN3ThWRnnKxrd1SfRHVdMx65M483by3Pg6k7T6cPzoQYQxVmobgBFHjPOOSuXWUfk7MdElvJGb7oFriq98HXfj5I0eGmzb2maUspfO3nEZuUFKSUy1Hm+WSVpwj6Ob/564otG+Dn3cedT3522p6GepyvOyIod/97hWWTE6+AuwaY75iSdcHp18/jea7BMrLTO7mpGAAwIDMTcWmD0dXSCu+Zs7zX8pXXSttDvfjii7jlllsAAIcPH0ZycjIyMjIC5+fNm4fq6moMHToUJSUlstJcs2YNVq9ebYi8elJfXw8AWLJkSdDx12fOwYRB2gLg/n7GzICSzPwvRcP5dizf+i9g67805a2U+vp6zJgxI6R5RjKkKH+H0gGRkBKkdmClxRptpqtfSUUDquuaMW1ihilWJTPXGluh/iOJXQeb4BwwMNBP+Opf70B8aSmJcCbE4Mv9p+GMjwmkKbfds2UUUyyF+r+c8shRWOW+X8S2s+O7trquGe2eLpRUNKiWXyx9T6cPtQ2t6OjyCaahyzvAATj8fb/Z6YVSWY80uJGE5UR9Tp06Fa7qfUidOhVxqYMA8ClWF5Wc+LTBGL/ioSArNF/a3GvYvxmLq1TgKCmFUUoRHL5oIaKdTt7zbHm56TD3CF3DthgzefAprnxlYu4Vk00qQjTzN3tfdr5jSiJL8z1Xrozs9NjnGOt+HOsZcfPmpmWVJSZPP/00Dh8+jFdffRUA8PHHH6OwsDDomtLSUvT29uKpp57Ck08+iVdeeUUy3ZUrVwa5abvdbowcOVJX2fWAWW+9fv16XHbZZX0W5bUvIHNgkua0Gbdr9v9SynLmwCS8PnMOxq94CM6RIzTLIMWBAwewZMmSQD0QoSHsg3nJDUYgFohFScAtvnTC2SrBLhsAxeWUqhupADmhCKBjRDAxQj5MX/7Lh5VBFmU+1D4Tpf1fTT4trg48904V2j1dmD55uKz2KteirDRdvWhxdaCorA5w9K29574fi8rrAD9QODu7n/xyyrZhcy2+qD6JJGec4CSAHu8APuWYWW9cUtEAj9cXmBgRyoPeB9JoDRIkJ4icWYGtIjXAHQUSCw3PPvssNm7ciNLSUgwaNAgAMH36dLz11lsYN25cv+tPnz6NcePGof07F/pwCOa1e/du5OXloaqqClOmTNE1mNf928sR7XDg9zNm4uc7tqLH78fL186SdW+ognlxy0+EBrIof4eYdVDIKsJ3XE8rl5HoNahjW6rUrFWWsthIWW3zc9NRXdeM/Nx01WVQu9ZYrlstX35CygUhzG3zxiM5Wbyu1Lq7i7UzvjTV5JOWkohH7swLmliSc49UPmrSlULu+0HI4g5IW93lvBflWLj18Oxg1zM3T76lMXzQtm/GI8fCZ9aet6GwPlpRKaU9ho1n7dq12LBhQ5CSfOrUKZw/fz6gJDc1NSE2NhaDv9ujfOPGjbj88svNEtkQcnJyUFVVhZwc/cfRbKVYjtu1GRhZfkIYUpS/gzsgZQ8UhQZifMf5BrZWdNE1QnlXU052MDM+91EpRaGypgkerw+VNU0YO+LiGhW5A33GGicWvEhOMDG59cnkd7ypHdEORz/lgjCHUK0nNyofvdJl+o2n04fqo80ApN8PQv1eahJLzvtC7kSBnnWqemKE5b5NGIOVlbJQyCa1ztmKijShjcbGRjzyyCMYM2YM5syZAwCIj4/H3XffjYULFwZdd88998Dn88Hv9yM7Oxvr1683S2xDcDqdQZbU2OQkOGJjTd9HOTZZu+u3HLjlJ0IDuV4LYNaemKFy37Oam6Ba91Ghcsh9fnJcO+XkL3fvbSa/hLgY5GQNJouyDNh7omeNVO85oAat/cRq/UwKpt9Mzh4SsKCqlXvD5lrsqD6JZJV9y2zEnp1e7viRhlVdOu2ClCIcqe7fkciCBQvw5JNPYurUqbqnbad+6j17Ft3udtPyj01OQvzQoablTxhPRFiU1QxgQm0FVmPJ0YLVIjKrdR9ltrThPl+5z09J8CI+lFrmteYXyXxeeQLLQ6QoM+7xUoGkpLDasgslywy0tk8m2Fdbeyeee6dKsbJstuIp9uy458yWlYgMpKzWoQo+pXTrK0J/PvvsM7NFsATxQ4eSokoYirxN1mxM63eWyh3VJ1FS0SD7PkaRDNWgJzDwciAQRMZoWlwd2LC5Fi0u8/dk02MbGfbzlfv8tD7n+QWZip5XqNtVODE3PzgKp5Htt6SiAeV7G3Gq5YKsrZKEUNo+jIavr7BR2j7FngEz+ZWalBCIjK1U1h3VJ/HcO1WCz9jINiD27LjnpOqV6I+3pRXHN76H9iNHg357W1qDzntbWuFtacWxdW/h2Lo3A/+zr+WmyT4udUwoLalrpe4TS4ev/FLH5aQNXIw8zXcNuw6VyMyWhdlnufmLnTi56e84vvE9nNz0d7R+VYmmLaWC93D/5iuf0jrVipJnTxBEZBL2FuXPK0/I3hdUL6uAGrc8RjbGhTcUKFlXa5S1hEm7xdWJrw6cVhwIx8x9nAH1lnmyQClnMKeepNqvljpmtibSGnAtVJ4bcsuqxFNGztZsctb3y/EU4ctLbPspvTxwxMoo9uy4nixWjENhdZj1tq7qfejp6Aj8BvqUPfZ+yNHORJzdug1A33ZIAP8eynL3OpazHzNfmuxrpe4TS4e9r7Kreh+629vhqt4X2PKIXS9y0pfeo7nvGnYdKpGZLQuAfvs4p0zKxeCr8wN7OPPdw603vvLJKYeeSOUXankIgrAeYa8oz80fCeeANlmDZb6Bt5rBNp9bnpwB5fyCTDz3ThVa2ztF90TlolYhkDu4k7NPq1qYuoqNjlIVCKekogF7Dp1BsjNOtQxmKK0UIVc7Uu1Xi9tzWkqirZ6L3LIqUdyl0iypaJA1CSknT768xJRs5vrJ2UM0Wey17JPMldkKrvV2gnEPZvb07b+378X9kNOvn4ceT0fgb24a3P/Zx9l7L4tdJ+SuLHWt0H1y91VOnToV9W+8CV/7+aB9gQeOG4dvP/o4SG4h5LhcC9WhnHT59l3m28dZ7j1S50O1b7FUflbbR5kgiNBDwbxYyN0XWWk6cgJGMcp0W3snurp74UyIEQ1qJbTvpxGDNSP3aeUGw5IbFEtP2cwI3PZ68T5s3d2ImVNGYPlC+yhkZiCnL8v14lCyJ7qdMEJ+ORZlvbY5Uyq/XnkHLNMy9knWKjOh7Lus17pXIwNcsWUEECSvknz5ykqBuQizsFMwL4IwmrC3KCtBr62duOnICZDDWGdSkxLwg++NxYf/PCK6NzB3D1+lMirBiH1a2WkzdTV2RKrivZgZ2YrK6uDx+tDi6lAchVZp/ekxQC6clS25LyshDt9kESAeXEnIa4TP40POc9brGjll1FMZk5Muew/hDZtr+10rtoeyUvnlWJ25k2oAUF3XrGmLNSX7JEvJ3OLqQFF5HeAHCmdTNHut6LXdkpFWQTEXbiX58pU1XKyZQhMeFACMMIszbR64L3TpmmbygDhckurUNU3CGoS9otzq6tA0I6ZmjSF3cCgnDWbP0WULcwX3BmbDVb7VDhT1GsjqNaBXOzHBN2A3KuKwFndNtszkqqkNsckioWfP176KyupwoqkdGWkDgo7LaT9i1+ixjlZuG1ba1pVcL3Ytd69k7ntA6F41cRyY5Qq7D55Bd0+vZrdrNnr0x5KKBmzd3Qi/A3Am0P7oVsHI/Y3F3LK15mvlPaOVILTON1TrfyNFIV+9ejVWrVqF6upqTJo0CbNnz8bx48eDxr/PPvss5s2z98SLFjweD774ag9eLD4FvyNW17RjY6Lw6mNzdVGWPR4PamtrkZOTA6eTlG+zCXtF+fPKEyhMTg6pi5yarUPYyrEcZVEvRUurMqmHMsCtHzVycAfsgLI12Gq2ePJ4fUGKGrlhhhaxySKhZ8/bvhxAlMOBnKzBQc+OCejF9VRgkAokJ7SOVsmkkpptzoRg5yt0PZ9sfH2LgTupx+1LQvnIjePAlgcOwOEHMoclIy05QXVfU7o/slzmF2TC4/UBfgrqFSlwldlwUGz1RsgyHiqLeSQE5Nq9ezcqKiowatSooOMvvvgibr75ZpOksh61tbW4fs61uO7O55CSni37vi/e/R84oqJwzW1PYOf7v4K/txfTFz8VdE23rxfuC126KMq1tbXIy8tDVVUVpkyZojk9QhthryjPzR8Z8r1M5Vq3hO4JpbVRq9u2HkF1tDwftqLOtcLLrUeldcDnrmm1/XIjATHXYCV9SMgNnkmrfE8j4EdQcC+2Yjdj8nBFexIraStyyyF2ndBkllCALq5sYh4u3L7D/S0kF987ki8wGFse9nPSMhmlZH9kJaSlJFK8AUIz4bZHsZBlPFQW83BxYRfC6/XiZz/7Gf72t79hzpw5qtPwer2B/91ut17iWYqO76Ksn29txMDBIxAdGy/rPkdUFFpOVOOTtYUAgLSRk4PO93R7cb61ETXVg+A+k6RZzgMHDgTJS5hL2CvKg1MSMb+gz/UkVLP87MGh3O2LzHLF1ZqvnPXXStJQCldRz89N511PKYbaOmDfZ/Q6cUIYrZMUfGtNuVZMbjR2tmIn1OaEFHkj2oqYJZSpn7EjBsEZH8NrGWav/+XKJiYvt+7E6pKvbphrPF4frhx3Sb+1vUZMILLT5Mqn5dlQcC9CD4S2kWL+J5QRLi7sQvz617/GkiVLMHr06H7nHnzwQTz++OOB/4uKipCVldXvujVr1mD16tVGimkJ6uvrAQB7Pn1ekVX5mtueCCjJzP9szrc2Yts7j2DbO3pJ2kd9fT1mzJihb6KEYsJeUQaUKUJ6D3ZKKhoC0VTDcfCkx+BVSxrcgbTSYGBaYbcXsiSbg96KJ1vxnjXlUtQ1nsOsKZcGznMVOznbKLHPGzEpJiYDe6mAkGVY7H4t8spd5y30jlQS5EvuO5udJvd9YXRZCUIKoW2kwtUiSqhn586dqKysxDPPPMN7Xq7r9cqVK7FixYrA/263GyNHjtRNTqvATBJcdePDGDh4hOz7dr7/q37/s5XlgYNH4Lo7n8Mjd+ZhZLo+FuUlS5bwTmoQoSciFGW5yNnvWClWtjQaaQFRGqxH7Tm5a1ONQs3gmCxP+qJ3MDt2G2K2DmIrl1zFTqrNSa111kNuOe1+1pRLBSM7i1lZudGmlfRpj9eHsZcOgsfrw5HGNt6t38TqR05fkdsH+colx9tHKh2G/Nx07D54Bi3uTt2eM9GHmnemHveItX09ysCb364zmH/jLYjn+V9tuQj1WLm+y8vLUVtbG7AmNzY24oYbbsBf/vIXRenEx8cjPl6eG7KdSUzse35K3K4BwN/bi7SRk4PWKLOJjo1HSno2cidfgbEjBukuL2EuUWYLYCWE1slpgRnEW+0FC1wcYJZUNIQkbbH81J7jEur6nl+QqXhttpH1TiiD71mw2xDf8+Uek2pzTFT26rpm3Z45V24xGZhrK2uaeK8RilTNpM38v664RnGfrq5rxsnm86iua+a9n5FdqH7k9BW5fZCvXNV1zXAmxCh6XwjJVFnThKY2DyprqG8rgVma0OISXo+n5p2pxz1ibV8pcr6JUv+rLZdchJ4F9zjfdVL3Hmlsk0xDqVyhwMrf68ceewwnT55EfX096uvrMWLECGzevBk33nij2aJZkpycHBT9o0yRNRkApi9+KmBBvua2J/oF8tKbnJwcVFVVISeHPJOsAFmUWeix3lYroZy95LNCGbnNk5jVS+05s2d71VgzrexlYDe0Pn+pZ8Eoy+w85ATO4rNIieWjVm45a/Klysi1yAoF5srPTUd51bdBll85/ZaxxrGtckD/KNx8VmWxiNsMcp+HWLmUxDUQKjNjUc4clkx9WwFyPALktAMGdp9T6snBbRPjMwehuq4ZP/jeWBxqOCf4XOW8h/jKwD3G/l/I48HI74fQs+Ae57tO6t7dB8+gqc0DT6cPyxdNUuSNxWwN1+LqRFpK/4j3eowDgmJTfCf3/IJMRW3PanDXKK9cuRKLFy82USJzcTqduKYgH2+VfY5uX6/0DQqIjYlC8oA4XdJyOp0U7dpCkKKsI3q8rI1c56anG6OcPOSudZSSS2wgzMirZU/jUGNW4LZwhNtelbjwS7U7pVuf8S3d4LZPoTzUttvyqm8lZZPqd1wlXixAV2VNU2C/cu4Egli+jNs6e200X91U1zUH7YVeXvUtGs+eR3nVt7x7ykvVn9j7gVH05S63kYpHUF71LZraPMjJHGz5d5BV4CqD7Dpua+/EuuIaLFuYK9oOuG2AUaqYZ860VyXR45m169V1zfB4fTjUcI53yzJGxuFDBqL2eCt2HzyDnMzB/YLSAfzR47nH2P8Dff1h8pghvAqc0jYmpAgKBc9jIzTJJKTAs/NiFM0BibFoOOVGR5ePNw0x+Tq6fOjs9OFI4zkc+bYvP/b73tPpw57DZ1Bd14xlC3N5J+bYLvTjMwfhw38ewbKFuUhNSuj3ngcQ+K4AEIztYDWYYFUAUFZWZpocVuaSVCdefWwu3Be6dE03eUCcLltDEdYj7BXl90sPoXBurqyPilYlUcmgXQg1s8Vy85EzK6x1tlpNHWqpd8YSVdvQGvgAh0oJ1aLkmG0JDxe47VWsD8pp/2yYAffVEzNku/Zyl24wv9l7botZauTC3BfqbdnY5dL6vuTWDW9ZBKKOyy2DnPqXu9xGLK8WVwdqG1rh7/ELykr0h3F/Z9b7s4OrVdc14+DxNqwrrkH2iEGC7aDfc2G1GbXfM643BPt+dn6MjN2+XiQ743C8qR1NbR44E/or5nK8rPiuYbddAKr7HFtuoXSEJtWkottzj7GfI1OGbl8vEuNjkBgfw5uGmHzMfWNHDgrsoc6+Z3L2ECQ749Du6cK64hp4vL7AJAc7PeZYaeVxnDvvxbriGkzOHiL4/hH6m7A3l6Q6SaklZBP2ivKug01wDhgo66Oi1cWG+5HbsPlgwF3o/tuvlJWGGmsj+wMjZuWR81HWGhhJTXAcLco5s77xfEcXurp7Q+oepURREFoHKudeQhipYG7cviH2ux/fDbgTZVqj2OmxrZbcPbeF7lECX15KUZM3u761Tqrx1Q23LEJ7XDNIyaCk/qXqUSyvkooGdHb5MDIjCYWz5G05Qoj3yfzc9IBFOTUpQVYgOiA4Ur3a7xmfNwRfflwZi8rrAD9/G5FSLvn+n1+QiaLyOkH3ayWIKep6w5cX36SDXPmE9lDne98LLfVgy8C1KDNpsNNmPwf6RhNE5OLw+/1+s4UwArfbjZSUFPzlw0rZFmVmFnTymCGq3Hi5ytAvXtyKwyfOYdzIQfjdgzO1FEdWvuMzB+GVD75BbGwUZl05IuQvd6b+pk3M0C1vOZZXxuW13dOF6ZOHW9KizK4bZvADP3hd9IhgmL7scrmQnJwcdE6u+7ScZ6TUNVtJWnZASGa5ZdFyv9r6UhstX68yMxxpbAsoTFZ3zzQTsb6sFxs212JH9UkkO+PwyJ15ACDYr7nngOAlCWojXevV/4W+qVoieusRwTuSsOO7XCuh6KcEYRfC3qJ827zxSE5W5vYs5KYnBddK+JNbJwcGT0bCzEL/9yvbca7di0FJ8Ya4bkuh1cLEJ4/cNcjZIwYJzuRbAa7LKuNuCEBRICEiGCnLvBKLEjctLd4VdvQYkBvIx4j7tbqg892nJV+l8vCtPyXMYX5BJqrrmtHu6UJJRV+kYvY3pMXVia8O9P0PoF+QKGbJxZc1p9Ha3hkIPqVky0O57YdPaWcrstzgXsz5dcU1cHu6AmXiW4/LJ9OO6pMorTyO2NgoVNc1804khAqlW0gqTUuvvOz4LicIQj/CXlFWgpSbnhRcRXHsiFQ8fd+1usspxLKFuQHFXM12J4C2D4FeQar43GXFJi+469xChZJ6E3JZpY+wNvSanBFLS41FlZ1WKCwSeuQhVH6xOhaLKi3nfiXXKL1PS75K5dGzHRLaSEtJxCN35gUpoMDFb0hsdFTQemeHH2g47caRb899d+DiGmf2dXzvaqH3t9z2wLcul7u2lh3ciznf1t6Jru5edHT1BaDiW4/LJ1N1XTN6evzo6u7pN5HAvd5olNSnmrT0yov6NkFENmHveh1priNaXLL0cDnVQ06ls78trg4UldUBjr61TKFSlq3kohfOmN2X5S4pELrOiCUJamXkorX9haJsRkL9L7Rwl0QBobNm8r2vmfyljgl9F7V+A6QsyuzI36lJCSgqq0NHlw8Np9zo7PLhyvGXwBkvz6IsVQdC5ZQ7PpD6bkvlA1xcwsBsxyW03ljoPnYUa/a1fFGume3umHGD0HNnl8OO7zg1mP3NJYzHe/Ysut3tZovBS2xyEuKHDjVbjABkUf4OpQMmqw6w1MzIikWfNGrQLZaHnKAn3HNKtwHRA+5WIkBwWeTUh15WeEJf5FhKuehlnVSD2jzkLm3QO1+rQB4d5sAE2QSMt2Zy+zKjDHGPsRU4AEhNSgg6x4fQN0BKmWQrY3xBoxj3/ZKKhoBF+Y4bcuBMiEH10WaMHTEIJ8+ex6wpl2LsiNSAzG3tnZLKvVAZGLh9Qup/ofu4x4DgZ8337WOWMHz4zyNBkaulLObcbbWErPTc8+xxA/davnLQO4IIB7xnz6Lqvx6Av7vbbFF4ccTGIu+PL1lGWSZF+TuUDpisOsDSY+CqddANSNeJ3gNsMwfsQnlbtY0Q/eGLSr6j+mRgHZ+SPVjlHtcTtXnIWdpgRL5Wwe6Kvl2ZOiE9qM6NrH857s1CiiD7HPc6Ntx2JKVM8iljfHDTZfdX9pp4oXSFlFyx/LnLRjxeH8ZeOggerw9HGtv67WzBtx+70B7t3L+Fysu1JPNFsOb7W+i83PvlXGsHVq9ejVWrVqG6uhqTJk3C7Nmz8eijj+Lmm282W7SIxePxoLa2Fjk5OXA6zd2aqtvdblklGQD83d3odrcjfuhQS9QbKcrfES5r0vQYuGoddMupE70H2GYO2IXytmobiRS0eDgw6/mYdXx8++ZKuSdylwPICTijJhq6Fu8WuXEZhNwq9VryoMQCpzXwj1JZtEb9JvrDBNlkLKFGwvceFlOGpJQu9t/sZy5njTJXEZT6NghtH8Xtr0LpCv0Wy5+d54bNtaiua4YzPgYerw91jefg8fqC4oHwTQoIeVnJCWzG7euMdZ0dJI/P44xt/Wf/zdQXwG9x5ys3NyCfnSYEd+/ejYqKCowaNcpsUQgWtbW1yMvLQ1VVFaZMmWK2OIq5f3s5oh0O/H7GTPx8x1b0+P14+dpZhudrhXojRfk7lL4IjXhx6hnxUcu2OHpjtFu7HtEzjdhuQ6iN0FYyoUGLh4NQQCChtPn+L9/bCIcfgeUAcgLObN3dCL+jzyVQbbRuNUi9z/jyKCqrw2df1iMhJlrzkgc1Fjg9yi3mLsq4o3s6+wImSeVDHiTKYSJMi0WW1gq3bfMpQ3zKKN855m9GTnYE7eWLJgmmwXdcy7tfSIHmpiv3OiGELLxyrbliEwHcZ820hd0Hz/QFKfvOm0cshglwcb0yc3+LqxMnm88HRQVnnhM3bW6ftftkl9frxc9+9jP87W9/w5w5cxTd5/V6A/+73W4jxItoOjr6JmUOHDhgsiSA50QjDp1rQ+bAJCTEyFMDox0OVLU049rijwAAeWlDDJGt0+dDw/l2+Pftg9N1LlBfTP2ZgWmK8tKlS3Hu3DkUFRUJXuP3+3HTTTfhs88+w8cff4zCwsKQyWcGagdafOsMlaSldYDHfFyEBpRGuLXzbSHFvj4UrvRK3egY1hXX4ODxPmU5lFHRIw2lHg7ctYpiyqOUxWZ+QWbf9jOOvkHmhs21vG6I3DQ9Xp/ibc709lzgGyzy5uEA4mOjkZE2QHPeaixwepRbbJDPuKNPzh4S2P9cCMZFle2SSgjT6uroCxIkI7I0g5YAkEzazHmhoFHsa9kBoMaOSA2658N/HoHb04XEuJgg+flgPC86uvr6dmJCDGZNubSf4ql2WyO2XHsPNgMOiKbP9QTh1g0bPsVajrWV7xj3eTz3ThXcni4AfX2utqEV/h4/0tOcOHCsFT09vSgqqwuKndDi6gi6z9PpC0y0MG2p4XRfoLNkZxzgQFCk88xhyWg45caJpnYUldWhcHZ2IH+mHthLbuymLP/617/GkiVLMHr0aEX3rVmzBqtXrzZIKgIA6uvrAQBLliwxVxAWr8+cgwmD5E3Y/X7GzICSzPxvBA3n27F867+Arf8KOl5fX48ZM2YYkqcUlrYov/DCC3A4RL5AYYbagR93YKc0La0DTmZwIzSgNMKtnT2gUjujrUVGAIE9LpnBltx72dt4EcYhZSXlW5csNlnCvV7MCpWWkhiwMAm5IfLBuFMqGaDxKflSsovBVw98dVk4K1tSXjn5il1jtDuk2CCf7d4q5alSUtGAPYfO9A3OCUk+rzyB5SPTg9oQIP4eFuufSgNJMZOVr3zwDZIGxPGuWS6tPI5z572BCU32Pc6EGCQ747BsYa6kCzXjXdLZ6evzFomLCbgwV9c1w+3pEtzTmM/izlYUuWXp7umFw4+g9Pk8MdjeLty6keuhxfWoklL6uc+j3dOFZGdc4N3V2eXDyIwkpCYlwJkQgySWosvIVlLREHRfUXldYKKCaUvcSQ/usaLyOpxp9QCO/v1/foH4khsrs3PnTlRWVuKZZ55RfO/KlSuxYsWKwP9utxsjR47UU7yIJysrCwCwfv16XHbZZabK4jnRiENrX0DmwCTZ9/x8x9Z+/xuhLGcOTMLrM+dg/IqH4Bw5AgcOHMCSJUsC9WcGllWUv/76a6xduxaVlZUYNmxYSPI0arN7pbS1dypKj3nZH2lsQ11j3+y4kkGknIG2GOzBDTPru2FzrSzLnFh5uAhFIlYaJVtJnmIwkTYPNZxTdG+o99eOZMT6Jt+6ZEB4skSt5wU7XSXyKEGOW7fctJkJIMYCLoSc94acfLnKgNHIfV/zvROEXDWZOrPjANsM5uaPVLz2W8wjQ+5kKfM3M1kpZFEGEGRR5t7DWG5TkxIC7YD9zePK5un0CVqU1xXXCO9pzGNxZyuKQnLxWZS58sDBXzdyPbS4HlVSnlVCz4N5j7DPsSdPhCZS0lIS+03WibnVM8fY93DbILPkpqisDh6vDy2uDttYlcvLy1FbWxuwJjc2NuKGG27AX/7yF8l74+PjER8fb7SIEU1iYl87uuyyy0xfo3w+ZRAcMi3JDD1+P/LShgStUTaChJgYTBiUiismTcLA7DGB40z9mYElFWWPx4M77rgDL7/8MjIyMgzNS8qFV8793BleqXyEXryM209p5XEkJsQokgMI3iJB6fonLYN07oCSLy09JhO46bLzNGNtkVwFiDAGOcGxxPomd/AlNVmi1vOCGxxHbuRcuchx+1WStpL3iJSroqx8OcqA0Wh513HLw05LbE07EczglET8305lChn7GBc5k6Xsv9mTlXk5GYFj3GuZc9x7DjWcC9qOUExGtncJGyY/vnbD/C1mcWf6Gl9Z2OnzeWJw5ZEKRCZ2TGz9MjdfoechZ10433VqJril3sdpKeZsN6mVxx57DI899ljg/6ysLHzyySeYNGkS/t//+38mSkYAQE5ODqqqqpCTY4/2xIUduMsot2s+rFBvllSUH374YUyfPh2LFi0yPC8pF14593NnePmi18r52DNuPz09/qD05KJUfiV7xSpRBPnS0iPQjVq3PKOQqwAR+iK1Jp6Br2+yMSOAn1gbVps+Y5GddeUIwb6pJG0l75H5BZnYffBMYM0fdwAuJ9/CWdnAd5PTbAuOHpNPstdby4TPVVNtWpGOUoXMSnUs5CquR5vSWzHUKo+cY0JKudURem5WbHOEvXE6naZbkhlik5PgiI217BZRjthYxCb3uYVbod4spygXFxfjn//8J/bs2ROS/KRceJXeD/BHr5Xz4uVG2lU6OFQqv5iFVupapXLo8eFRElxJDnpagcm6HDqk1sQz8PVNszFkoKuzRVbpso2crMGBNX9c5PQF5nj5nkbAj8BazGfeqsSplguaXLK5E6GMLHo9A/Z6ZjmeRcRF1ChkYoTyvSumwGqRQywAmR7QtykYobYVigkJo2GCRwFAWVmZaXIQ1iN+6FDk/fEldLvbzRaFl9jkJMQPHWq2GAEspyj/85//RF1dHQYNGhR0/Ac/+AGuu+463Tu82AtR7iCPTylkR69V8nEy4gUtlD/bdUpofRX3WrWKbijKpSRwE6CvFVqtdZkGLsoRUoD51puFqi+JnZfaI1jq2UtF+wWAmVeNwKwpl4r2YyP2A2bnz0TQZSM3QFpHl6/fWsxTLRfg9fpQ29Dab62g3L2O2W1FSGmWU0Y5y2ba2jvR1d0rubabAN4vPYTCubm6vvPM8CrSWw6xAGRmyyaE1DaJfNeq/d7R95Ig9CF+6FBLKaNWJspsAbg89thj+Oabb7B3797ADwA8//zzeOONN0IqC/NRYYJsiMEE82AGdMsXTsLyRZMCbtc7qk/iuXeqgja41wt23nwIlYNRJCprmiTLyVxr1MdJqgx8cMsllgbftUZt5zK/IFNyOxm2XEa2jXCi9bvnC4C3LW7YfBAflR/Bhs0HdcmPrz0J9SXm2qKyun7nheSS835hLJU7qk/yXldS0YDquj7383XFNYLXyc1PyXWM1fdfVScAgPfdINUXmLwS42Ow4JqsgLI9vyATV44fiqioKLjOd/aThSuj1DuOCRjEyMJcX1RWF3jGQu8POfUxvyAzEK23sqZJtN4IYNfBJlnfVSUoee8aCVcOJd829r1GlMeINJn+sa64RrKfKBlTGXE/QRCEUky1KLtcroAizDB48GBMmtTfzW7UqFGK94bTitzor4D4TC2z9tioiKhSs8RS1mArrMdRM9PNlVvqGXCvra5rxrSJGbor/0rXg1K0XHl8XnkC1Q3ng/YLZz+7htNudHf3ouG0W5f8+NqTUF8RcwcXkktOv5NaZ80c83h9otfJzU/JdYzVt6urR9DtW0mANPazTEtJRKurE76eXvT0Sq8hlLu0hfsc2VvqAfwWPDXLZghxpk5I172eQuEuq8bLTMuyJS3l4ZOVmTDS072b7ZkmtVWW1rGGFcYqBEFEFg6/36AY3xIsXboUb731Vr/jd911F958882gYw6HAx9//DEKCwtlp+92u5GSkgKXy4Xk5GTB68Q+fIwL7bSJGZpdaI10GZJa12QHdyW9A/cA4gMAKXdWPd0ytcoa6TB9+djx09i5vy2wFQnbOji/IBNt7Z2B/an1CCqjVzs40tgmKpfWtsgXPDAU6JGvmNumVL3JTVuuKyig7p1hh/erVZD7XdYTPZ+PkjGBnPyNbDtCsrKPA9C1POGC0NKOSJnINqOfEoRVMc2i/Oabb/ZTiIUwUpdXYoVkI7YeUu76Ob2QWh9rlbVbSlGzplLuOmHuzDo7fbnrKrnrHpUEnOFGbLbTczGLwSmJuOOGdLS4OgJbpnDr/+n7rhXd05SNVPtSGtRK6FqpfbPF2pAcGYz0jhCDWWKi5f3GlJ1vD1at+43L6ZtKLHhC6dn1/Rop6Pl81Fg0xfqwkW1HSFa+40rKEwntnVtG5v9wLS9BEMJYLphXqBH78Kn9wAm9ZPmu1Ruxj6CV3ZX46kis3rjKKncvV7lurV/uP93PlVfqXrZcSutWzEWXkAfXhdbT6YPH6wvEB5Db34SePxslwbm4yA1yw25DQhZO9t/cNPjqQEx+JcixhmuJ9qzEbZMvb7GyKZnolJOH0FIcJv3xmYPw369s182jgdAHPb9/ert3G/ltlhvRWctOH+GKkiUdRGRwps0D94Uus8WQJHlAHC5JdZotRlgR8Yqy2g+f2AtUzfo5veArjx22OlCq4HOVVe46Xzll5lunKOdetlxK65Z7L6GNtJREOBNi8OX+03DGy9+KjX2e+/zZyJ3AEYuqzmct5ZaBb4sh4OKaWfbffP2bWwdi8gvJy8e64hocPN6nLPNZd6XWUEvlxe4/SpVLqQkRdr1yPQyUTqYweLw+VNY0BcnK5PPfr2wXrSuiP2Lu7EVldYCjb59tLe/KUH//zN7lQilKl43JkZlvkhAInuyTs5RB7B7uObXlEZKbjRWekxBZWVlISEhAQkICAGDlypVYvHgxZs+ejePHjwe5Tj/77LOYN2+eWaLaljNtHvz0mc/R7es1WxRJYmOi8Opjc0lZ1pGIV5QZlFpeuC9Osa2KrPySVYMRruRKFXyuMpQ9YlBgOy6lzJpyacCVV62scoiEtV1Gw7esweP1Yeylg4IsqkJu9WzYipTQ8+ezIkpZsZm8mXvGZw7Ch/88IhgUkO2Oz6d0SrlIHmlsw+6DZzD20kGy3CwB4f2FmXNMvS1bmIt1xTX4wffG8rqzM3UhtoezkqUMfFZ7rkxSZRPKn+05oGQyhXnWs6ZcKmi5B4BlC3Pxp4+qMXzoQN7zxEWY7aH4vIGAvmdWvrcRDj/6Tf5YES3LceSkqbQtKVlPLyWvmvLwTRICkOVpxz7u6fShfG9jYC917sSVmqUQYhOdzJKo3QfPoKnNE8jX6muUP/jgA94guC+++CJuvvlmEyQKDzweD2praxGblGELJRkAun29cF/osqSizNRnTk4OnE7ryScEKcrfoeXjptX9MBToqaTJtagZCVsZYj5uStZoMs+stb2z3yBNCUrKHQlru4yGq/Qwz94ZHwOP1xcYVHPrWq5Vk02LqwPrimvg9nT1syLWfXsObk8XrxWbm/eGzbVwe7qwrriGt50xykJiXAyuHHdJUGAsOS6S64prcPSkC7ExUbLbsJC83IEps0749U37go6z607Ims3Uodg2bELvTrYClX3pIFQfbe7nIi81YcW1Dnm8viClTGw5B1OP3PKJlTU1KQGxMVGobWi19KDaCuw62ATngIG83kBA8ASMHdxetSzHkZOm0rakZD29lLxqyiO2pELK0459vKi8Lmh/dTHPM7ny8p3nLolqcXfiTKsnaF93WqMcedTW1iIvLw9F/ygLSX5fvPs/cERF4ZrbnsDO938Ff28vpi9+KiR5hwKmPquqqjBlyhSzxZENKcrfofRjwJ1BlnI/VIIRSqfRAU30SF9pubWs9y0qq8OJpnZER0ehPVr91kxCFhE+aL2Tdrju0syz5w7IuL/VTO4I9Wu+49x10+zf+bnpKK08jp6e3kA7Y+fNVhb+f/b+Pb6q4twfx987970h92C4mkjCRQLKLRJFCQLGy6lAS636w36reLDn4+nFYr+tntNWba329FSPbT1W+z0g9ugHaxUj1ioQNcFbNATREAiXjQTCJSH3hL2zk53s3x9hFrNnz8yatfbaua736wVJ1loz88ysWWvNM8/zvB9XQozhZ15myRQ9lzx58/My8dzWKgR6A6EWYgeCFqw09EIkZERjojGmxwQOYNGs8VIXeR54myXuulZhKjbRWKkszmV9sREKkh4qPZmfVis92Rm0ITPUQc8RqzzIwvleqCihBHrymumPKKRCxdOOPr66MCfI20clvtpMf9j719TmRXpSwrD5Zq9duxZ9fX1YtGgRHn/8cYwbNw4A8IMf/AA/+9nPtOuKi4uRnZ0dUt7n88Hn82l/t7dbk2JxuMPr7c997j5yCG31HRibNhnRsfERa88RFYWmE1X4+5OrAQDpU+YYKt/b40Nncx2qq1LQ3pAYAQnDw4EDBwBcGNfhgkFLDxVpRJrenk6xoOLmaUQJtDItlZn2zcCK+o2m3ginzY3b9mHXnjrk543XPohmLcpPvFSJDk83rpoz0d5xjgB4z7LRe8+7Xm++WZUOaMv2GuzaW4funj48eGc+cienhrQd7vMj6ovR987HVaeQ6IoL2fSxIg2a2XhBevEa7j2PZKoeO7RCH3bamaEPlefOyLtRJV45HFlGO44fP46LL74YPT09+NnPfoaqqir84x//wNKlS/HjH/9YyfX64YcfxiOPPBJyfLQ/py+99BLuuOMO7e9r1j6B5MyciLZJlGQA+NqGYkNl2+rd+OCl+60VKAJ48cUXsXbt2sEWQxm2RdkkjO4gG7G4GtnFVK030nHSVtSv2m9eOig9sB9Yeqc6XKIYnkXERmShOt9kc4WOPzUSU2qGwG3PwQac8ZxDWeVJ5E5O5bZtRsFl3YvZOagar01cpFnX73Ch176RsbTinsvc7OlnWJZezF6sDw4GY9wH815HIm+3Sll2TcFbYxhx7VaJVxZBRRYj/eYp63pZCYY6Lr74YgBAbGws7rvvPkyfPt1wHQ8++CA2bNig/d3e3o4pU6ZYJuNwBbG+P/GHP6P4036LciTxyd9+HvL3lbf8Srn82LTJuGbtE7h/7QJMyRyaFuU77riD69UwlGEryiZhZrFM/7SqbrZeK6wukYQsZY5qv8MhFyFlrCTkMlOXvdgOD6rjJ5srdPwpAghJEWVVuEJ6shMzs9OCYt70YntV21Zx/VepS+YiHS4Hg9lxVCnHmwfFpW5uPLVqW4B8EW9ESbBhHcJVklQ3PiJBzGVUPhGHhuy4yvtQ5dkQha/wQg9UXLvp0A5RvLIIKrKoQKas62UlGMo4d+4cenp6kJKSAgDYsmUL5s2bZ7ie+Ph4xMdHzqV4uMLp7H+WcnKnI/lYa8TbC/T1IX3KnKAYZSOIjo1HcmYO8uZcjtzJKZER0gKQcR0usBXlAUKkLLpsvUY/7AO9uON9sFQsXjTMfCytijWyarzsRXV4EI0fu2DUu+/kOEv0pFJWBN6ilY21o+vlbXKptl1UwCdD4vVRVpfsGr3YW7P5jPXcoJvauxAbHSVkCyeyhcwDBxDoDaCmtlnZU4BmN09NTODKq9ef4RLPOFwRrpIEqG180H8PxD0VWWE7PN3o6ekLerZlx5W+JxKuAQJ2TcFbu6jEF/OOieKVw5FFBTJl3UwO96GC+vp6rFmzBr29vQgEApg6dSr+8pe/aOfZGGWSOsqGGmbOnInKykqkZV6M2NJPIs58TRN3GbEk04iNiULSmDirRLIUZDxnzhxea147RpmD4WztG44WZfKRV41NHkxYNV7DeY4NNIzEKBuNcyc4UteCxzdXIC42CkvmTg7LYmVWBrPlBpt/IBL93bK9Bu98cgwBB3BjQbYhi7IZ3gCzfbBhDCrfZV5qMJ4HkmpO3eIyNxBASEgB/S0qqzyp5WwW1aUHPVdpkdtv2Z6TIfIdqevPx33dooux89PjWLcyD6mJCVpf5s7IwGvvHcG6lXnInZxqmqtENoZm7oPMuq1yv4zIaxWngf0tDoXNJRCKhhYP2s91D7YYukgaEzckU0MNZ9gWZQ6Gs7Uv0rHIqhB9fHi7ywNtiQnnw2jV+A6V+zRcIRo/s6EIFdX1cCXEIJGxmuoR2QAIcUumrReyWFcaemmUZNCLAzYb66jCBRCO3LJxKirI6vc4CehbonkWLJY3wKzVW6WsvdC2Fjw3eJ57rIq7vCykgC7PhkGYzYAgc8mXuf2y8lVU18Pj82Pnp8fh8flRUV0PAFpfDtW2asdzJ6cqf09kHmhEJiK/mfsgs24bCW/gldGznJuNZx7O6z0bA4eLUl22AjpKMeIV5eY2r/KOmB4xznCA2RRLgLUfCdV6rWDTJe0Ndp/15LQX0ZGHaCHI5uBlQVxv163MCzovcoukF3yiVFHESkmXJWDnhWxBrwLZnBbFJRp1SRW1a1Zu2TgRwr0d5bWm5NILSWHHX6Zo6M0he6FtLXibFir5eNnfRdcYKR+u3PTfRtx+yd/Ts1Lw2ntHhCEB4YaFyMaAlrtsz0nMmZqBwgWTlPMi690LFSJF1bqNXisrZ8OGDRs0Rryi/G7FCdw9RRzjRmO4LnjCIR+hPxJWpkdR/fiYHXMzu9MEVn4YVXLxymJphzvj5lAEbx7q5eAlFhxioSFQWUiS39n7J5tn7LwId05KywviEvXaVJHJimeJjg+mIVJuzWxksnIa2cgjFnM4+O8Ze6FtHM1tXrz1ySkhqSPtIUHuPQuyuWHWY4LdHLGC3JHIQ3tI0MdZpCYmCDkWbr9+Jja+sQ91ZztRVnkSd6+aHba87LyXjQG9kUU2w3Inpwa9H+nrRH+LjovIDJvavCgudWuu8Cob7WQe5edlcssSV/Z1K/MAQPudtcbz5gxdlu27DRs2Rj5GvKLs7VZP/RKpBU+krYrhkI/QHwmZBcyoHKrua2bHPBxrgJVuz3oLblH/eO54w2lzZrAhe6Z2lPczQe852ICZ2Wla3CFLpkXXJXIfViGyUbVq0igqkKeHMtJneiHHe78QIjHWxVm0sDcClTr03n9llSdxvL4Dz22twgPfydeuYRVo9j1nNP5QRbmVWfqLCrJC5hC9ULc9R9Tx9w+/wmeHWrHnYAO83f4Q1vZwXG71jlsJPY8To67HIWUVyLeMwMz3NlLrItm3sWxvHRwBhCjRonlBvqNV7kbUne0MKbtpWzUOHu9/TwLQfn/s3qtD2mZJHemy7PU2bNgY+RjxinL1V03YUc5ng2URibhRI6lVzCrU9AfHaB/MWIFV5FCF2TFny6kunK0GT+GRyUmXA4Y34ybBnXfeidbWVhQXFwuvCQQCuOmmm/DOO+/g9ddfx+rVq8NqU+YOW1TQzwR9or4DDc0e3bjDcN2eRZA9z+nJ8vRQvLpE7xG9hZyeK7gVigZvgalcjwPo7u7F6aZzQe/qiup6tHu6sWlbNe5fuyDo/aKaAkrUtui5lFn6eWXsDS+TOK8AZk1IQu3pdpyo70BxqVu7l+G43OodtxKqHid614qu4bHlhwMz39tI8WnIvo2eLj/g0B8f9jtKE7PRZdetzONalHlts1kE2LI2bNgYXRjxivLCGZmDqoTsKJenVmGvNbMDHs6HzIwVOBJyhAuVsbPask/qA/pJVlQUHp4co8Gd66mnnoLDYZFZBBesjd5uP6qONgIIvu8Tx42Fp8uP3Ckpus+dyPWXdQGUzRmeex7Psk3XoWrVJHWx7xFy3ZpluXh5xyFMHDdW6D1zpK4Few42IHdS6HiI+k8vQrdsrwlxk6XlzM/LREnFcfT29oVsTOopLKsLc+Dt8qP2THuQDHSdxaXu4A2R8ymgqtyN2Lhtn/D+GFWW2D6TDUTRe4NcT8eS2tDH1xZfgvTUFhQVZGHLjoOoPd0Ob/cFoitVd172HMtdQSDitKB/Z+e07DoVudh2eS7l4cAoYzUtezgcH1ZBRvgp2vySzQvy3uV9T3MnpwZtIoosw4QIsLjUrW1+505O1cgBR8O3ejTCd/Yseto7BluMsBCblIj4ceMGW4wRiRGvKN+yYjqSkgbPFY61SKheO1DQs4iGg4EkslIZO6td8Uh9c3IyNNdMI+WskmOo44svvsCTTz6JiooKTJgwwZI6SUyxMz4mZOx3lNeiovoMAg4gPSlBd+6J4pOJC2CgNwB3XWuIpZSe3zyrrsiyTaBq1SR1kZ8899T5My7Cp/vPCL1nNm2rxtFTbYiNiQoZD1H/iXwb39iHsr112HOwAT29fZpctFXffbIVcbFRSE1MUHJfZ8+nJyfgyMnWIBloJnI2Pnh1YQ7cda04Ud+BXXvqhJtURjfveNZ34ELbrNJMX88bQxt8pCU7cfv1/ZsKzvgY7V+4ELk3q/zOunjLrjMjg54LOVvWiMu5aj/I/PV0XdhgNNI3KzFUv4M8bx8i61CS04Y18J09i8r/830EenoGW5Sw4IiNxYI//dFWliOAEa8oDwbMEjVFyvVbpKwSi1lNbTO83X7TFlERBvJDqDJ2Vm9EGNkEiaQcQxkejwe33347nn76aYwfP96yemVjX1QgTi2kV1dIPV1+1NQ2B7niEdDzm+eeR1sneG6ERuVRuY5XpqnNi4njxqLH3yd0N2TLBlmcKDfZ9KSEkOs9Pj86PN1ITUwI2UzQA4+gS0TaRbugkrHdsv1giCVatU127vDCUGjGX6JkiAi9IrXhONJhpXux3jOh97uR8mZk0Hu2RdfxrjfaDj1/eZu7A/09GsrfQdX7NRSRnZ2NhIQEJCQkAAAefPBB3HrrrVi6dCl+/OMf42tf+9ogSxgePB4PampqMHPmTLhc4adr6mnvGPZKMgAEenrQ094xoIqy1fdiqMIRCAQCgy1EJDCYCdOJNcIVH6PlSFRVFK22whJZeDJsfGMf3vn0GGKjo5A9IUl5kSur00xfRnMKpZHQd1mM8ne/+1309vbif/7nfwAADofDcIxypJ9l1Ty5MtfjSN47Oj558ZyJhjedVJ9XXhnC9owAsHppqHtzU5sXxWVu4XkzshmR12zfPqo6hSRXXNA7TyQLfS3Ad1MN9x6NFgzmd9kI9PKnD/S7mm2b904CxO7X4fZhJHynRguys7Px97//HbNnB7uvG1GUh/JzumfPHixYsACVlZWYP39+2PV1uo/iiw3/rwWSifG9D8sQ7XDg94uX4Icf7UJvIICnry60vJ3Ln/xPjM2Zanm9Ilh9L4YqRrxFmaShGMgXPIn5W7MsF4dqWw3tRlphhVUm6HIA8bHRmJA+hqskiz6OtLVFxparl3Yh3D4Pp4+3aKFDu8CNtMX1tm3b8N577+Hzzz8fbFE0iOJ/VXItl1WeNHyvjMxR0bU7ymvR0tGF7p4+ruVUlL7ESDolXiwlsaZ7u/1YPGciV/5widDY95OMgZwns+q1bJssYQ9PFtG1vHeaES4KG8DfSg5h9fJ+7wY9677KvFJRHI2A903S+05F4nsk+k7wSOQAfTdvkeeVnucZTSRI5rts4xAIje/medjJlHnVjUleiihZO7Rsso3RcOfQcILP54PP59P+bm9vH0Rp5PB6+9OsHThwwJL6PCfqcKi1BVljE5EQExmVKNrhQGVTI67ethUAsCA9w9L6u/x+1HZ2ILBvH1xtrZbWLQO5B+SejFSMeEX53YoTqKrtBKC2uLXiY0di/g7VthpWfqxw9VEl6KJd3kSLYBljrJF0UrJFhlm3xcGOcTIyV0SxZ0bjm4cT3nvvPbjdbqSkpAQdX7NmDa655hqUlpYOuEw8pZh2IZaxP7P3ijf/eOmFVEnm6MUwWYwS+YiyxouBfW5rFQ6faMVzW6vwnz9YEiK3rG3RtSROr6vbL1X+wn1fsQt3I4q3WSWduG3Ti2GeLPS1NLkPL0acHoeRvKC2CrsP1sM1ZiwAxTRJOlBRHI1Axa1ZJIOZ9kQQvXvozWo2a4JRt2G9zBzsJhBvrFXiu3nM8LINCVn9vLlCp4iStUPLphcnrnftUMXatWvR19eHRYsW4fHHH8c4HXfcxx9/HI888sgASRcejh07BgC44447LK1345JrMSMlMvwSv1+8RFOSyd9WorazA3fveh/Y9b6l9ari2LFjWLx48aC0PRAY8Yry8vwpcI1pUV7ImfnY8awxgLnFo5k4ZbPt67VlNJ5KBtm1ZFH+UdUpLmmSXp16lm0rwVqRVCyRREaaWXg0LKwfeOAB/PM//3PQsTlz5uC//uu/cPPNN5uq08xGFs/DglWKb7++PxcwL1ZSdK94c5p9f6g8I7zFMFsPT7EjICl2siYEu8iF+3yqzFGreRWseqfoQVVuGbO9FZuaQw0DleqNzkZBb5ICF6yPQOjYylyQAbniKKuHhWjThD2m570lklfFmpme7NS+G4XzJ3FJ4lITE7R3F1uvnrz0ho/MG4J9D4iUdNk7hHc9Oc9ukhupn/6bMM/zPPn0ZBP1V+/aoYhdu3bh4osvRk9PD372s5/hO9/5Dv7xj39Iyzz44IPYsGGD9nd7ezumTJkSaVFNITs7GwDw4osv4tJLLw27Ps+JOhx68ilkjU0Muy4RfvjRrpC/rVSWs8YmYuOSazF9w31wTZlsWb16OHDgAO644w7tnoxUjHhFmWbXVIGZxQ/PGjOY7JFG2tfL9arHVqvajuxa4kLpjIvhkibp1WnEsh0ueFYkkSWSBsssPNBzJNJoa2vD3r17g46lpaWFxEkBwMUXX4xLLrnEVDtmNrJ4HhY8pVh1YSm7nn1/GCWZI20Yqef2ohlBJFsy+URQVQwiAXaMrXinWAWZ5wfd/kC+gwYbVqR6o7NR0AzDgLq1j1gZ2fzdtEIpuhdWWX/1vLdEnkR0u7LNV6JE0p4kPAuwan9419GKKe9dxz5n9N88lnwC3u+80BAgeBNKtX72OGGe53nyyWQT1ady7VDExRdfDACIjY3Ffffdh+nTp+uWiY+PR3x8fKRFswROZ//cvPTSS62JUU5OgSNClmSC3kAAC9IzgmKUrURCTAxmpKTi8tmzBzRGmYDck5GKEa8oG41RNrP4kinXZmOtjFjM2PbDcQkeaNAf/XnTLxKyn8r6xNuVNtK+aq5c0hb5SeaKyBIpKjcSUVpainnz5gUd+853voPNmzdb2o7Rud7U5kVTexdio6OC4nv1Nm7YhSsQ/HzIcoAafY6IFYWuT6UeWgYj11rpwWBFvTxlx6r6RfHbqmCtW7LrRgPrtdWp3tg485aOLlS5GzE9K4Wbu5t+/nkbrOxzpMezwb5HjGaqyM/LxJ6DDTjZ2BmUz5uQ3HnP943ORU63C8g3X3kbNMWlbtSebkdcbDTXQ0n2zNCeTeTZWLMsV6v30/1ncPJsJ1KTEoAAMHdGBl577wiuW3Qxdn56XGPN37StWjtGfq5Zlou9B/tz2zvjYlC4YBLK9pyEt8sPOABnXIxWH8n9frrpHOZOHwdXfIzWF16MMLEW0+2vW5mH1MSEEIu+zMNMLxbbzBwYSjh37hx6enq0cKctW7aEfJeHO2bOnInKykrMnDl8NjBo4i6r3a4HE8PxXpjBiFeUjcYom4FsUWsm1kq0aFRt30ibVipwZha1tNuXTFHVU1iAUNdI1fbL9tbBEYBSWbOWN/aa4UREpofNmzcrK8ThkuyzSqXeXC8udWPXnjrExUVz43v1yL3gAJcsil3cWqEshmspN3OtUVdQK+RmUVTAJ9fSi51UYfWl81vT7uuq90nVa4WEj9C5V0caIpHqbUd5LT4/1IAkVxyAC543r713BO2ebpRUHIczoX+Zwj5nJL/3FbPGIz0pAfl5mcqWVtE3kxffKkJTmxebtlXjVEMnjtS1YmxCLBCAZgne9XkdAg7gxoJsVFTXC+cPrbyym6/cDRoH0OPvgyPKwfVQEs1VIm/7ea6DKncjDh5vwTOvfonEMXFo6/Chp6cPXx5pRJfPj7i4aHxcdQotHV2oqW0BEMCmbdUAgJraZu3Y0ZNt6OntwzOvfglfTy/OeXswxhkL98lWnGzohKfbD0cASEiIwcdVp9Da6cMzr36JLl//xlJdfSfggNaX4lI3yvbW9b9/AZTtrcPbnwDt57rx9CtfoMPTjZaOLmzaVo05ORkh4U+ykCiZRZ9wRBiZA0MN9fX1WLNmDXp7exEIBDB16lT85S9/GWyxLIXL5bKUYTk2KRGO2NhhnyLKERuL2KTIuY/zYPW9GKoY8Yqy0RhlK2GUwZXsZvIWjZFoE7DWfdHMopn0d93KPOniVaTQE0XX5+vFgpmZhu8zsQQZyXNrBQbbkj+cISJR4sIBxMX1M7vzruFtTNFWHRFZFN3ulu0HUba3Dk1tXfjet+aa6pNeP3hKoZFNLtnzI1P4ZfPULOs0i/Rkp5aHmrb6s7GTKkRp7DE6v7XqM2d2rEe618iPfvQjXHXVVVi1apVldRYVZGHPwQacqO9Acakbq5fmAOj/LmzaVo3e3oB2/2kF6u5Vs7X83s7zGxNbtteExNryrIxAKAszfV1Z5cmQmGm6HD3/Wjq64O8LICE2BuMzxgAOaJbgJfMnw3vey2Du9IwgSzldH8+9WrZBs7owBwgAcIRaT8kzmTspJaQPni6/Nj75eZloau9Cj78PtxVNx6HaVs1qm56cgM8PncWE9DG4rWg6nnn1Sy1FHLHoPr65Qjt2x40zNYvyyzsO4dTZc5iQPgbrVuYpWZRzp6TAGRdzQV4HEOgNoKa2GVkTkuAIAElj49Dl668nLjYaqYkJmkUZCA5/koVEsVwhZGxo6z0vlnq4YOrUqcIsE4NBnjkcED9uHBb86Y/oae8YbFHCQmxS4oDmUB5NGPGKstEYZSuxo9wYgyt5qcuIe6xs02qoLBTZRSgbu6tShm2zpOI42jp9+PxQA26/foZhufWIuKyGVQrGaAXP/V0EPWZ3njVTxaWebrf2TDt6evpQe8Z8Sg29fvCUPCvieemxlMUvijYZrHrX8N4D7CYaqzTwZGOP5U5OxWP3Xg0A2qJa75kzO9YjjXeARqRSvaUnOzEzOw0NzR7AETyGIR4A5xVjnA+Ppp9tgB/rz1M4AT4LM2mXWH/ZmGn6dzL/qtyNABxITYzX8mzT7xvSrruuVbOUs6zcsswHvDmenuzs3yhAqPWYPJOu+H7Fk+7DnJwMXDVnovasH6lrxaJZ47FgZv8/AFgwczya2ryYSI37b7+fHPL9/e33rwk6du2C/rjY7AnB1/K+6aSt5LHx2LStGjdcmRU05qsLc+Cua0WHpxvO+BjccGW2NPUT+66Wvb957xnevDETpmFj+CJ+3DhbybQhxIhXlHkYKLdXYq1UiVszsviXgbdjOlBQkZtdhKoo1zJLUHqyEw/emY9HN32Gru5eFJe6tUWECgbDsjuYmxkjAXrzjI1x07tu3cq8EAuCXs5O+vh3vzFHs1qqtGc0dg6ITAysClu+bKytsqCKNo7YRS3bntEwCHoBLWPJN9svo3wHwwmRTPXGKrwE7L1kr5ORTLHg3VOR5VC2AUP/np7s5Lrz0zLQlmpW0aOvEc0VvXcdb5NA1DfWQ4LHNi6b8y0dXdxrZO9bGes3/Xyz6x8yrqQfhN0b4Cuxqu8CvXfcSAqJsmHDhjUY8Yry30oOYfXyYLfeSCtH9MtWNW6NR+hjpl06Bmko7oqyiryKcq23cM2dnIpr5k7Crj11mrVBFeEs9s1+VCOh9Ni4APr5BsQsurL3gOgc7zhttVSVy4gsgHUxsCpEZXrlWGtduOBtHPGU53Db4+WrlrHomumHEb6D4YRIpHojUB3vcO4/W9aI0iVjQNaTiT5P2lJh5VaFbLNA1g77PgHElnNe/LboelFZ3t8y44AqN4BRmPHcsWHDxujGiFeUdx+sh2vMWO4ur9Vur7yFmJG2wn1JszF9QxEqrtYsVBZIIquEFXWLYPZ+kUWK0bzRNtRAP3OERZfnYSF7NnmxjSKrqxG5RBskhD23qb2Lu3lilbu+LL7bqCJvlfWFNy5EeZ4zNcMyCw8dizhnaobuRpXR/pF7mDUhaci+f1UwUKneBgpD3UrIsi2z1mBVzxajYJ9/DxNPTTNqe7r8Gpu1nqUduPDe5LFyk59mNslVvXKA4HFTHa9IrQ1t2LAxfDHiFeWFM0IJniIVS8aSQhh1ow7XbZoXazPUEKkPkdl7Gs6CI1ylKRzSttEInncID/Rc2FFeK9yYUXHTZS0a4Vq1RFbhiup6NDR7UN/iQXpSAldRtcJdX7ZQVdk4oM9ZZX3hjYu2eFfIUa4Kug9Edpnl12j/Kqrr0dPbh/SkhCH7/lXBQKV6M4Jw3tM8wr6hBNZiK7Lc6nm2GAX7/JNnkMRT04zaroQYVB0Nfv/IrO4iS7DR9yd7vepmHiC3bKu2Z8OGDRsjXlFenj/FcDygWYSrqJqxttIw+pIPN8eomXEcah+icBYcqjGPorLhkLaNRvC8Q/SgspmhRxanV94IRBaS/LzM/sVxQF1RVe0DDZXNAdVzVo4NW5eMkEcV7JjQfVCRXeRVoNqH4YiBTPVmhAeAVXbJMdZiyCN7ys/LREnFcfT29kV0U9JIqjVafrJBvmZZLg7Vtgb1QeQRYyUXCT12pG5efDP9Uw+RCmni1cvKL5O7qECeZ1pFBhvDDw0tHrSf6x7QNpPGxOGiVNeAtmkjMhjxivK7FSdw95Tgj0mk4lDCVQIHeqFF5xhVibFkQcaRl69wuMDsmNMf0pC0JYoYapsGQx087xA9qBB/yXL1irgDZAtzXht0eZGF5O6V4rmj1w+zczAcWDV/jShMRqBHAqjKYq0aJ2k/z8Ygcudnn0cSduCMi9E8cAB5HC35JpE0U3GxUUhNTOC+P1TycRvtD/vOYPvl6fJrz6sroZ+h+lBta0h8cXGpG3VnO1FWeVI7ZhUXCR0q9vnhhqBNCECdvIv9nXYhl10nGm/yLmtq60J6ckJIGTK2pB2e/HRbZJOLlGOvJ/eHJuIbCWsbG/1oaPHgX37zLnr8fQPabmxMFJ59YLmtLI8AjHhFeXn+lJBjQ3Xn38xCy+gHnb6e5BhdsyzXsEUUuLCr7e0O/fBYhUjv7LJjrtoerZiwaUv0YO9Wm8MtK6YjKcna8VKJ6+ct6HkEN2ZceC17FxmcgywGc04aIU4zAqvGdqh+L4Y7RO787POoxavnZIR4F7B1kFzA3u5+npAqdyNaOrrQ3dOnpRljIXu+6WMq/SFxvsWl7iDCuOJSN07Ud2D8+XzuW3YcRNf5uF+SO5o7v6icwoSd+omXKtHS0RWi+KtsOJG+0eEHc3IykOSKC9mEMErexZZTKc8bb/Iuqz3TjiMnW3XbEckvKsdeTzZaaCK+SIR+RAo+nw/3338/tm/fjri4OMybNw8vvvgili5diuPHjyMpKUm79ne/+x1WrFgxiNLK4fF4UFNTg5kzZ8LlskbBbD/XPeBKMgD0+PvQfq47SFGORP9sRB4jXlFO43wYB2rnfyAWn0Y/6Oz1j917tWlmSeIq7oyPCfnwWIWBZqFUbo9STIwSidnMmkMHKuESvAU97ZbLSzGjV55A9C4y+u6QzUGVugZzTorcSMNVUK16z9uW4shAz52fzFWigLLHRSzJ5Ju0aNZ4zaLcIbG+yp5vo3PPfbIV7Z5uzJt+UXBuZAcAylPdGR+j/ZPNLzqnMFECOzzdSE1MCNmUVtlwAi4ojmwfWesxbRku23MyiEiQbAgUzp8UMk48UjLiQj49KwV7DzUid1IKPD4/jtS1aNfSZGLuulZct+hi7Pz0eEgZ0ibZFCmcP0mzAhNZ6WtZkjL6evo9ThPxWRH6MVB44IEHEBUVhUOHDsHhcOD06dPauT/84Q/42te+NojSGUNNTQ0WLFiAyspKzJ8/f8Db//iv/w5HVBSuvOVX+ORvP0egrw9X3fpry+of7P7ZMIcRrygPJswuPo0skq2IHTK7KND70JqBSm7XSG5AqI7F6sKcoIWP1XGzNviw+t4bccEVHZO5PpqV1+i7Q9YPlboGc06Gy81gY3hDFpoAGEuNxiraTW1e5ExO0WL/RdZVFa8ivWeZtobTebSJJXh8xhh0ervxxEuVWLcyT0kBE3FZ8Nya2RhdUewuURxbOroA9LtY0+EjRF6Su3jL9pogIsGmNq+2IcDeD/J7amJC0FjtKK9Fu6cbz7z6JZwJMXDGxaC+xYOaY83o6e2Dp8uv1UnIxHZ+ehwenx+vvXcEHp8frvgY7Se9KVJRXY/br58ZJCt9LY+kjFxPICLiG+qbZOfOncPzzz+Puro6OBz97kQTJkwwXI/P54PP59P+bm9vt0xGI/B6++fegQMHLKvzRH0H2urdGJs2GdGx8dJrHVFRaDpRhb8/uRoAkD5ljqk2e3t86GyuQ3VVCtobErXjpF+knzaGB2xFOYIwu/g0skgOl0XSTB2iclZ8UNi+82SLpPVLdSyMLN7MtmEjFHr3XpWgzmqFW1Sf2blKvzvClVXlPRTunLSaPV4vdjwSMNuHpjYvisvcQABYvTTHkvk0mmDlRg6PA4BW8mjvKcAYo7SenCLvFNp1nFiHibKmAt53Vq8fsueHVRzZ8BG2n7wNcaPhKkUF/VkeensDSHLFYeK4sWho9iBrQhLSkxLg8fm1OtetzAuySIvSZhn19JF5/wzXzWu324309HQ8+uijKCkpgdPpxMMPP4zly5cDAH7wgx/gZz/7mXZ9cXExsrOzQ+p5/PHH8cgjjwyU2EIcO3YMAHDHHXdYXvc1a59AcmaO9Jorb/mVpiSTv82gs7kOH7x0Pz54iX/+2LFjWLx4sam6bQw8bEU5DOgtrMwuPofrS1sGK/MYqlwzEG7vI/E+DXXojflzW6tw+EQrnttahf/8wRJhPVZvtojqMztH6HeHSmiEbL5b5d4tg9VkYiqLcathdk7sKK/Frj11CDj6lRB7E8wYeK73MsZyGux1eh5JMuWK/Vv1uB4i4Xml1w/Z88Mqk3oKKDv2og0BmXw8y3h6UkLQfSMW9vRkp7bJKfrJk4s9Rl+r5/1jlqtksNHT04OjR49i1qxZ+M1vfoMvvvgCK1aswP79+wGou14/+OCD2LBhg/Z3e3s7pkwJ5feJNIgS/+KLL+LSSy+1pM4T9R144qVKjE2brHvtJ3/7ecjfZpTlsWmTcc3aJ3D/2gWYkhlsUb7jjju4mxU2hi5sRTkMDDR79nB5efOgOlYilmH2Gr3xHoiYS9syPPCQjXlTmxc9vX2IjXYga0IS9xoCqzc5igouEPk0tXktez4J4y8dH8iDmflu1TPS1OZFTW0zAr0BU2RiO8pD89zqLcbDeReKyoajCHl8fngjcP9HOmgG57LKk5rCJmLEZu8bO3f0PJJUvKBE7xi9d4/IgqvXpsgdnKf403/L6pQ9PzxlUqRAmnnOVMqI7gtJtShS4mUu8bxrReVFv5N6ByOLgBlkZWUhKioKa9euBQBcfvnluOSSS1BdXW2onvj4eMTHy92SBwJOZ//4X3rppZbF8CbVtSI5s1Xp2kBfH9KnzAmKUTaD6Nh4JGfmIG/O5cidnBJynvTTxvDAqFWUrVA6ZQurcNz4ROWsVv6sVLz16tJbhNLlrejnQFqdh/MGxkjCjvJa9Pb2YdrFqbi9aIb0Wqs3OUSu+OHOZdZ1VAQzSp6RMnrvpa5uP6aMT+yP3TcI4pZJkwHq3Z9wxlVUNpwQlLtXztYs/0ZDMUYzaMsnHGKiKXIte9/YuTNYXj7heECIyLZ4btBGNpzNzkGZPOx5XhtmXdfpa/SYs3n18q7lHaPjoXn1hrvxN5DIyMjA8uXLsX37dtx0002ora3FV199hRkz5N+/oYqZM2eisrISM2cOzvuTJu4y63Ytw2D3z4Y5jFpFmbxcw8mTJ7P8PvFSJZrPMz2qpkzSi8uzehGg8uFSUQL15KZzFKrIYsUC3ojVOdxciUYX7bZiHRkQq+5gLW5k7pBmn1naTVKWws3MwthIGdkcV3HF1JODR1gkQzjjGillyg7FMA52zGj3W5XvHzt3VOc0a8XlxZjTseeFCyZJ86WrPgO8dz9dtqWjC3sONqCpvQtNbV5d13GjKaH0rNQiAk0j7zTReZXnQ88tXFavalwyHQ/Nqzfcjb+BxrPPPot169bhpz/9KaKjo/HnP/9ZI/RiY5QffPBB3HrrrYMlqi5cLpflbNBJY+IQGxM1KHmUk8bEBR2LRP9sRB6OQCAQGGwhIoH29nYkJyfjq+Nn8Mn+FuGHhOxaLpo13jIrwJbtNfi46hQ6PD3o7e3D0vlTlNx3SLlEV5ySch2uwqVSnlhJZOMjk5so0cfrOxDtcOCGK7MtdStXkU8Eq+aAUdnDkXk0gjzLbW1tQTkhCXjeCCNtbAd7zphlAh4K0JNxOPRhpEDvWR4o0M8TALzzyTEEHMCNBRe+T1u212jHJ48bC4/PH/bzp/ccb9leg7fLj8ERAJbMm6y7gSuqj+0ffQ1bZrDfLQMN+32gj6HynFqFhhYP2s91619oIZLGxAXlULYxfDHiLcrvVpxAVW0nAL6bHU0iofqCVHUzPtnYic/2nYG32x9yDQ9GLTPhunWq7L4b2QUWuWV2eLoxIX0MZmanhdQjirlSRThWHN4cMAOj1jzb8mQdWG8Gq1zujS6WIr24Gow5o5e2Bwj/HTQUcs2z3izDdUNguII3tqrH2OMAP46VBfs8eXx+LYUUfQ05TluURbLz2mbPE74B2kOELkfn84UDIbH7ev2QHdezTous1Hp/i8bDio1+M/dWD3rfa5t7ZOTholSXrbTaMI0Rrygvz58C15gW4QLTKLssoL/wIu5Lv3mhAvGx0XDGR2aY6Q9cpBZy4ZJr6Sn/PCIfAtUPcrgfNaMfxnDHWmVMbaiBjQ20iujNqAJolRu/CAOxeGPntcoYhKvAW827wIMRV9Fw4ittmANvbFWPsccBfhwrC/Z5untlqMcXiT0n4BFeGYnnBaB5LlVU13PLAdDy+RYVZGnppEjsvl4/RMdlsfjs33px0bJnwchzYvQ9DKjdWxs2bNiwEiNeUU5LduL26zP1L4R6PKBo4cW6gBqNc1GxbNAwo+SbQTiLRL0FflFBFvYcbMCJ+g4Ul7qDXNT1Psh6u+2RghWLZnvhbRx/KzmE1cvzhEzFqnPAqJeEkTo9Pr/0GY6E259Vm2TsnFQZg3A3fXipgVhYsTGlqjSJrGtEvnA9FWyEQsX6KTqmd22kode26nne72Zi982Cnuc0yz7Nuk/WRdOzUlDlbsT0rJQQq3h+XqaU/Z9+RvSefdJ27qQUeHx+FM6fpI2NkT4ZtYSTvtjPsQ0bNoBRoCjzFtcikAXTlu01UiWMXXhpsa5dflQdbQTAX8AbYYY2qkiFa9mRyRZJt8/0ZCdmZqehodkTQsIka1emYOuBl07CyAfR7HiIFiM21LD7YD1cY8ZK08WoQMU6a9SCy3PjN2IVIzCzgWLVpgs7r1XHIJz2K6rr4fH5UVFdL0xRM5CbSnrWNRnszS9z4M0z1WO847w0Q5FSemSWWxFxF88TStX6Gy5E70wydwlLNGHZ37K9JsQKTq557b0jXEZqHvs/2w6B7NnfUd7P+O+Kj4HH55eyyYtSh9HPoyzlE73xPjFjLD470O8dtHppjq0027AxyjHiFeVP958OWlyroKggNF2JDOSFPCcnA4tmjRcqPyou27Rlw0he1nA/qDLZIun22dTmBdBPXMJa3mXtEgX7TOM5VLkbsXHbPqwuzFH6mLGLAsDYwtbseIgWIzbUsHBGZtCzJZqzg2nZk1knRcdomNmEsWojizevVcYynPbDte4PpdjwSG4o2jAWo0w2rc2+462AmY0yVcum2XnP81qjN24LF0xCWeVJbd1BrL7Ts1Kw91Aj5kzNwNwZGXjtvSNYsywXew82atZesl6ZOz0jyFLMsyLT9fG8NwjjNQBMz0rBa+8d4dZH+tTU1oXPDpxBU1sX0pMTuJZxkvLJ2+0P8Rik13y1Z9oR6A2gprYZxaXQjB/25peNkQDf2bPoae8YbDGEiE1KRPy4cYMtRhBGvKKc6DSe19CoyxPPesxzhTaykEpP5udljRQGa5FHdo3NKI2rC3PgrmvFifoO7NpTpzxOpI+81BFGYWTBYmW7oxG3rJiOpCS+2zUNoyEMZqBy341YxVTPW1VGFSpW0nDaD9e6H2krrpG+2SRA5qBKiEV7bOnFKJNNa9G71qoNFhVPLDqUi3Y35pWlrZ7k+8/2l+0zsaCr9IeWiZAg0hu3uZNTNcux6zy3isfnx8s7DqG+xYPCuZOx92Aj6s52Yu/BxqA1CvndXdcaZCmm+RtI/uLX3juC9vPcEi0dXUH3d8/BBtS3eDTL75btNVp9qYkJmtx0fc64GDgCwJG6Vnx2oD/FVk9vX5BlvKvbj/EZY1B7uh01tc1B40qv+fLzMrFpWzU6PN2AA1Ljhw0bwwm+s2dR+X++j0BPz2CLIoQjNhYL/vTHIaUsj3hF+fvfmmtpXBvvg8S7lreIN7qQMqK8RjqOL1Jt6/VRVjf5uJEczaofM7qvIndPGXjpiAD9hXq47doIhmjO8kIYeCRbdH5vkTeCnqsioH/fIxV3HGlrKh2faGahaCSLAC+Prcr5cDb4ZCEYdsziwEGVEIvnsSWao/S90iPhMvrdU33/06FcPHdjXl/hAByB/p+yGF523qv2h5aJkCCuW5kXtJnAe6aa2ruCwqOIjLxr2c0J8pPOX7xuZZ6mjG7aVt1/D8/fX7Yt9n1O6oADIX1oau9CRfUZZE1I0gjRWBn2HmoIyaFMjw2AkNzcwwk+nw/3338/tm/fjri4OMybNw8vvvgili5dih//+Mf42te+Ntgijhp4PB7U1NRg5syZcLkGn3W7p71jSCvJABDo6UFPe4emKA+FMRzxinKaxS85lQ+SVQtYI8qrLP4m0ogk2ZeKu7qZ/oajvNCWDRUyIhsDC577M02yRS/Ay/bWwRGA0BtBNP+MKGiRijuOtDU1HG8PUl41i8CuPXUIOPrjG3nWM9H5cDb4ZCEYesqbDetAWznL9pwMccclijBvM4s3RyPN6cF6rOjVIwvBYH9fXZgTxHEgiuFl571qf3jkdOnJTqQmJgg3jYoKslBc5tbCo1o6uuCua0Xh/ElBcpAwqtTEBC6PBCm3ZlkuKqrrNeWWbfNIXQtOne1E4fxJQfJySfXOK+wEN1yZpSnIvHdW4fxJIWXYcSGyDNdn/YEHHkBUVBQOHToEh8OB06dPD7ZIoxY1NTVYsGABKisrMX/+/MEWxzS+92EZoh0O/H7xEvzwo13oDQTw9NWFA9L2UBjDEa8oWw2VD9KguH5SO9EDjUi6bUeq7nCUF9qyIVvM2Bh88Ei2CIoK+nkAvN1iLgDRRogRBU11M+VIXQs2bavGupV5XLdNPZI9PVZXnlVWz3XUCE8C256qNTo/LxOfVp/RfufVk583Hs640FznKky2IkInWSiEnnJjw3qUVZ5E1dFgpVdvs8bs9yGcDRY21Mpo6IDod/Zao6Fa4RDv6W0a0fdA9M3Ti8kGEEQCRrx8aMUaCCb4AyDlEyHu3jXHmoPctWX95oW0sf2PVJq/SOPcuXN4/vnnUVdXB4ejfzE4YcIE3XI+nw8+n0/7u729PWIyjiZ4vf2bRwcOHBhkSfrhOVGHQ60tyBqbiIQYdfUv2uFAZVMjrt62FQCwID0jIvJ1+f2o7exAYN8+uNpaAVwYOzKWgwFbUTYIlQ8Sz/UTsM4a0dTm1eJ0SL30TvRAIz05cnmBVRcARi3EZhZY7AKJPqaXUszG4EIUL0xi4ERcACqszHpQrWPTtmocPN6vLD9279Uhbpt68c6yd43IKqvnOmqWJ8GINbqiuh7NHV1wBMBdfJN6jLKE65H2yUIhZMqNjfBBZ6Mg3lBXzBqP3Ekp2HOwAfl5mUhNTAhKTbTxjX2Ao98qyG5skDhX2hWZJoWykvma3nwj7/yWji5tkyt3ciqXmIqWWeVbJfv2mfVaE22ukQ0q3qYRu9En+nbyNgTZY1XuRo0ErKa2GR3ebi27CBkXXio2ehzp7yypf4wzFrWn2+Ht9nPDJuiUVjSJGLl2fIYLHee6sWrJVJxp9MDj82ss2LRr+lD/trvdbqSnp+PRRx9FSUkJnE4nHn74YSxfvlxa7vHHH8cjjzwyQFKOHhw7dgwAcMcddwyuIAw2LrkWM1LU1zO/X7xEU5LJ35FAbWcH7t71PrDr/ZBzx44dw+LFiyPSrh5sRTkCoD9wRlxzVT9+dJwO+RgMNpHMjvL+9Ap7DjZgZlYaN9YwkjDqem4VaRIvDi0Sir0NoLnNi7c+ORX2mLFjL7PM0ufM5kBW3ZQhcXvrVuYZLqt3bVFBVr+yGIg8C7cZuT1dfi7PQDjyySzGVsN+no0hKNXbeW8oZ3wM3HWtOHqqDZu2VWNOTkZQaiISJkHIogjYzRD2mNXM17wQnCp3Y9AmF7tJw5MvHHnMbsCrbK6xm0bsRp/o28nbEGStwx6fH4dqW+FKiEGntxut7T709fbhiZcqkTMphUvWRsvFfmdJ/Z6uC2PLC5tgU1rRJF+f7j+DjnPdaO30Yeenx/HYvVfjSF0LPv7yFHp7+7QYaqNjPRjo6enB0aNHMWvWLPzmN7/BF198gRUrVmD//v3Scg8++CA2bNig/d3e3o4pU6ZEWtwRj+zsbADAiy++iEsvvXRwhcF5i/KTTyFrbKKhcj/8aFfI35FQlrPGJmLjkmsxfcN9cE2ZDKDfonzHHXdoYzkYsBVlk1BdGBmxSPE+WqJcjOSnmUVZJBZ1RQX96RWOnW7HsTP9bjtWxUqrKCgk9cNguJ4DxonXWI8AG/p4t+IEqmo7AYQ3ZuxzJls80veTbAaJ8quLFq+qmzK5k1Px2L1XBx2zinU5PdmJu1eGPo969ZvdgDMqt+hdEY58A0meF+l48ZEGOtUb7Q1FW2ZTExMAUDwD5zdTeBZlkSWUZ80NF7wQHMKUTDa52E0amXu/GVgVkqRSj2pbsnAF3rEqdyMAB7p7epUZptn6tM3N9i60tHfBSXnVqcwF8pOkoCL3r6K6Hq6EGCRyyM6GMrKyshAVFYW1a9cCAC6//HJccsklqK6ulpaLj49HfHz8QIg4quB09q8RLr300iERo9yZnAKHAUsyQW8ggAXpGUExypFAQkwMZqSk4vLZszE2Z2rQOTKWg4GoQWt5mIN8LHeU10qvKyrIUk4vwLuW1w5ZAIqUxi3bazRijXBkV6mLlun+tQswadxYxMdGW6qw6slbXOrGmaZzGJ8xJiQXswhG+qZSTnZPWPA8AmzoY3n+FOGzJLuf7Dm9Z5I+X1zqxtvlx1Bc6kZRQRaSXHFafnW2jXAYosOF2flswxoYec/buAB2EzQ1MQFzcjI0JRm44FZduGASXPHBMa2kbO7k1JBjpI7UxAQtNKipzRv0rJDfj9S1BP0UXUdyC7viY1A4f5JWb2piAu5fu6Cfefl8PH9RQZamYBFZWBdx1TZFY8arg71Wdp4Om+K1yd4fvfpIH2XvIjIG61bmYcncSXjwznxcNWciVhfmaLKw94P8BBAkL8GVc8Zj0kVjMXd6RpC87H3InZwaVJ6cP1TbivvXLkBqYgK2bK/B9KwUTUmm5+JQR0ZGBpYvX47t27cDAGpra/HVV19hxowZgyzZ6MTMmTNRWVmJmTOH9+bp01cXahbk3y9eMmBEXsDQGMMRb1E24q5pJieu3sIoXIuQ0Z1jFcsGcXXUI+kxYyWZmZ3W73qtqLCqQHcMHOhnsjQAsxYgUi4cso9wPQJGK9KSnbj9+lCyJ9YNUi/nqF5MPR2DSHsqkM0gepFKt2GWIVqUpkr1fXSkrgWPb65AbGwUt/9moZI+S6+8HtEWHUeo+jyojAtNjGaFNVmvzcEOfRluIK7XQLAbssxtlnWhViGPUv1dz0Wa/Z0lm6Jz+qr0RXaMeK3kTErB54cbQjxY9OqVkXSx3y3au4n0obmjS4vN3bStWjvnSoiBp8uPzw83oKTiOJzn/yb1kfCnT6vPoLmjKyQXNOkbKUvLSp7RLdtrtGtiY6OCfpL26HGm+9/u6cYzr36J2NiooLjnJ16q1PpE0kmW7a1DU1sX0pMTtD6RMadzOZdVngSAQcsoYgbPPvss1q1bh5/+9KeIjo7Gn//8ZyVCLxvWw+VyDQlLMkFsUiIcsbFDOkWUIzYWsUkXXMOHwhiOeEXZiLumEeVpqC6MVBRrVZIeM0q6SFkIx91bb6xXF+bAXdeqWfoikR6EJT3hpRsyUo+tJFsD8szmTk6BKz5GKecoXQ6Qp1/q6vZjyvhEbeNHNBfDcYXcUX4hTRUC0Baequz5m7ZVo7XDh5TEeEstmsWlbrzz6TEkxEQbJvMC1Ii2gH6XWtlClH1m2Hp5zxRLjBYuVNq0n2110K7XgNilFtB3m1V19ZX9ruoiLfqdzhGs0hfZsSp3Izo83fB2++Ht8qO3ty/ou0bznhBrp8i9nHUBZ79btHcTyUvc09On5TemzxF38yRXHHp7A0HHAQRl3hDlWa5yN2plee+qooIs7Zrunl7ExUZrP9ncyewYbtpWrZWjvX7oPu0or9Xkqz3TjiMnW7U+0e7forzRwwFTp05FaWlpyHHeMRujC/HjxmHBn/6InvaOwRZFiNikRC2H8lDBiFeUl+dPgWtMi7LrM/0TCC/frhVljFo+VRV4+gMqYms2uhkgUxYiHcOXMzklhKhIBqN94y2UzbCMW2GRHq1obvMiKSkp6BhZNAII4gJgnyc25p/HrMqiqCALTW1dqD3TjpaOLmWGWr20RLx2SPyl13dBaVy9NEc7L3t+1q3Mw3Nbq5A1ISmkbloew3PNAcTHRmN8+hjhOMkst7L3AX1uy46D6DqfposHtu90WVG8P7GGrVmWy32/GSVmY/vCe47tOGV13LJiOpKSQvMei9jGydyi55iMXJEtz/5ObzyR9zmAkFRFvDL0ZhztfUK+B2Q+se8EUj/bNtsv4rXi8fm1OFn6GaJ5T8jzwLpH89595L3oYuJ46dhvstnI2zSgy9HeIPRxujzbPhD8XJI62Lj0nMkp8J6XyRkXg8IFk7hykHEm9ZNxU9mMYOWk+0TGkORjZvtow8ZwRvy4cUNOER3qGPGKMs9dk4D9oPA+vGYWP2bKiFibw7FUyWCWrVmlTh4i1Q8gPLdXVVglP1mY1NQ2a4qBvahWw7sVJ3D3lP5nmXa59vj8cMbHBMWIip5Bo14jpxo7NRZeVcsk6+7Ia4t995Bn/um/7dWURvp5ks2/3MmpmD/jIi2O34p3GBBMsiR6rp7bWoXDJ1rx3NYq/OcPglkwVYm2nPExiI+NRu3pdm4oCNt3uuyW7TVcCxMhRhO93/Ss9XqEb6Qt2kJnJMOBjYGFnlcC647LU55kz7XexqvIJZz1TqDbbOnogruuFetW5klZ9Nm+iJ53egOP7hfPu4y3MaGyAaFHnkeU/Jd3HNLyHrtPtmreH4Tp3BUfo3E+0Eq3jIOBtylA95OWiffMs8dEfbRhw8bowohXlGVQjeelf6pAVkZoyXDw3Xsi7eJtlQJoJoYvXFdFI9bBcKGSVkO1HgD95GMSS52NUCzPv5Cugow/zTxLzyGR0mJ0vvNSNumBbIZ4u/1wxvEtEaL544yP0f4RqDwnMiWNtcCqPnMq756sCUmoPd0utGaryL+6MAc1x5pxpukcikvduHvVbGWrPN03vfOi47x7oTdPeJZEYgUMJ+e2jfDBmzsyrwQAIe64BLwyZli0efOJp+jSYQgAUHe2E2WVJ6WWdLZu0dzdUV7LjRGO5CY2C9IG7dpMv2NZV3Keq7jqd1c19IMX3y6y0tsKsw0bow+jWlFW+UCYUVRlZUQvb9p6YxZmFE+rFPFwLe+8Hd5ItGkVzCofAAAHEOVwYGZ2mu12bQBpAqsKbwxFadlE8110D3kpm2TXkzZcCTGoOir2chC9e3jvAZUc4bI0dKwF1spn5vaiGUEuijzoPafpyU7MzE4LiglUscqTsrJ+iM7rWetV34uqVn8b5sCztrKbJ6xiTIj96Lkj80oALjx3shhl1mIpk1U1TAMI3uQq23MyaMNcJTbWSLgVL0aY3vShwxTCicPXu+6GK7PgjOtffqYmJuCxe6/mWoDJRhQJEZNtivPCJUSkpbKNC97GCvnbVpRt2Bh9GBWKsuilzYsrNGvd5LVZXOYGAtBiDWXWTysU1qGgOMpinkVlRFYdo22qxoSKYNbaZlT5sGJTZLRD73mRLZJ40HNXZOeE3nzVa1+mwIVsGgm8TWjouf2qel9EKse6rE2gPz7SXdeKwvmTgq4l+U3DdWfW29hQuecqddsLaWvBc1kWsV+T48TLRBYry0KkBIfDY6F6jt7kYr8N4fBgsG2lJwez9rNzW8WFW/U7rRL6wrp888oYCRHjhUuISEv14tv1rPM2bNgYPRgVirLKy91qJXNHeS127alDwNH/QQAQcSVW76UeSVZWMzHPtFJgxn2abVPP+qQHs3PA6Mc00u70ox1kngPQ4t30xlvkISCaEyquuSrM8jywba4uzNHSn4mUfplFmVenStt6Xh4iIi0WKvOdlZ9+tq1wZ7bKZVN2vU3QZw6y7xLvOROxX/M2SgfSBV72TlA9Z0VsrKwtIzwielZXMzKo1Km5Z1PzQiX+n72GzW1vhGSRHSf7m23DxujFqFCUVV7uVu8cFhVk9SttAf5HwUqoWjQGwuJsdBytkIm3UAqnHqPl7Y/o0AIvflkPIg8B0ZxQueci5duIpwVpi1a6eQqs3tw1Y3HWezZ3lNdyibTo+lSVRiMLazMwUo/RNon3QJW7EY1t3mGTb3UogN1soTdOybucJbxKT3YiNTEhyCUbCGaUDte7yEw/aHlYryqup4hCPbzfRW7RBEa/R6L1g57VVQaVkAdAznjOehPINsya2rxazmdyzY7yYJJPoxvqdro3GzZsAKNEUVZ5uVut7KQnO3H3yuDFUqSUKZUYRsCce7QMvA+J0XE0qkzotalqQbBCdvtDOjTBWmjCLW/0ueUtPI16WrDX0DLJXBRFMGNx1lMYZeM8mGEgPBi5j0bvOdnIaGrzoru7d9jkWx0KYDdbyLdsz8EG9PT2AQhmpSbfOJ5LNv17uN5FZvohYrUmEH2n9frC/l5UkKXkyWFUdp5HBM8KS8rIlHb2mNGUeaSfJHylcP4kYSgL2Wxp6ehCamKCMJ7Z6Ib6UHuH2bBhY3AwKhTlEQ+FGEbA+pRQVnxIjMb6GmlTpshaIbv9IR14iCwuRslmZNCz/ogWgeRvM0qnikzh1CUrw7oosm2yJD8q5+lFbjgx4uES/g3UZlb/Rl9/zm0SZ21DHyGbLee/ZVkTkoJJ4phvnMyFF9BXhmTKnUiZM+oiHtI20wcZb4Dsd54nh6olmtcXch3LME3KshsPQPBGgEosM68elQ1D2pNGFMpCxiM1MUGLwRbFaBvZULfKm8WGDRvDG7aizMCqhdVAWhuNkkOxHwCzslpVj6g+I9fw2pYRNPEUg0jIK4JtjTYHPcuNVZsXRoh52L9FXhJm5VHJ9867jobMSrqjvBafH2pAkitOeF7PBZtn4daL0eYt1mWu12bu7UBtZqUnO+GMj0F9iycknY8NMdh5KcrdzX7jZC68PGWIVSRZiyztAr7nYIOW41dk+dVzSebNNbYPO8r70zVVuRtx/9oF2jH6PJ3zmN4o83T5gzbGVazStAs7YQYnx8k5dh0hs8Kyz6zKOaPhUSobEOxmi1UK7mgOqQoEAgCA9vb2QZbEhg19JCYmwuGInCuXrSgzsHqhbZTgJZIpnkSLdtU+6y3Ywx27cFzkjVjx2NglswjnQ2pbo43jbyWHUHhFP4N8UUEWWjq6QuJuRUqqEVd+th4WokUgbxG/8Y190rAIFRlloRUqxGN6KCroTxvT4enGjvLQXKFmrNF65YDgdyQc0AjLZHKy9emNn1HLth543gTFpW7AAXi7/UqePTbEUI1tNQpWkWQtsrSVduK4sUGpygis9Aoh9dDPHaDmQs7bhNJTKOl+8vgbeDHWPKW2paMLFdX1QQo8S8pJx5bTdau4XfOupT1J6N9F8d+0rCK3cZErOf37aN7AbmpqAgBMmTJlkCWxYUMfbW1tSEpKilj9tqLMwMzHkLdYk7kzyeqxMvaIhWghrdpnvYX4YLoq8dqmFyYq1iuzMLK5oZqmx0Yodh+sh2vM2CDrMRt3y7ryiyw2el4HsoW5IUZUnbAIpQ01SR2sazL9UwVkPq5bmSe09OhZo0WbTnrKDf2OLN19Al3+XgCQWvH0rPs82c2yj/PA8yYo21sHRwBYMn8ybrgy236mhwjody27mUM2Z2hlCriwAXfqbCcK508KerfTG3NWbHqnJ/enayoudYfE4RL3fZ6ySm9O5edlYuMb+wBHv8WatEN/92ho1mhA+B4EQpV09pheii5aBt45nsIrupa0zf4uI/4SySrrm6x+ci9Hy6Z2WloaAOD48eNITk4eZGkij/b2dkyZMgUnTpyIqMI1FDAS+5qYmBjR+ke8ovy3kkNYvTxP+mFjP2hGX4Yi18Pbr5+JI3UtcNe1KuUB5cUeWQnRQlq1z3oL8cF0VdJrW2/BHQ6MWPJsS7J5LJyRKXXvYyGz2FgVOywDWaQumTe5P8WTQEZAvqEmC61g3Q6NsriGGwMczvjRMc41x5pxuumcYSueSvtW3mOeFwFRugrnT0JFdX3YbdiwBsS1uaTiOJwJMVg8Z6J2HAA+P9SAj788BWdCjLZRBQBllSdRd7YTZZUntU0WoD/V3MHjLdi0rRqP3Xu1Uvt673pZHC5tpeW5jS+eMxEV1fV4f8+JfhK5AEI8TngyuE+2ormjC+66Vty/dgHSk51BrPipiQkAgpV0skmwZlkuDtW2Bp2jFffCBZNQVnkyyIODPCPe7v4sIB6fH8Wl7iDXbwLSR5mrN/s7/Td9nNTBq8to/WQcR8s3OyoqCgCQnJw8YpQpFSQlJY2a/o6mvoaLEa8os1YoHlRZo0WQLcT02GZF9UTC7YddSBt181ZRhIdq7K2e+6hZmY3GOw+m1X2445YV05GUFEomJQLPYgOEeh3IFMRw5gZ5rxTOnSwsSyuLPGVYxSoVTrwuPR/Z8wPF15Ce7MQD38kPcZ1UgR7hGH2NFTLzvAnIN8MqkkQb1oBslPX2BrTNZ9r1OMkVp52Dg7IqUh4c9PORn5eJTduqsW5lnnL79E8j19GystZPdjN9z8EG7iYTr26yGd/T0xcUakGvU+iNZLJmId47h2pbQ85t2V6jeZXkTk5FRXV9kAcH2QyoOtqf097j8wtT99HPM3uMQOaar5dGTOQCrle//b22YWP0YsQryq64GH1r7vkPo7fbbyptkmwhZkQxErkKR0rhtMq6aUWcJFuP1X3Wcx/Vc9EVgbiezpmaocUq0i5wRuSwYQ5688Z9shXtnm6h661szoo20fSYrwEYeq8Yib03MwaAfngCb1FNPxe8fm7ZfhBle+vQ1NaF731rLrddvT7IGIhZ0iFRWfa6cN8lRt9jVhEE2uDD7P3MmZwCb5cfzvPWYmI5LZw/CYXzJ2HTtmqsWZaLvYcaNVfmsj0nsWTeZBTOnxRk0c3Py8ScnAykJiYoxd2KYnfZ54gtwz6PrPWTdhuvqK7Hd78xB2WVJ7Vxoutn1z60ddcZFxPyzJvx3BDVwbPQqqaHMruO4IVGDHbqMBs2bAxvjHhFucPbrWvNJa6NqvHERj7aZhUj3iLVSli5sAs3TpJXjxUfMNX7VFSQhT0HG3CivgPFpe4gdzs9OWjX2bLP+2MV9WIhh6rVfbhCNm9Uwhmkc1YQH8zOeR63wOrCHCAA1NQ2o6a2mSufHlSfJ1U3T9E5Ec8CS/LFtnOkrhW+7l4cqWs13Qee7CLSz84cwwABAABJREFUIVZeoiCz15lRdFlyIpnMvD7ImMNtiKGS2siM1xfZxIyNjkJ9iwcIAK6EGM1yCvS/t1977wg8Pj8WzRqPiup6zTpKLKO8WFdPl1/L9+zt9gs3WWmrcLunW7uO7o/oe0M/r/T6hVzvrmvV5GHj8GUxw2TjcPGciUGEWHreOeFwNoj6QsMKHhE9pZ23SaCC0eZ6HR8fj4ceegjx8fGDLcqAYDT1dzT11SqMeEU50akf76vn/shiIOJMeYtUGYwqXzISHjOykp/hWEz1Po6iPoqOq96n9GQnZmanaUynZrwAmtq8/ay9Dv1y4br62wiGqrXDjJWfjQ/mkbGJlHHictjV7TfNO6D6PNExhmYg4lkgeUlFC8/cKSk4dbYTuVNSTPdBZoES3TeeIk1fZ0bRpftv9D1m9H1t4wJ4Vr+Q33VI8Xgg977tzFlMrq5E/JQozI86i+isaVhekIWelhYkVbyL3OtuwheHzuLy05VIXnotos+1B/0+/ewBHMq6FPOvmKZZQ4vL3Fq+51NnO4U8CLQlddO2au26GE87FpyqRMz0JFx7eTaSKt7FghnT4WtqRv3OEmRetwLx6Wkhf5N+0XItFzw3vGvefbcKFx/4EPWXzB1yng9W8IjoKe3EBdzoumeojVWkER8fj4cffniwxRgwjKb+jqa+WoURryh//1tzlV+IVpFaGQVP0eMtUmUwqrxb2Qer3ImNEnLpHTfSRzZ/p9H+0LGKujCx6LNhHJGw3OvF+bKuw0RxZdOpWN0HmoDIaA5fmXeJaOFJYoJvuDILzrgYwHHB7dOM/Cx4sccAuBYnldjtI3UtWnwpb3xohUbPTV7kdr9uZV4IkZENfcg2SujfVTaxaZA5cHBzJU72nkHqwV3w9vhQcEUs0pOvwPG338Sk5mNw7qtAAYDmL/fCmRAb+vvBfShIduLiyVdoc4eXE5knMz0P6e954+v9Mk3yfYXu8jpMaj6G7vIPUQ+g+bMKAMDFt30L9TtLgv4mdRZ0H9PkSk++AkCoNZp3zeXth3HSexLXpk0ZUvPT19SM+acrETtuPOacrkTHkTi07N4dtEFAX0s2DwCgfmcJUhcuROOuXQAcmLjqZu342GnTcHLr67jouhVo2FmCK2/4JySdq0aey4mqf/8Fsu+6E4m5U7l10+3aIVM2bIxejHhFOW0ASLFkUFkoihQ9I+2Q2CPVRdpwfPHzFlRkkZ87KSWk70b6OJDjIWMxtmEcRjdQwqmbNwd5c4ctp0r0xL4vlPsQxuaLGe8SWi5Z+iUV+fVc50WpW4zc003bqrmMxWxueZX7JIqD9HT5dePhbYRCRtakR7Kkguybb4QzIRapCxdqyheAkJ+qvxuRWVRm7HmZ9NrjySg7rndNNqfdoYD6nSXwfrkXM5xOeL1eHDt8EL3efkIvskFAX0s2D4D+jYW2qn3wnjwFAIh2ObXjDe++h+7WNpz76iv09fjha3gekxIT0fiXKnS3tuHY85sx59e/5NbNtmvDho3RiRGvKA80zCx0w7Hu0parkb5IEykkVe4LbJoD3femNq8SiReN4bhJMZQh20AJNwafrdus14nZWGOVcippqIzIaraMnuu7rC7RJp9qO3pYtzKPy1hsZryF8Y8+f0TT+9kwh/j0NE3poa2H9HEASr9HQiZZe+x1esf1rlEpNxggijvZzGA3NXjX0udoizJ9nLUoT/rG19F5+LB2PPuuO3XrtmHDxuiGIxAIBAZbiEigvb0dycnJaGtrG9BcYcQisWjWeEvYV1Xbc8XHoMPTjURXnDL510gglVJhH40ktmyvwdvlx+AIADdcmW0rwBGAmWeZfQ6HC8w8k8O1rzQ2vrFPS6UlYxe3GlbWPxLep5EG71kWubuqxOvKQK5nlS76GH2ObYNca6Z9Wdu8ulWh0idZ/UbH0CxE48jKZfaeRlp+GzZs2CCIGmwBRgJIHF1TmxdFBVlB7KvEAhWphRNpb93KPFw1Z6IhhmxiTSEkJAMJeszCARnf3MmpER1nEYoKslA4dzKWzJ+sZEWyqt825CgqyMKcqRmaldIqmL1/vqZmHH/5FfiamoX1+Jqace7tN/GNhRcZJpqJRF8HFDrs4pF6R7HvZ/o+GbnXtpJsHsTdtX5nifS46Dq9eo89v1krxx6jz7FthNO+rG1e3apQ6ZOsfrPtGoWor1bd00jLP9zxzDPP4JJLLkFCQgIWLFiADz74QHp9WVkZFixYgISEBEydOhXPPvtsyDWvvfYaZs2ahfj4eMyaNQuvv/562O1ahcHo78MPPwyHwxH0b/z48Zb2iwer+1pdXY01a9YgOzsbDocDTz31lCXtjiSMKtfrSC1mrGBrDJf0BhCnXRC1YzUpmREMBHP4QMGVEKN830ZSv4cyCOO0KHbWLMzePzb2jVeP2fi4SPV1ICGK27f6HaVnkaLvwUeplynfa/u5Ng/VONzUhQvRVrUPqQsXAuBbV+l7yrrzsq66tEU5deFCHH/5Fa1uI/HCsj7x2ia/93q86PV40HHkqLLVWaVPstjqgXItVo3/NioPe32kLMzD2XL917/+Fffddx+eeeYZLF68GM899xxuvPFG7N+/HxdffHHI9V999RVuuukmrF+/Hi+++CI++ugj3HvvvRg3bhzWrFkDAPjkk09w66234le/+hW+/vWv4/XXX8e3vvUtfPjhh1i0aJGpdod7fwEgLy8PJSUXNm2io6Mj1s9I9dXj8WDq1Km45ZZb8KMf/ciSdkcaRpXrdaRcFK1QwAfKfZJuh6S2GQwryFCywIQji9H7NpT6PVxgxPWaXuB0xjjx7rtVuLz9MCZefaUSiyrPTZFegHbGOE3dv44jR3Hs+c0ayypvHsgWZ2x5FmeOnULli69jwR1fx/jsicpyDQSG0qLz+MuvoPmzCqRdkc/djCDjPOkbX8fZqv34Imkali+fo3uvm9q8eP/Nj5FT9T5y16/j3iMb4YVEsfeO/B3tdKLX6xXeUzN1DwR48gPQ5KB/NyPTUHruIoVI3bfBmA9WYdGiRZg/fz7+9Kc/accuvfRSrF69Go8//njI9T/96U+xbds2HDhwQDv2L//yL/jiiy/wySefAABuvfVWtLe34+2339auueGGG5CamootW7aYatcqDFZ/H374YRQXF2Pv3r0R6lkoItFXGtnZ2bjvvvtw3333hdXuSMOocr1m3aKtAm3V3fjGPmzcts+wC6RV7pN67oL0GBhxa7TaZdgql3Qr5DLq3ilztdcDPVdsF2zrQbvmkRQp3i/3hrhYisrwjtNlzc7blt270ev1omX3bgD8+U+IdniL2mPPb0bHocM49vxmbv3d5R9qKWaGGujxZV3QCUTHzUJUX+Z1K5B2Rb7QgkXu08mtr8P75V4UdB9TJuibcaAM3qNu4T2yER7Ye0f+zr7rTuk9NVP3QIAnPy1HuDKpuinTz4qvqRlfbXoBX23ajI4jR3H85VcM/yT1sL/T51XAk8Xo86wK9n0xGPPBCnR3d6OyshJFRUVBx4uKivDxxx9zy3zyySch119//fXYvXs3enp6pNeQOs20awUGq78Ehw8fxsSJE3HJJZfgtttuw9GjR8PtkhCR6msk2h1pGFWu16qMtWatfjvKa1G2tw6OAAy7QJJ2yj6vAwJQz8nLkUHmAkiPgRG3xqHqWkinZjHiAk3DqHunFa72Q3U8hyNoy4nIpY+wnBLXShqZ163Q3CB9Tc0hbo6ysjwZeIquqA2Vsr6mZjgnTkRfT08ISytdP/3TjIxmr9UrN3baNDS8+x7GTpsmdC8/9cabOLvrA/R6vLhk3XcMycG7hm4n87oVQedlFiKea6vqWGTfdSeO/vn/g3PixJB7bCN8sPeO/E0rT6wXiIhFmefeTOaJCimWCHokVjI2Zx56PV6cemMbJq5aKaxDdgyA7hxm0y2d3dUfe9jpPoperxdtVfsM/STgpXASpXzioX5nSYgsbFmrWLxF76XultZhZZVvbGxEb28vMjMzg45nZmbizJkz3DJnzpzhXu/3+9HY2IgJEyYIryF1mmnXCgxWf4F+K+tf/vIXTJ8+HfX19Xj00Udx1VVXobq6Gunp6Rb18AIi1ddItDvSMKoUZRU0tXnxxEuVaPd0AzCmxJA0J95u9XzGQZDkQlVV3o0ofUbzNKvWawZmNyeIPE3tXSjbWwdPl9/wJoPRdE30WIQrt51GJnywixzeQur4y69oFl3aLZYsIAGgbV81ol0urbxeWRqsosdbMPPa4MnPLmrrd5ag/eBBxCYmIi41hdu+yoJRLwaablemaBppw9fUjKPPPgdfSytObn0d0zfcp9VJo9fr1f7R8hx68in0dHSEyCySlVxDbxyo9oUdd3KviRumaNxI2Zbdu5E0cyba9u1D/c6SYeeyOVzBKnq0UqaqxPHKsudVlTujdctkaygtQ5/PB7IoOLvrA7Ts+RwBv9+QzLI5zG6y9Xq8AALIWLKEu9mg91MUl2x0k4BsLtKyRMrCy44BuY9GlfuhAocjeBEZCARCjuldzx5XqdNou1ZhMPp74403ar/PmTMHV155JXJycvDCCy9gw4YNxjuhiEj0NRLtjiSMCkXZiDKzo7zWdC7M9GQn7l41OyhlkxEFbHVhDhC4IDMtq6oFMlJW80jn/jVrYSVybdy2T7jJYDVIm+Fsqti5lMMDrdSwJD88iCyuRMFNy18odLXTI5DxNTWjo6YGgb4+kAeYt2BOnp2ntSGzgrOKX+Z1K9BWtQ/+jk6pAqZn+dQbJ7pd+lqRtZcHXl+i4uIQn5qC7LvuNGQBqt9Zgu6WVgR6uoNkZhVonrWebkekNLObEjyF29fUjF6PB8mzZ0sX6aTs2JwcRDud0rloQwwzngz0XI1LTemfC14vop1OZCy5RkmJM0qKJZJbRgYmqlvWXvNnu+GtqzvfnwQAwJisLMSlpxmSWeZxwj6T9DNONouM/gT4uaGNxO7Hp6dxZYkE2DEgc4rkXR4uLtgZGRmIjo4OsfQ1NDSEWAQJxo8fz70+JiZGs4yKriF1mmnXCgxWf3kYM2YM5syZg8OHD5vpii4i1ddItDvSMCoUZSNKGGvp27K9ZkCshURxBYAqd2OIkm21BXKouf6G27/C+ZPgrmtF4fxJVoolRTibKjbCA1FMej1edLrd6OnokFp8xQpav2Ib7UwwpMDRClX9zhL0dJ5DdHwcMpYsARCsvNHHyOKftfDIFLP49DRM33AfTr3xJtd1WyQXCzpOmmdVpxf59TtLtGt51l4arHJDt01bhUTWcKB//KOdTk0ZAPoXqw3vvgdHbBxadu9GXGpKv1weL/wdnYhNTNTGiMwB1lpPxo+nNLNjxlMm6neWoGXvF4hNTBTKTpfp9Xh0vQ9sAL7mZhz/xzshLsr1O0vQ+PEnaKvap3kfyFiggeB5ffFt30K0y4m2ffuQdkU+EnOnKitx9O+iazX5GRfvXo8Xbfv2ma5b1F7y7Fnobm5GtDMBE1etRLTLFdJ/FZnZ59JoPmb22Kk33gQQUHYJF1mdST1mrdd6cqnWT296kndMr9eLzsOHh5UlOS4uDgsWLMDOnTvx9a9/XTu+c+dOrFq1ilvmyiuvxJtvvhl0bMeOHVi4cCFiY2O1a3bu3BnEirxjxw5cddVVptu1AoPVXx58Ph8OHDiAa665JpwuCRGpvkai3ZGGUaEom3FHHmhrYXGpG2V763DFrPFcciirLZCk/vy8TOlmwECwNFvRRkV1PTw+Pyqq65XSZFmB/LxMVLkbsW5lns1gPcCgFROe1VEV9OJTBJ6Fl5aBtvjSCpJMeRNZeOp3lqBtXzXSrsjXFsMy93D6PM+apdomrZzEn7dWEUUfgKbE8ix+MotzfHoaol3OfnZfzjgQ+QFg3JJrMHHVzdrxlt27Ee10ISohHr0eD0698Sba9u1D8uw8pF9VgNSFC4WKM68NIjexJH+16QX0er1Sa7GqNZ+M2ak3tulan20ADe+VomdftfY3vVlBjzd9jv6d3Yyhf6p4mIQL1jVX5C0SblwrqxxbpbTxXIsBdfdwEjsc7XIplRO5wIcbD60nl2r9vR4vol1OdDe1oLmiAslzZg9bz5ANGzbg29/+NhYuXIgrr7wSf/7zn3H8+HH8y7/8CwDgwQcfxMmTJ/GXv/wFQD8L8tNPP40NGzZg/fr1+OSTT7Bx40aN3RkAfvjDH2LJkiX4j//4D6xatQpvvPEGSkpK8OGHHyq3O9L6++Mf/xg333wzLr74YjQ0NODRRx9Fe3s7vvMdudfVUOtrd3c39u/fr/1+8uRJ7N27F2PHjkVubq5SuyMdo0JRVlUy6Q/cjt0NA2stPB+f7BygPKhkTF7Z+hk6yt7Hu+euxbe+cUXIdQNheQ63DV9TM+afrkR01jQsH0DL7mAo5zb6QRP5dLqPhiipBHqLVr3Fp8jCy8ZBT99wX4jly9/RieiEBK4VWNQuveinrRtEQeS5h/MUXdmY8dpklUFawU2enYfxNxQJXZdZt3MWKi7fPKstUdY7amrQsvcLpM69XOt/fHqaZpUnirNMMWHHiCYKGn9DUVB9pG9kzNh7C4gJxFSszzagbVCkLlyIxl27gp6vsTlTAThCXIe7W1qFeZRpqHhOiFLFsRCRc7GuuaROcg3xdol2OYPaMapEi55ZVYuwKA6fjJmqKzh7jHiJqJbj/WzctQvJc+bAV38mZBzl5T4Ica0XyaUab93r8aD5swpExfQviX319ejz+4elZ8itt96KpqYm/PKXv8Tp06cxe/Zs/OMf/0BWVv/a6PTp0zh+/Lh2/SWXXIJ//OMf+NGPfoT//u//xsSJE/GHP/xBy7MLAFdddRVefvll/OxnP8PPf/5z5OTk4K9//WtQTmG9dkdaf+vq6nD77bejsbER48aNQ0FBAcrLyyPa30j09dSpU5g3b5729+9+9zv87ne/Q2FhIUpLS5XaHekY8XmU9218HrmrVip9lL7a9ALO7voA45Zcg6Q13xrQfLcDmV+X/lgfe/NtnPywHJOuLsCMO9eGLZeZ3fRw+z5YOQ/tnMgDA/IsN3z1FcZlZ4ecl+VBJrGsGVddGeTerErodPzlV3B21wcI9PRgxk9/gsTcqUoL7gtKrkezEBudm7QiyHO5ZPvp7+hE+lUFIe3o5WAWjYnKseMvv4Kmj8sRkzhWqKTrPZ++pmbU/Md/wnemHuOWFgZZpWX1G2Xxpseo3/p7wU2TdrtUqY/Xp44jR3HwP34LR2wcxi25eli5bA4UyLP8wb3fx8XXXA0gOFewbK6o5lEW3UczeZfpNmlZZXJroQucZ5/XP5EyLpuDshzMsv4NlfzA4eTAjkQfRGzpVngF2LBhY3hjxFuUmz77DH3uo1JLywUEtJ8DTbY0kO3RO95xCOCSqxZi4s03cq81KpdenCQPY/1eLG75EmP9FwEwrnCG62pn1lXO7D2z0jVvNOH0W+9g3L+GuvqIrC7Eqsu65MrmKM/NuuHd99Dd2oZjz2/GnF//kuu2SBbH5J7SFu9olwupCxfi+MuvSO85Oy948bS88vHpaci+604ce34z9xk49vxmtB88hIP/8VvM+c1jynOOyMDrFwEdgyzqkwoZlkOr4UI9pGzijBmIdsZz5SNjLBtbMq7Zd90ZtPjluYnrvbNkbu6Nuz5An68b8amptuu1Dohbq0a+dd7rgnafZu8p+57nES7J3q103aoMyrxwBdq6PXbaNBx/+RWkLlwYFKpAP/tsWbY+lviP5x0iejeoWoRVwzMGCmbuBVs2nD7wNjvpWG+r8rnbsGFj+GPEK8qxYxN148sIVOIVI42BUKJI/7qbmtFcsRvjllwTdlvhfIjNKNc0RK52RtpXcV21CkZYhG3QCFbGVHIXk5/0edlCiz0Xn56GGT/9iWaRpc/RiyzRHKZTTOnNcbYOWnHTKy97BrLvurPf0hkdjUNPPsWd4yL59Z5NvRhkXsw1r98sGRpdllidRDHOejJa+bzxXM+JQgcEgKgoJM2cYW+A6YAl36Lnj+h5Yec4+ZsmXJI9J/TzpPqdYDdPyO+E7O7k1te1zTK2H7yNF94x9p3Di4mXvRv0yMF45YPnrRrxFmv1ll2nQuxF3su8e6GSD1u2KaZ3HRmPlj2fw9dwNuTdEO6axIYNGyMHI15Rzv3e/4G3/DMlxc1KsgyzCOcFrapkk35+tWnz+SPhe9+zcVlGEO4OsRXlVQh7eDC3sRFgftpQwYR/CvZ6UFHijBwXnUvMnYo5v/4l9xqyyNObgypz1IgCz0LmVZGYOxVzfvOY5nrMm+Oi+iMtNznHI0NTtTrpt6H2vKk8yzwrP5mDQ2GjdbggdcH8oPvLxh7zvBDY60TWXvZYJMCbm2wMtSrYdw4vJt7qbyRrxTaTe1p2nQqxF6C/aSiTSbZppncdbSzwNZwF+24YqHlkIzJwOBx4/fXXsXr16iFRz2DD4/Hg29/+Nnbu3ImOjg60tLQgLi4u5NjcuXNx33334b777tOtc/PmzbjvvvvQ2toacfkHGyM+RrmtrQ1JSUlKZYwqParXG7nu1Bvb0Ov1IdoZr8XOqcpAPhKqsTsqsYuq0IvJHOruxmblMxMvNdTHYqhB9CwPpXEcbFlU5uFgyyhDJGVTrdt+liMP3rMsij2m432Nft8G476w/TBDHjZQ4MVFD5ZFWSZfpCzKvHEwy38w2nHmzBn8+te/xltvvYWTJ0/ioosu0hSu5cuXD4pMRhXchx9+GMXFxdi7d2/Q8TNnziA1NRXx8aGhP8MJf/rTn/DQQw/hvffeQ0ZGBjIzM/Hss8+GHGtsbMSYMWPgOs8aL4PX60VHRwcuuugiy+QsLS3Ftddei5aWFqSkpFhWb7gY8RZlIzBqzVW93sh1Kq6GorqN7oKG67JMg43JZGWQjcFQ+CiZ9SYws/M8FDwXRgKG0jjqPeOqZFlmoTIPB2u8VPoZSdlU6zbDdTCU5uBwAp1HmR531ppM3Oa7m1oQ7YzXmLJZt2F2bkXCdVZEukV+Zy3dtHWzp6MjKLTH6m9euGzarIeMau5p2XWyYyQOWOT+LYoZjktNCXIdF+VRJuhuadVV3HljZrteq+HYsWNYvHgxUlJS8Nvf/haXXXYZenp6sH37dvzrv/4rampqTNXb09PDzfMrOh4pjB8/fsDaiiTcbjcuvfRSzJ49W3ps3LhxynU6nU44naODxDZqsAUYSsi8bgXSrsjXPsR6hA7kej0lych1ybNnwzlxonIuTtW6rS4rAvkA84hURG2deuNNnHlnx/mPnBjk4yi6Lx1HjqLq33+BjiNHdeWk69KrVwaa8Ei1fDjtjWb4mofueMnmN2Fcbvz4E9TvLNGOk8UYfUwEvTkjeu4GA6ysRvopq8fsNaptHXt+M3o6OrQ0P2bqsJ9rNTS8V6rNCXrDVtssdjnPz+V+pcdTe0w73rJ7t1ZWNLfY55F3b2TfAPJ3x5Gj2nH6O0W3q8W7no+5Js8gkSH7rjsRm5gYlBva7DNBg5aZls2qb1ukwRvDY89v5o4LO1686+t39qd8O7vrQ+04+1OlLSAya6ORiHvvvRcOhwOfffYZvvnNb2L69OnIy8vDhg0bUF5erl13/PhxrFq1CmPHjkVSUhK+9a1vob6+Xjv/8MMPY+7cudi0aROmTp2K+Ph4BAIBOBwOPPvss1i1ahXGjBmDRx99FADw5ptvYsGCBUhISMDUqVPxyCOPwO/3C+X86U9/iunTp8PlcmHq1Kn4+c9/jp6eHgD9LsSPPPIIvvjiCzgcDjgcDmzevBlAv2W6uLhYq6eqqgrLli2D0+lEeno67rnnHnR2dmrn77zzTqxevRq/+93vMGHCBKSnp+Nf//VftbZE2LZtGxYuXIiEhARkZGTgG9/4hnaupaUF/8//8/8gNTUVLpcLN954Iw4fPhxU/uOPP8aSJUvgdDoxZcoU/OAHP8C5c+cAAEuXLsUTTzyBXbt2weFwYOnSpdxjAJCdnY2nnnpKq7e1tRX33HMPMjMzkZCQgNmzZ+Pvf/+7Nm6s1VfvvjgcDvzP//wPvv71r8PlcmHatGnYtm0bgP5Nl2uvvRYAkJqaCofDgTvvvFM6bgMF26J8HjwXZkC+m6hqTTBideh0u7V0NkZ3hlUIg8zKpQrRzra8LbUYQr37cuz5zeg4dFhjJ1atC0BYu8dGyYJsMi9zaHivFOPW3WmozEB5K8jmd/1OPvu2EW+ESFs4zI6TKJ8wyxwOGI/34/WZbc+qcRHdo3DltcHHRcuWwitghKZ/J3HfvDh10e9A6PPIuzeybwAv1pX+Tsnio3kysHHHVsTABst/QTYrv22RBG8MRHwEonET5XcW5U1WaQuwPUVU0NzcjHfeeQe//vWvMWbMmJDzRIkKBAJYvXo1xowZg7KyMvj9ftx777249dZbtTy9AHDkyBG88soreO211xAdHa0df+ihh/D444/jv/7rvxAdHY3t27fjjjvuwB/+8Adcc801cLvduOeee7RreUhMTMTmzZsxceJEVFVVYf369UhMTMRPfvIT3Hrrrdi3bx/eeecdlJT0b5okJyeH1OHxeHDDDTegoKAAFRUVaGhowD//8z/je9/7nqZYA8D777+PCRMm4P3338eRI0dw6623Yu7cuVi/fj1Xtrfeegvf+MY38O///u/43//9X3R3d+Ott97Szt955504fPgwtm3bhqSkJPz0pz/FTTfdhP379yM2NhZVVVW4/vrr8atf/QobN27E2bNn8b3vfQ/f+9738Pzzz2Pr1q144IEHsG/fPmzduhVxcXEAwD1Go6+vDzfeeCM6Ojrw4osvIicnB/v37w+6NzRU78sjjzyC3/72t/jP//xP/PGPf8TatWtRW1uLKVOm4LXXXsOaNWtw8OBBJCUlDR2LdWCEoq2tLQAg0NbWpnR97Za/Bj7/0Y8DtVv+GuhqbNJ+qoB3PX1Mtb7aLX8N7Pn+jwJf/tvPldum0X7YHfjy334eaD/sVi5jtK96dX35bz8PVH7/vkDtlr8ql1OVWyRrV2NT4OjG5wM1v/uvwN7/9wGl/rP35+jGzYGjG583PA5djU2Bz3/048BHt9weOPz0n5TKHH76T4GPv/X/U75+tIM8yw1ffWW4bO2WvwYqv38f95lSnfvhPiNWPGMqz4isHT0Z6PefEfDGl7TVftht+bixcpp5z6q2FU4dVr5XRxJUvsuNrZ7A/33nQKCx1aN0nD3Hu072jT711anAX17fE/jihb9K53BXY1Pgixf+GvjL63u4MqhC1g8j4M03ti+szKJnU2/ussdE1ze2ekLG0sg4mLn3vGsiMYdsBOPTTz8NAAhs3bpVet2OHTsC0dHRgePHj2vHqqurAwACn332WSAQCAQeeuihQGxsbKChoSGoLIDAfffdF3TsmmuuCTz22GNBx/73f/83MGHChKByr7/+ulCm3/72t4EFCxZofz/00EOByy+/POQ6up4///nPgdTU1EBnZ6d2/q233gpERUUFzpw5EwgEAoHvfOc7gaysrIDf79euueWWWwK33nqrUJYrr7wysHbtWu65Q4cOBQAEPvroI+1YY2NjwOl0Bl555ZVAIBAIfPvb3w7cc889QeU++OCDQFRUVMDr9QYCgUDghz/8YaCwsDDoGt6xrKyswH/9138FAoFAYPv27YGoqKjAwYMHubI9//zzgeTkZO1v1fvys5/9TPu7s7Mz4HA4Am+//XYgEAgE3n///QCAQEtLC7fNwYJtUT4PeqeSlz9UBt5uNW01JGkj6PMqMqjiApGWVznmmC7Ttm+frmwqMGuVUY2VluXLPbvrQwDA+BuKlOKt2XssS3EjQ/3OEnQ3NsHhcCDamaBUJtqZgGinU/l6G/2IT1N7JmirY+Z1YkZzqzkGhHJbYJ3Qe0aIe3dPRweA0LzOehwBslzHerlp2fE1khJLBpVUOnoeNUYzAaiCV2843j02LmBHeS0+3X8GALQ89U1tXjzxUiXaPd1Bx3llAASVb2rzYsfuBhTdeDPiky9YKMj92vjGPpR9UY/uubNwGede0s9bdeZlqNx/BjHO2hAZmtq82FFei6KCLKQniy0hvP6xUKmLF2e8ZXsNKr9qQ8ysy7S+0DLn1X+Jkr1nsOjLlzCmq10rV7+zBMc++wJvnYzG4nG96NvbP3fH3HgzdpTXYkrdl/is+gxWdJdg0qqb8crm95F38gutbTLXP0q9DJ9UHsPZc2eQEsfPIEH65unyo+poY9A4sGMjupY3PsWlbpTtrYOnyw9XQgx3jGVjT5cHoP1+96rZsBGKwHkeYIfDIb3uwIEDmDJlCqZMmaIdmzVrFlJSUnDgwAHk5+cDALKysrgxsgsZzojKykpUVFTg17/+tXast7cXXV1d8Hg8XCKqV199FU899RSOHDmCzs5O+P1+ZZJfuh+XX355kPV88eLF6Ovrw8GDB5GZmQkAyMvLC7K6TpgwAVVVVcJ69+7dK7Q2HzhwADExMVi0aJF2LD09HTNmzMCBAwcA9I/HkSNH8NJLL2nXBAIB9PX14auvvsKll15qqJ+0XJMnT8b06dOVrle9L5dddpl2fsyYMUhMTERDQ4MpGQcKtqJ8HiquWiLw3ajkbloqMqiCyJo8Ow/Js2ej1+OBr6lZujCky1gVi2NW0Q/XDS3zuhXobmqGp/a4ISKecIjQ6LZ7PR4ADkxcdbNSGTuNTGTBPru8dCuA+j23wk0S0Ffa9BRSmQzsJpUR92cSFyrKdSx7F8anp4U9vkZAkwYSIiA6JpRtLxJhDuymhCz9jP2M89Hc5sVbn5ziKoL5eZmocjciPy9TO7ajvBYdnm4kueJQVJAVUh85Rp8rKsgSKti0ogUH4AgAOL/elympvHZoGWUKMKk3Py8Tni4/PD4/mtq8Wlm6vR3ltfio6hSq3I24f+0CqeKtMg7k52vvdKAyLhbOGfPxT/GnEFtwDbZsr8HSgmtQeTwan7e7ED05Azdc0T93t57v0xdRF6F9TCzGJWWjurwWNX0pwKT5WHTdtVo7mdetQL7XgS9qzuDSST0oS5iGm5j+AdDux7zpF2HRrPHIz8vElu01KCrICpGfjOmcnAwsmjU+5HjQWFP3kTcOTW1eeHx+zJmaoR3nzQNvtx+1p9sR6A2EzAnRxsZoxLRp0+BwOHDgwAEpu3TgfKyx3nGe+zbveF9fHx555JGgOF6ChIRQ40N5eTluu+02PPLII7j++uuRnJyMl19+GU888YRQZiP9AII3C1iyMYfDgb6+PmG9MvfigCApES1LX18fvvvd7+IHP/hByHUXX3yxsG49GHV7Vr0vRsdnKGDEK8onXt2KXIU0SyyMLHR4Ci6tDBlRgM3ECtKykkWtnmXUrFIrg1lFP1yLW3x6GqKdTnQ1NKBx1wfKDN7sGJiV/RKDcbM2woeMRZplnxV5iMiULhpWxavpbb7pKaRGnmeZ5VVW1uh5QiTE4xcw6pljBLyx4vdRzn9g5n2r4jljxzjK8W7FCVTV9pPgsMpHRXU9PD4/KqrrkTs5FUCw4sNTGtOTnUH1kN+3bK/hKti0orW6MAeu+BiuElZUkBWkxLLt0JAp0Wy9xOLpiu9fgrFKX1FBFqrcjejwdBtS0Hjy0ceinU7EJDj72aNXXo0t22u0tpNmzoBjTx2inU5cvPJb5+XoH+v8vExUVNczCvhVmoWezPWK7TXo6gM+6JsIz1dtiHHWBvUPgHY/VhfmID3ZGSTD7dfPDJJfdN95Y104fxLcda0onD+JOw47ymtR5W7EolnjgzYk2Hng8fnR1e3HlPGJWF2YE3SdrShfQFpaGq6//nr893//N37wgx+EKLStra1ISUnBrFmzcPz4cZw4cUKzKu/fvx9tbW2mrJ3z58/HwYMHkZubq3T9Rx99hKysLPz7v/+7dqy2tjbomri4OPT29krrmTVrFl544QWcO3dO6+tHH32EqKgoZasrD5dddhneffdd3HXXXdw2/X4/Pv30U1x11VUAgKamJhw6dEgbu/nz56O6ulp5PIzIVVdXh0OHDin1z+h94YHESuvdi4HGiFeUWyr3oN6gOy1gjfIWjnUYUHfZo9uKtPU6ErCGcEmNEIzGYI2BTfoTPvTIedhxNXvOSrDPJjvvrbRC0nNb7/mSPQd6ZQnTLADu5lykxpYeK5mMet4bKvLJ7tNQYBkfjliePwWIPqtZVfWUoPRkZ4jSqgIVRYtVquhzKm7StIz0NaxlWmbt5fX3/rULgiyxVoDdFGB/0ufYPpFNC4BvmSd99HT54e32wxkXXFd+XibK9pzE3GkXYfXSHO1+yDYYRBsTvOO8DRYaetZ2UueRuha461qxbmVeiIw2gvHMM8/gqquuwhVXXIFf/vKXuOyyy+D3+7Fz50786U9/woEDB7BixQpcdtllWLt2LZ566imNzKuwsDDErVoFv/jFL/C1r30NU6ZMwS233IKoqCh8+eWXqKqq0lixaeTm5uL48eN4+eWXkZ+fj7feeguvv/560DXZ2dn46quvNHfjxMTEkNzJa9euxUMPPYTvfOc7ePjhh3H27Fl8//vfx7e//W3N7doMHnroISxfvhw5OTm47bbb4Pf78fbbb+MnP/kJpk2bhlWrVmH9+vV47rnnkJiYiAceeACTJk3CqlWrAPQzehcUFOBf//VfsX79eowZMwYHDhzAzp078cc//tG0XIWFhViyZAnWrFmDJ598Erm5uaipqYHD4cANN9wQcr3R+8JDVlYWHA4H/v73v+Omm26C0+nE2LFjTffBKoz49FCpC+aHtfAc6PQKmdeFl5bASJqYoZI6wopUGRNXrcT4G4owcdVKCyXTh5kxDPce2+CPoWxczZ6zEuyzyc77cFI8yZ6hcJ4vvbKZ161AWn4+Ei4axw17iNTY0mMlk1FvTFXks/I+2ehHWrITroQYVLkbsaM82LpDFBZWGSZKK3u9DKK6RMfZc0UFWUEuv0bAykvXK/pdVUYWTW1ebNleg6Y2b9Dvsr7JZAqnj66EGBypa4UrISao3orqelS5G7XjRE4g2AOAJ7cK9O6Vav9ohZstayMYl1xyCfbs2YNrr70W999/P2bPno3rrrsO7777Lv70pz8BuJBiKTU1FUuWLMGKFSswdepU/PWvfzXV5vXXX4+///3v2LlzJ/Lz81FQUIAnn3wSWVn8+75q1Sr86Ec/wve+9z3MnTsXH3/8MX7+858HXbNmzRrccMMNuPbaazFu3Dhs2bIlpB6Xy4Xt27ejubkZ+fn5+OY3v4nly5fj6aefNtUPgqVLl+Jvf/sbtm3bhrlz52LZsmX49NNPtfPPP/88FixYgK997Wu48sorEQgE8I9//ENzYb7ssstQVlaGw4cP45prrsG8efPw85//HBMmTAhLLgB47bXXkJ+fj9tvvx2zZs3CT37yE6G11+h94WHSpEl45JFH8MADDyAzMxPf+973wu6DFXAERE7wwxzt7e1ITk5GW1ubctA+zzJBSFnSrsgfcdY/q/tmZYqZ4YKRPD+GCsw8y8MBVs57WV3htKNSdrCfgUi/P4bz+2mogX6WewKxQdZIXmxwUAwpwP2dLatyHetKLDtWtuckEAAKF0zSzrPKVlObF8WlbsDRb7Vt6ejCc1urkDU+CbdfPyOo7elZKXjtvSNYtzJPs3yqEoGxIOWa2rrw2YEzKJw7GUA/EVXh3MkaEdWRuhZs2laNdSvzkJqYENRf9mdRQRZaOrp0ryfjRPdbNsbFZW54u/xwJsRgdWGOpmQT5ZbELi+eMzGIsCs/LxNllSe1NmT3XjZ2vOuI2/eiWeO1Nlk56TZsZdmGjdGHEe96bQQ8Nzyz7pADsbgKt43UhQvRVrXPEAGWDGaJc6yIZTQzFlbcIzKGY6dNk8a52hh49MfPbgMhWjN7XyL1LFvp+i+rK5x2VMqG6zIe7vhGOoRiKIWpjCSwVjqemzMbLyy6VsR6Tf9OX1flboTH5w+6RnTsZEMnAg6gprYZ9S0eLhPyjvJalO2tgyPQ775c5W7E0VNtiI2JComHLak4jtZOHzZtq8Zj914t7LsKSLnY6CiNyMrr86PrvPszwaZt1Th4vF9ZnpOTEdRf9icAVLkbda8nstLx1rQlniZRI3WSGGDW/ZtH1kbfq7qzndrYiu4pYbsWKcy8MeaRh7Fy0m3YirING6MPtqJMgbfgG8hYYyvaMLLoVE3LpA7jccIE4Y6XmfJW3KPGXR/Ae/IUTvz1FQT8/rDqsiGHr7kZMGBRptOGRbuc0vsiIwezMoXaUEM4TNwE4SqSIyVm37Y8q4PHeq0XQ8pTmkU/ZfUAfHIq0TFiUfZ2+9HQ7NGYkGmQ2FzCuJyfl6lZZFkZaIsywGdjFkEU90zLXlzmhjM+Bs74C8u7dSvzgizEdBmepZiWPzUxISjumLas88aWMI23dHQhNTFBOMb0RglhOl+zLFfrH923ssqT8Hb3M4XPnZ4RxIpOrvP4/NzNBtoyTeojLNui+HR2LtgxyjZsjF7YrtcRwmBZlI24QdIswS27d4cla8eRo/jqz/8fXFnZmHLbLRFx8bSyvFXWxiP//SzO7voAaVfkwzlpor1IjgDIs7xv4/PIkzCMs3PAyD3mPTfk2NicHHhPnUL2XXcKcxgPFwWJlVXvfaF33gpFe6iNn0gePTkH2wV9OIA8y//zWgWqajs1l1cVmHVPDgcil24r22fdf8O9NhLjxHNRFrWxZXsNPq46hURXnHJqK1I/seTy+qd3jUgmVnYj423Dhg0btkU5QhgIdz1eG2bSWpEFHmDeonPs+c3o/OoYHLGxg+I+abS8Xu5YVUQ7ExDtPJ9uI4IpwGwAFy1bKj3PWiaNpO7iPTfk916PR+p5MZwsokbyK9PHzbJGq4zNUHNtFsms1xc7d7I6ludPgWtMiyFL3WAQKrHuupFo34jVUuXaSIyTKL8xEOoqrpfKS1Y/z6qveo2o3yreBzZs2LAhgm1RtmGJ4tZx5CiOPb9ZaHUbarBKWTVTj215MgbVZzkS1kuRVZquB0DYcynSHhVWeo+YaXc4bQqZtSgPx74ONAbju2zEwspeS5Ng8VIODVWEQ3BlZf02bNiwMdwx4tNDRQpG0gKZTcOkUs6KFE9WpDtJzJ2KOb/+pWkleaBTVdEEYuGOndF67PRQ1oCdM3rz2NfUjENPPoXGjz9RSpVErm/Z+wWiXc6gek+98SbOvLMDp95405Lnh1grT73xpuHnQKVfpP6W3bstTW2k1/fhmEqJlZnMMwDSvliR5m60oFmSwkiW3sgMjKSVoq9tavNi07ZqtHu6tVRBVsumB1l7snOyPtPlikvdeLv8WD9ztQGYSSUlgxXjqlrHQN9DGzZsDG/YijLMKWkqiyJS76k33jS1gFJpQ3TNUMmRrIpILDL1xqB+ZwkaP/4Eh558KqxxMir7cFQehiKMjnv9zhL4OzoRm5iotEkhu76tByhzTkdbT//fR+pa8G/PfIgjdS0h9TS1ebFx2z5sfGOfcHFGNk+AgOHnoH5nCZo7urHLOR2xBddI65f1W7SAlPXNSD1mEE5demVV61adZ/YGmDrerTghVOTM5EuWgc2vy7vv5Fh+XiYWzRqP/LxMjZAqyRWnEUAVl7rxUdUpPPFSpVbeasWLrk82FrJzsj6TcsWlbtTUNiPQGwgiKGP7IxuvcJ8tlb6o1qui9BOisY+qTmmbIUb7ZsOGjdEFO0YZ5mIMVeLRSL3Js/NMLaBU2hBdE+m4SavdDCORYkYlprCtah/8HZ049cabiHY5TfVnKKcQG8kwOu709SrjLbv+s5RZ2JuchOSUyZiL4PQrJOULwY7yWuzaU4eAA3AlxHDj6Mjmia+pGdEul6G5lHndCrx1Mhpf9aWg9GAbbs+eIKxfBlHcoaxvRuoxg3Dq0iurWrfqPBtqsdZDGbIYZatjSI2moSKETx2ebqQmJuD+tQu083NyMpDkikOHp1vLqyubR2ZclGXs3jRk52R9plmiu7r9mDI+UctPzBsLlfGS9UHluVW959J6HdBSZMnK02mozPTNhg0bowu2oozghZCq8qKaX7TX4wUQiFhcGysHHYtI900Es+1brYirLjJ5zMaiFD6yBS4pl33Xnf1psjwe0/0R3QO9MR1OJFBDEUYVEyuvj3Y6EZPgRLSzf/FLp19hUVSQ1Z93NKC/EJS1Sac5oVOsxKen4Vv/fFMQO68ZiBarsr4RuYrL3EAAWL00x5SiI1IowlGa9MrS5EB0uhieTPbzaS3Skp24/fpM7rlIk3bppaFif9JpmFj2a1F9BGaULrZtUTkj48Srs6nNq+Uz5j1z5Llg0zCx9em1pwLVvsjqXV2YE5SfWa88ua+erv60U01tXu69tmHDxuiGTebFgBAtJc+ebdrCSOBrasbB//gdvGfO4KKlhbhk3XeE7fGIncyQPhktY5ZYygh5l5WWU1beC/crT7PEqbTB1hNJGUWwLcpqGIrEfINBZqOSQmUwyHk2vrEP28uPIS4uGv901SWmlJwt22vwUdUpJFEpZQZqjEXpYuw0MtZjKD7LkcRwJr0aLfN/tPTThg0b5jDiLcq+5mZA54NMM9tmLOmP8QvHwkhQv7MEXWfOoM/nA8Dfj5BZPVVd/miFi1ybunAhjr/8iq4SZtZtuGX3bi1lDgCp0qxqOVVRHFl5jbrT0vX0erzo9Xjga2q21G3SdtUcXjCzmFW1gFi5UFZJoWLWbVClnLAvDiAuLhoT0scExUQaYRr2+PxwxsWEuLR+VHUKVe5G5XysurJyILIg2ZalwcFQYZq24tnlvSfCrXeglO/RMv9HSz9t2LBhDiOezKvhvVLda+p3luDsrg9xdtcHGivsxFUrhXHFqmzUvR4P0hZdgfHXF2HiqpXc62TETqqkTzTZDCnTuOsDjZVXBhWmYF5faeKaY89vRsehwzj2/GZuHSokN6qMxKy8PPlV7k98ehqiXU607asOi0CM15bKffM1NeOrTS/gq02bhw3h2nCAUSIWltwl3PpYGCEm0muLLLpTExOE5T0+P+ZMzTC86GPJf3hyFZe6uX0pnD8JF2cm4rvfmKMt3I0yDX9+qAEAMHfaRUELV2dcDE7Ud3AJevRYf1nSJVF5AFwGX5bZ1yb5GRjQMfE0Bnr8RXM4HAIo3vvGaH1myc6Mjp+I2XqkPQdWM3hbgaVLl8LhcHD/FRcXD7Z4NmyMKox4RfmiZUt1r8m8bgXGLbka45ZcoylzsrQ/qmzUbfuqEZeehkvWfSeirrW0IkoUt14v+YjJPetVmKF5faWVwey77kTi9GnIvutObh0qiqNRRmJZP/TuD7k2deHCsFlqzTJn92/OfICzuz6008lYCKOLSJbcJdz6WMgUULNtia7bUV6LKncjXAkxhhd9ssWiZm12gNuXssqTqDvbibLKk9oxI/0uKshCkisOXd3+INnTk52YmZ2GKIeDS9Cjx/pLky7xYGauWMnGbIOPdSvzMOPi1JCY+IEef9EcplmjVdip2bLs+4bd1NHbvDPybLFtqzJ208fZa1T6qpLW6khdS9BPXlsqDNyq7er1aygiLi4OixYtCvqXlmaHadmwMZAY8a7X8cxLhefeG5+ehkvW3RlSVuQyHA4bNQsROZURV2LahZeO2R1/Q5Fu+yrM0Hr9IDmUw4FZF2oCuh96MltJokUzZ9fvLFGuL3XhQrTu2QtX1sV2OpkwQHKBwtFP5sJzo5O5KtLuzFaTSQFiF22eTDxiGR4i6Soskov85MrEYZul+63iKpozOYVLdiYj6NFj/SUkZISMSFReROZFQJOoidqzYR1yJ6dy2dWHiosszRqtwk7NK8s+X1XuxqBNnQ5PN5xxMbrvAqNy0+3IGLvp4wCCrlHpqyyUg5yrcjfC4/NrP3ltqTBwq7ar16+hiAkTJqC8vHywxbBhY1RjxCvKLERKEh2nPHHVzZpFGQhVuFRiS1XjT1kF79CTT6GnoyNEPlWEkwKHh0jG0bKbAkbb4cWWq9RlNI5bhvj0NEzfcJ/WD1U07voAXQ0NSJw5wybyCgM7ymtRtrcOjgDgiu9PvSRamAGhCyKi0BFCF/aaSDHw8mRKT3bClRCjEXYZZbu1QlaRXLJ69dhmVRavVe5GLJo1Xuj+zIOeXBXV9fD4/KiorufGuurde1X5bQwMIs2GzUJ030Ws0Sqy8a5LT3ZqKajoZ4gokey7wOx85LVjZNON/K7SV5kyzXIt8DgX6Guq3I0hm1Rm2bZl/bJhw4YNHkadoizLO3x214cAgGiXU3MVjjRrMS1PuO7HgDHFdrBZl9lNC6Py8O6ZCsgYEes7ad8oaHmNlu/1erV/NsyDWGHhCC9ViVXWKlWiHdkCVcWqHCmI5JL1i6RU0bPaW5VKRhVmrHyq54czm7ENNejNCysVd7YuVhE3IpeRdlQ33Yz2U3WDi2xg0RtZdDl2s0tWL+35wUujZ0W/Bhq1tbVwOILjTlpaWpCSkjI4AtmwMQphp4c6D55FWQ+yNEBmlNB+Gd4EEMDEVSsjrrzSqbD6Y5nV+05D1Fe9MWDPf7XpBZzd9QHGLbmGm0qLV/7UG9vQ6+1nFY92Jhgat3A3Co6//AoaP/4EsYmJmL7hPkN1fLVpM87u+hDjllzNdfu3cQFDLaUMqyTRfxNrTzipm0TpSvTKq9ZvRsnjpW9SkTlcDBWFlJXDTiljDkPtWbZhPWTPrOzdGc47DQhNnydLo2dU7oHG0qVLUVZWhri4OMybNy/oXElJCcaOHTtIktmwMfow4sm8VEHilI0Qb8nYnFUIv3jodLvRsvcLSwie9Ii6UhcuhCMmBm379qGhdBfO7vrAVLuivuqNQSjJVwCBvj501NQoEWORexaXnormit2GibFEJGMqrNlA//2PTUzU4pNVywHAxFUrMf4GMRu6DTWokMaYJWsRlWfJfGg2aJZoh65DjwSHXJuflyklEQqHnEpGFCQj9mHTN/HOi9i2Ve5DU5sXG7ftw8Y39gVdR1zrf/LHD3CkrkWp7nDuu6hscakbb5cf09i3RfeZJiayIUazzlwQ3VPe+BolfFJpT/Vanlx6BFmqc8Tq95dVz4XeM0e/h/SIwPTeWbS3ip7c+XmZcMXHYM2yXMyZmoGJ48YaygAgY8on/RhokBhl+p+tJNuwMbAYda7XMhi1MMrcnM3kJ67fWYLullYEerqRunChcjkadB/0SKtadu+Gr+Es0NcH5/hMJM6cacrlW9RXo2MwcdVKdLqPGibGIjmRgYBh+Xn3XJXsi41PNkISZudQtgZ6pDFG8vCyFgVR3SyZz5ycDE1pYl376Dr0XCb1Yg+tcGGWsXzLiH2q3I2Yk5PBdQWVxRir9Itcs2tPHQIOwJVwISazqCALJRXH0drhw6Zt1SEkT7y6i0vdKNtbB0+XH3evmi0cC5EcXFkpwjKe5YklKJL11Qbwx1f24t/+eYnyfJGNL32/Vy/NwRMvVaLd0x10DQ/kPnq6/Kg62qh7PZGDfqcQufYcbEB9iweeLr/GM8DWR8qWVByHMyFGOy+yshqRiwf2OeA9F6K2WbdluiyAoPFmZaXjitl7KYqNNkIMJrL8Evb9vQf7mf+rjorfSTywZGd0OAmRwX6mbdgYfbAVZQossVY4brlmFKHM61agZc/n8J3pROOuD5CYO9Vwu6rsz1qe5/x8RDvjw3L1pvsaDkGXWWKs+PQ0TFx1s2FrOMndzJKnGVHw6TRiZHPDZrEeOOiRxrAsrzLoLeoIRGQ+evLpxTSGGxPJnjfKYC2Kj5aVUZFbNUbc4/OHMF+nJzvx4J352LStOiRdkLBuDgu3KkSyFs6fBHddKwrnT+IqcixBkU0QJEfd2U4Ul7q5GxkywiXu+FL3W7YRxILcR3qjSw88ZQoAmtq7cKbxHGpqm/Hdb8wRPkdV7kb09gZC0kPxmJ3n5GRgztQMLl+Bkpsw+xxwngtR2yEbEkxZerzZMdxRXqvFFbP3UjVGmh1z+ie7+ajdB0pGtozKeBGys+JSNzw+P4pL3Zrybz/PNmyMXtiKMgWWWMso0VO4Ma/x6WlImjkDZxvOotfrNcXIzLJei2QneZ6TZ89GtMuaeByR4mkEPJlVYp3NtCsiT1NR8I1Y7mVlbcZrdfyt5BBWL88LWujokcbw2GRF0FvUySBaiOkRXRkFrx1R22RBSaxceso6KVv2eR0QgKbEqBDokDGj0yzR51TGUbTpkJqYgDk5GUhNTODKzNbNsnAbiT3k1dfU5sWmbdVo93RzF/+srLbVSR9RDoRsZLDzhbi7kvvGPkfk+sL5k4LuNyH304PeBpBINlqZAi5YOWtPt+NM0zmUVZ7kstez7yPeRhT7kzzDqszXtJzsc0Bv9vDGALhgDV6zLBeHalu11Gn0GLd0dAXVU+VuxNzpGThU26rVRTYK6H7Qiq7qu5Al6CoqyAqqnyiz5J4vmTcZqwtzdD17ZDK4T7ai3dONedMvEnoK2bBhY/TAVpQp0AqSWdfpcPPzTly1EtEuF3o9HlN1qVpxSb+6m5pxdtcH6PV4lQi0ZLCCtRsIVST1xtVsu+HkbjaSt5nFqTfetGzMRxN2H6yHa8xYw8QsqgsckZJUXOYGAsDqpTlcRRToX5yL3H1JnG1JxXE8eGc+N1URW58o9zLPrVTkYs66iIvqDQLH6iRTNOm2cyalBLmKqqaxEfXLyLjIFuLhpnfaUV6Llo4udPf0IT8vkztPwm1jtGFFfr8ixyPCA9Ry6IrGXCXFGhDsGSLa4GHnENl08vr8+OzAGW1DKT3ZiawJSag93Q5vd79LMs+qbFThEm3KiI7zQj0IKqrr0e7pxqZt1cJQFHLNa+8d0ZR69t1CW4yB/vfLa+8dCdo40NzPAxcUTwKZwso+y795oQKnm87h0+ozaGzzYs/BBjzwnXytfmLJJqm0aFdrui6ZOzgBeQ+1dHRhrDNOk3EwiL1KS0sHvE0bNmzwYSvKAph1naZ/AubjnjuOHEWn+6hurLJZ6yRp58h/PxtWmiK6fVbxNCsbqxjrKaJ0XmRRe1ZbcVXaFMFODWUOC2dkoqggS8lCaJXiIoqdBYIXq8VlbgR6A6ipbQ5xkywqkMfZ8uoTyUIrbHQ5nos5z0VcD7ycyLKFJU3yBQeCXFhVXK5l/TIyLkQ+ACGyqsohAj2+opzM4bYx2nDLiulISrrAHg4EWzW3bK/B9KwUaQ5dPSWS1KOn7LCxuzLXerLpFBsdFbKh5IyP0f7JcqLrcSGwfxvJmc6zRpN6igqysOdgA07Ud2hu77xrqtyNaOnowhMvVWLdyryQdwtv3FmXeKKYerv96PB0wxnXz0BdOH9SiDWYHmf2WT7TdA4+nx/NHV3w+fw43XQuSJGmNzdk7y1y78oqTwIOcEm+iNt+amICJo4bG+RZQ+6ZvQlmw8bog60oWwhWuZa5BOspbi27d6PX60XL7t3SWOVwrdjRzgREO52Idoa6NaqAbZ+WwaxsrGKst2mhkheZJ0v9zhI0fvwJ2qr2GU7vFE4u5nDHfLSCXlzrkXSZiVHjoaggC03tXag93R6ixNGL1dWFOXDXtYYoq6Tde795GV577wg3zpZXn0gWnsLGxtaxirpevezYsIv6pvYuxEZHhfSfR/LFa5e12LHIz8tEScVxxMVGcRVRkfy0WyYZn5aOriDlykz/eefWrcxDRXW9UPmyXTPNgbb0kTEkyjOJkxXl0NXLAUwr4bLQgZraZgR6A5rSy1ME2U0nXqw0u8kkUuRZxVx1A0AF9JjwQklmZqehodkj7Ct5lzzxUqX2nmHDV0S5iOnnluQ/dsbH4Ko5EzWLrys+JsQaTPeTlcfT5UdNbTM6vT3ITHVhZnYa9z3Fmwu8cZRZnun3SHGZO4i8j3i82M+4DRujD7aifB6RiBuVuQTLlEhCtJU8e7auO68ZF3EaGUuWoNN9FBlLlpgqL2ufPac6xmYZoY3IQn5vq9pnmGWbRurChWir2meIpZy419ukX+YgsqDSYJU0swyy6clOOONiUN/iQVnlSaHbtCgemrZqiCzJRmQRxVzLLFh64FnQaObdz/afgSOAECVWNcZTz7pfUV0PV0IMEhUImPTqpd1CefdK5lbLk489p6J82dBHc5sXb31yCk1tXag72xn0bLFxsqpeJCz0FE6iAHV6uzFlfCJWF+YA0Oc94CmGeteS9naU18Lb7Q+yRvPir62YW7x62DhlkYxkY8isPCoWX7LZwJOZyLF6aQ6AnJDYdNnGGy/shqR7YuPZAf7zT2960ARxNmzYGH2wFeXzULV+GlGoZTGwMqWOEG2lXZGv2wZhXT71xpsAAobZqxt3fQDvyVMhLNtmlFq2DKvwWhHDLYNMweadM8uyTUPV8q8qpw196FlQaagw2+ouwgUsymw5VatGOJAtWs22RZPjkLGkx61w7uQgJllWFr2Fq55cRDFatzIvpLwofU1RQRa3XiNu2iqu2ezY2C7W1uDdihOoqu3kujATa+Sh2lbtHql4kbDQU/BoV1vVOmXQ2xCin6kbrsxWCm+wGmRsRRtJVsmhZ/HV23SSuZ/L0r/JeBxEbck8CETnbdiwMXpgK8rnoWqZtSpXrpU5mOt3luDsrg8AANEul0ElLMD8vFCnUaVWz5U5XOt3JBCu0joU+zQaoGpBVbF66i0OeXG7KuWInANleTTbFm8sVa3FgH7eYj25ZIt3o/GbKu7r9E+9MryxGcmW5DvvvBOtra0oLi4OObd06VKUlZUFHbv11lvx8ssvG25nef4UuMa0aFZF2qWddscmUPEiMQojc9xofSrn6Q2gcJQxI9Z2ozJa0aboWr0NKqEckvRvtPVXdQNN751hh1XYsDG6ETXYAgwVEIVJxUqcdkW+VDHyNTXj+MuvwNfUHFFZaJnGLbkG45ZcbVhhm7hqJcbfUISJq1aG1Mnrp6xvmdetQGxioubKzMJov1TaHGyY6dNQ7s9wQlFBlm7+U7LIkS3mePUQKymxsPLqUGk/UqDlswJFBVkhOVtpa560HQN5i3lyy8aRlSvcMWf7daSuRbd/Ztq0+v4MFaxfvx6nT5/W/j333HOm6kk7fx9yJ6fi9utnoqK6Hp/uP4Md5bVBGycE6clOrFuZh0RXHJfwzQxol2d2HtD3j72XZu8t/R4hGz47ymtN8ycQ0HUZ6TOvb+x5AvY6I22y15K6AAjfzbL3duH8SZh00digNFekzvy8TFw1Z6IlHgI2bNiwAYwCi/Kx/30JiU4XJq662ZLYYxUL5ECn/4lPT7O8HVE/iaW51+NFtMsZ5JpthSszD3rWbSPu8Oy1g5HTOBwSMRsXYHUsH+1CLLMWm0k9ZTVU8qgaWSjSllMEoOVdVrGaiyzuPHl49fHuI13OlRCDj6pOwV3XivvXLjA05rIc0x9VnUJJxXE4E2Kk/ePFkOphpKaLcrlcGD9+vOX1ytzoCfTchs2A3CdCHAaEei4AkHo1sHWxx3mg+2sk/ZmZ0AZRn3l9I+d5KaHo63hWf5W+su2beTZ480DV7d1smzZs2Bi9GPGKcuNHn6ArLg7RLucAxoXy3ZlVMNCKmx6pGCsLUYBFeZ7DdWWWtSlSvo1sTLD9jXTcNA+pCxei4d330O3vNU0iNpphhdsf7zo6tk20+KSvIzlVZXWHYy3ileUxtIr6YJaAh867rLoIJ+le2FzTegy/ItCL9TXLclFScRy9vX0oLnXrjjlbD2+BTFx5e3sDIW6aQPA4V1TXGyaDM6JIDCe89NJLePHFF5GZmYkbb7wRDz30EBITE8OuV8SkTCMSsaKkLpbFWiX+nZXDiHxGYmD1lDyjG4Z6mxI8N3e2jJFNC1a+cO+jGW4CO87YGAKBADo6OpCYmAiHQ8FVyIaNEYwRryhnLL4SiU51huFwFFWyuFq67HqMp1iNjdRpVnHT2p6RjJ7yD5TaamrzoixhGi6fG6yEkrry6r9E395gWYgi7GtqNs3cLFMeeP3XU75V8xKz/SXs4pgxB2UJ03CThBTKSrTs3o1opwsxiWPt2GYT4Fk8ZNeqWIbZ2DZ6ccdeR3L+erv1lSdaUVy9NMeQ0ixidRZZkp94qRItHV1ITUwwvCCk+wggKN2THmHXjnJxrmk4EJJfWpaqhybqIjlfX95xSGPFhiPUAqZXD8AnIqMZxHl9oi2NuZNTtLRAKoiE9XOwsXbtWlxyySUYP3489u3bhwcffBBffPEFdu7cOSDtRyJWVMRiLVPc9dJShSMDD1YreXqbEjx2fTPKrug7H+n7aOa8jWB0dHQgOTkZbW1tSEpKGmxxbNgYVIx4RTlp5TeQPUV9Vz8cC2PQIva2b6GpzYsX39iH9oMHseDMF0p1miWHIspDxSf7sbpd3Ba76K/8qg0xsy7DZZRSTfrhv2QaCq/gyxKfnoYxN96MreW1KCpwKiuYelYvM/1XzUtM+ts9dRaqdzcgr/5LtO47jFfHLkDzqTPodsRyyYj0+mPUYihjQ7ehD5J3t7e3L2gu8+6BbEFHP6/0dSKliZwn1hZnfIx+7CoVv2vU/c+I5YRW4Hns0XrQI8nSY40V5Zom+aVbOrrwxEuVwo0N3nuB5HzNmpCE9KSEECXebF8IVBjENYuyz29I8R2JFqz169drv8+ePRvTpk3DwoULsWfPHsyfP99QXX8rOYTVy/NCmMwBGH6fsjD6Tg43RjjS8onmaSTltkLx5L0zRDKL2O1pSz8vnZvRkAgaRmUZqPlhw4aNoYURryi/W3ECd0sUZfYlGA6LMS8Wp2xvHdDnRMKk+Vh03bW6dXTGOLHTOQv46BRWF6opoE1tXnh8fjjjYuBNSER1Ir8tkXspzTjKMnCmJ88LKi+LN1T5oNAL+vy8zJAyMuuxqP6EZdejsiURq5ddJR0n0q+m9i6U7a1Dx8xLcG58NE41x8IBvxIZESuLmfy8dnqo8MDm3ZUpcarplIxcJ7NEsuDF7xqxwqj2h1bgzVgxw3FdTE92Ij0pAUfqWkPaJuP1xEuVUsZiHlstPXb0OBuJ/zQL1tLY1OYFAtBNR8YrP1Ixf/58xMbG4vDhw4YV5d0H6+EaM5YbD2w0DRQLoxtSAx2/alV7Qz3ulvccqsZ3i2LH2XrD4WowKgt7nQ0bNkYHRjzr9fxLx0kZKllGRrPMzDwUFWShcO5kXDF7IuKmzUBnjJq7ZdneOpTuPoEnXqpUYtbcUV6LKncjZmanYd6lE4RtidxLacZRQMw4yY5VUUEwG2xxqRtvlx9DcalbOiapiQlwJcSgrPIknnipEh9VnVJmz/yo6lTIuJQebMPBqHSUHmyTlif9csbHwBEAop1OxF6SAzgcmHRRIlYX5ujKQMvy6f4zgAOGGHFFjKkjlSXXSjSfH5uigixcNWci1q3M06wOsnvAG1sjscvsdSpM2gS0wsSLN2blYp8xI8iZnIK50y6y1IqpwlALiJmhyfitW5mHq+ZMlCric6ddhJzJKdoxQ8zbFNj7YxVrsftkKz4/1BB0b0bzc1tdXY2enh5MmDDBcNmFMzKDFB4yd/LzMuHt8qOloyvkGVB9d4rmoghGr1eBbM7J2mtq82Ljtn3Y+MY+Lit1pOUWyW/0PMBn0ObJTDb650zNCNq8d8XHYM2yXGkf2fqIXFu2Hwxai5DjNLs5aWN6Vop0/kRynG0ADS0eHKlr5f5raPEMtng2bIx8i/KeA2dRVdsJQJ0gREaio7pDST4QJC6Rl++VV2dRQRY8XX7U1DYr54ykPy6btlWj3dPNzS3L9pVYkUmbetYStnyI1UQhTQxtkfP4/P0urHExaGrvwsZt+7C6MCekfTJO07NSglxuVclQWBBL1fSsFDz9yheIj47CnNwMQ9YL1jVTFaLd6eJSN97fcwJ7Djbgge/k2y5eHLDeIWWVJ7nWfBWmZVVvCCPx0DTMysAuGFXqJnV9fqgBSa44JflYiHIhq/Rf9m7k9VEU6+w+2Rry7hKFahhxhyQyEPI1kReIXj9oTxhe/8JxAx1KaGtrw969e0OOlZWV4aabbkJGRgb279+P+++/H/PmzcPixYsNt3HLiulISgreeAL652F3Ty/SkkLj7FUtgEat+UauV3UTZ58n1XAANt7f0+UX5iiPpNeCnhVV1cqqcm/IRv+iWeO1cSThDodqW3XDQHhzITY6KmgtwrNQA/0eIq+9dyTIas3KOBq8QwYLDS0e/Mtv3kWPv497PjYmCs8+sBwXpboGWDIbNi5gxCvKy/OnwDWmRbjw5JH28BZSKh8GmumUXmCuW5mnnacXiewCjhy/e9XskA+yDKQPW7bXhLgvilw5t2yvCelP2ed1QADCOF29D4YoTQwrA00Q5IrvV5LLPq9DQkw0V8Eni449B11BLre0XPQiFZDHuZH2/+2ZD9F+rhuJY+I0OVUXuKSOjW/sM6Tg0nMk6B47gO7uXpxuOqe0OTKUcOedd6K1tRXFxcUh55YuXYqysrKgY7feeitefvllw+0sz58C4MKzOCcng7vTzz6rvI0UXpiEjB1ZddOKJ0NRQRZXAebJwC4Y9eqmN4vMyEng7fajq8sPb7c/6LhKvXrxy2wfRcoO790lIigz4g5JyhE2b9V5wxuHlo4ubNpWrW0aqLiBDjeUlpZi3rx5QceWLVsGv9+P3//+9+js7MSUKVPwT//0T3jooYcQHR1tXeMOIMrhwMzsNGW+AStc7VXBuokL7zezaawqI3lXIND/e3GZO2TzeSBiZsMJxTB6ncr7WbVOdgObvZY9Ljo2mOjq6sJtt92G/fv3a+nYnn32WWRnZwMAKioq8Itf/AKvvvoqli1bhq6uLgDAhAkTgq7Lzs5GQkICEhIStLr/7//9v5g1a9ZAd4kLj8eDT8or0OX1Ijo2nntNj78P7ee6gxRlj8eDmpoazJw5Ey6XrUDbiDxGvKKcluzE7ddfsACoWD94CynZy5lWsAnhC004VFFdrymyvAW8x+cPKy6LlzKGR3zBY60kyru3269rDdZDerIT+XmZeOKlSqxbmafFKoqsVWSh+ZsXKhAbHYXxGWO440sW8ZnpLkzKGBty71irE6DGjDtx3Fj0+PuQme7S3SQQ4ryCe0ZRwS2rPIm6s50oqzx5IW8t+jcZcH78h8oH2yqsX78ev/zlL7W/nU5zi7s0yuuC/OQ9K7qeD5xjouebxwCrAlaB4inA7CadijVZJCuRs7jUrRxHS8MZH6P9o6FSr+zdqDrOvHtKlOexzrggl2y9NkUykI050gZr3dbrBy/Wmu7fQCpskcLmzZuxefPmQWtflpNbtFE7kBY/mVJHg+2HqozpyU7cvfLCN4g3HgOxIWMFmZfqdUa4GIycE7GY08d5x4YC7rnnHtx4441wOBx4+umncc8992DHjh0AgOLiYqxevRpOpxMlJSVaerannnoKGzZswNatW7V6Xn31VcyebXBNM0CoqanB6puW4pq1TyA5Mwcf//Xf4YiKwpW3/Aqf/O3nCPT14apbf80tt2DBAlRWVhrmRrBhwwxGvKJMs2sC6tYPdjHIezmzFmhawd5RXou42Ch09/RpMTBs7lN6Aeeuaw1agImUSx5Yy7SoT7z+EOV9Tk4GbrgyO6xFXlObF49vrtCsLo/de3X/ifO7695uf4jb5Y7yWnR6+xmEv/uNOdzFvTM+BvGx0ahv8uCur4Uy+vKsUbw+s2WO1LVi0azx8PjMbxJocc0BxQUylS7nu9+YEySnkfywwwlkV9wqWLWIUy0Tbn28Z5Dnmq1iTZZt9KUnO7XNF55nhgx6CoqsXiPjY0TZoTcSq9yNQW2zXiRG48UB427Tepsmtotm+BjqY8jKZ+U7Q7WekbAhY0OMhIQE3HTTTdrfBQUFeOqpp7S/t23bhp07dyIqKkpTkgOBANrb2xEVZY52yOfzwefzaX+3t7ebE94AvOfTeXY212Fs2mQ4oqLQdKIKf39yNQAgbXIe2urdqK5KQXvDhVztBw4cCCpvw0akMeLJvHYfrA8iBSkqEBMzGCHpAUIJnVYX5mjliwoukFa99t4RfFR1Cpu2VQsXuPevXRBMdqMQ78v2ieQYLS51a+QUen0ihBaF8ycZ6rtoPOJio5GamKC5mwP9i/AbrsyGMz4mhKioqCALY51x6O7pRVnlSW69qwtzMGV8Irq6/VySo+lZKfB0+bFmWW6Qa7esL6Tf+XmZmnxGyLyAC0rL6sIc3L1qttLY0X0hnga0G74ZEqehjpdeegkZGRnIy8vDj3/8Y3R0dAy2SAMK3nzUI8YTQTZPjFilVWSkoSefFeQ/IplWF+ZIXaXNPjN0n0by8zccISLgExFkyeaXrC6a3ElVDlF5I8+AqrxH6lrwb898iCN1Ldo52YaOEeK6cIjoeO1sfGMfNm4LJSFTIWGzghQvksR6NKnhQOMPf/gDbr75ZgDA4cOHkZSUFLTxvGLFCowfPx6vvPIK/vCHPwSV/eY3v4m5c+dq/7q7u8HD448/juTkZO3flClTIteh8zh27BgA4PO3/wudzXW48pZfBZ3PK1yHD166H6tvWooFCxZo/+64446g8jZsRBoj3qJMs2sC1uYk1LNAr1uZh03bqnHdoovx4ts1ISRU7PW0GyYALJk3WUl5Y10LSSweIHfNamrz4rmtVTjddA5llSfDdj8SjQfP9ZE+R/KlijYF9Cw5r713BC0dXXjm1S/x2+8nK92/iup6tHu6sWlbdZBSbwRmiJ7ovtAx6yPVSrB27VpccsklGD9+PPbt24cHH3wQX3zxBXbu3GlpOwMRt2clVNzDVcrRIF4ohXMnWz4GevKFS/6jZylXJWJUrZOtV/X5GylxyIMN1tOLhQr5nShemPUOkNVV5W5Eu6db+A7XIxCjyaFkxFtsXTJ5aW8y98lWHDzeonloGX3OZNfLvl96zw6vnbK9dXAE+vOc0/0D+Cm/lOO9FWHlsykiYxzoZ/6xxx7D4cOH8eyzzwIAXn/9daxevTrompKSEvT19eHXv/41Hn30UTzzzDPaOVXX6wcffBAbNmzQ/m5vb4+4skxiqefd+COMTZuMT/7286Dz1WWbcM3aJ3D/2gWYkhlsUb7jjju08jZsRBojXlGm2TV5kBF46UFv8UiYG3d+epxLQiUCccOcMzXDlGshTyEVtXOm6Ry6u3vDik0G1BQV0XjJ3D71ygLAupV5eHxzBeJio4UbEax8RQUXSIo2basOydWoAlJHS0cXnnipUldZpmXgxayPxIX3+vXrtd9nz56NadOmYeHChdizZ4/h+CLZ4loUqmCWwZ6GFUq4iNDOTHlhOcYLhW1T1g+a54AQ2xhZOOspmkUFcmZ9+v6RTAHhbnqwC2czyjivH+SnFXNrtILOo8yDLBZY9JP8boTMj2SKEJHV6cXU088Lj3hLpU8hCh71HK9ZlotnXv0Sa5blSuUxMkb0tSKiPj2lk1e/p8sfwrFBfue1I7svZmDlZrNoDg0kfve732Hr1q0oKSnRSKuKi4vxwgsvhFwbFRWF9evXY9q0aUGKsiri4+MRH88n1IoUCFfJ2LTJiI6NR6CvD+lT5gTFKCdn5iBvzuXIZTgq6PI2bEQaI15R1gNZoF0xa7w0D6iRhQ+dzqjK3Yg1y3JxqLZVuQ46No/Hiq0HdtEn6kN+Xib2HGxAZrpLu87s4o6MY1NbF9KTEwwpIcVl7n4iK53rRPchd3Iqfvv9a7gWZ9FGCLHsFpe60drZhZ4mT1DaF1XkTE5BzTG1VF4qC7iRjvnz5yM2NhaHDx82rCjvrKgFohP4MfuCUAXego+nVBtJcWQG4dahUp7dcDJqXWItZKoLZ9VNMlmcM826zXIuqFq1WFnY58toTLKoH6QtXuYA2+KsBtbTi4UKwZMoXljFW4M+ZibunEcOpbfhqyovXc+O8lokjonDodpWLJg53jA/gx73gqjvet8mXjvse5k+z2tHNd5bFVbGt5v1+LEKTz75JLZs2YKSkhKkpKQAAE6fPo3Ozk5MmzYNAFBfX4/Y2FikpaUBAF5++WVcdtllAyZjuJg5cyaK/1GK597uT69JE3exbthsucrKSsycab9fbQwMRr2iTMiVak+34/aiGVJLh8qiGriwWNpzsAH1LR7sPdioXLapzYviUjfgAArnT9J1pVZZpIoWbxXV9ejp7UNzWxeOnW6Hu67VFOs2AE1ROVLXis8OdClZ9ohspbtPoMvfC0DMOq26AG3p6OK6TPGYzIkcn+47g7i4aFRU10vdz0UETHNyMpQs+IP98R0KqK6uRk9PDyZMmGC4rEP7L/ReiBap3AUfR6mWzS8rNjTotGBmoCIDO5+MWpeInLxUKbKyqsSDsjpo1m12oxBQs2oB8hyr9PVWKLQqVk8bfOh5eoUDo+/VSBJvmSlnJiTALFQ2AiLZzlDFYMpbV1eH+++/H1OnTsW1114LoN/ie9ddd2HlypVB161fvx5+vx+BQAA5OTl48cUXg+r65je/GZQe6o9//COuueaagemIDlwuF64syMcLpfI8yknn03fS5Wy2axsDiVGvKK8uzAlhnA4CxVJMLK6qbklN7V0hsbcqMUbv7znR7w4dgJZTWaSIqVhfeB/bpjYvmtq7EBsdhTXLcvHae0eEY6CijBfOnwR3XSvGOGNx6mxnSD5WUb+LCrKw52ADTjed47Ji81Jf8WRrauvCZwf6Nyd6evu0dui+82T3dvvRByAj2am7GJFZhM1Y+kcS2trasHfv3pBjZWVluOmmm5CRkYH9+/fj/vvvx7x587B48WLDbUzMGIvC+ZMA8Oe96rzlKdWiZ4S2TuptcMnccEkYBr0Zo+IKTc6pzB29MiTkgNcmz0KmDAPEgyLQ94QOIUEAIe7aMjd0mWJhtQLC8kqozhUbgwMjoQgDUY9eXQAsnUdGwyuskCUSY25WFj3ZhgomT56MQCDUxe6GG27Ao48+qv29YMEC7NmzR1jPcCC7uijVhWcfWI72c3ySsaQxcUE5lG3YGAyMSkWZfUHKXK8K50/Cx1+eQqf3ghKp4pZUVNAfs8QScsnKEtbajGQnGtu82sJTtkhWsb7wyu8or0VF9Rn0BgJ47b0jWLcyj2tJItfKXBab2rzYtK0a7Z5u9Pj7QvKxkn7x2HjTk5347jfmYNO2agChhB4qGwuf7j+D2OgoOAJA1oQkpCclKFttnfExGBMfgzm5Gbofy3AX10P1w2wFSktLMW/evKBjy5Ytg9/vx+9//3t0dnZiypQp+Kd/+ic89NBDiI6ONtyGp/uCoqky70VzRzU0QY9shi7Ha4t9buifMvn0zomgUsasJVVWjmySkU0MEWSWZ5F7LM9d22g9vPtr9aYVvXFTU9uM003nlFL72VBHuO9PI6EIevXQ5FTheCfIZAL4JFiAubEwGl6h9/4Lt39mx3xixlh8duBM2M/XcAuTeOeddwZbhIjgolSXrQzbGNIYFYqyiMEQuBCvKnpRVlTXhxBxqSyyNLdchpBLVjYoXjpPP1UMLYsqgRe9q+zx+VFzrFnLeyxyu9ZzWSwudeNEfQfSk53ImpCEmVlpQZsDZCxEOWKJtc0ZHxPiHl1UICcBItdOz0rBa+8dwQ1XZhmyiKkQiRGw945dMOktWFSs/+T+DIcPN8HmzZuxefPmiLdDxzWqzHvVjQ2ZtwNbXqTo6rnh8p57FVdoI5syKmX0NupEi29ZOZ61nAsTlmduuwbrGYgFMb1xc9oigsSRDiPKXlObF0+8VIl2T7/lSfU+imLW2c1bFcsn/e2kyan0vlEysGWJjPl5mSjbcxLOuJgQTy+VseDJT9rydvvhjIsJyrqQnuwMCg+hx4fIIks7J7L4ss8vaWN6VkqI95jeOBHizNON5xDoDXDDcEjbIqs5DV44zEjezLZhw4Y5jApFWeYyy4Po46ryMSflyEvY2+3H54cbhMpU0Ev+/ALQySG70YOqJYUei7tXztY+ujy3a56Lo2jhGuVwIDYmCkfqWkMUYr3xlo2xHgkQsd7/5oUKU2muwrEs0R9vFdZrI1bQ4aQoDxR4cY16ZDUq4yian3pkM3qKMK3M8xaFes+skTlAL+JlCz3ZmMgUShWvFj3l28imFFuWdZ0n5H8qionRTQczi+Ugd3EACMBwXvbRBiMbGDvKa9HS0YXunj6pkqW3KU4TsX1+qAFJrjiuLHoeIrQXGvlGfVR1SuP5INezMvLCI9jv2+3Xz9Tkc8bFYO60i0I26Do83UiSZNHgyU/k+Gz/GRTOnYyK6vqga+gNLwDa5nZFdX3IRjfrxk2TZQLgjjlwYVPttfeOGMo0QTz/nnipEi3wITUjHqsLc0I2DUjbIqs5Dd4Gn2hODscNbBs2bFiDUaEoG10oiT6uquVI/sN2Tzdy4mOQ5IoTxv/SbRldSBrtBxC8s0sWGyLXc9HHlu0DWbiSnWo9hYOF3nm9+7ej3Fyaq3B3j+mPtwrrtV7sJWCTAMmgl3vVLKwi4RHBqEJghulez61SBWZDC4wo31a4e+ttntEIx0WVbVcF6clO3L3SdrdWgZH5RjYlOzzdUiVLdVOcro/+9ol+ssfYOc/WB/BdlWXfZLYtUp8rISbkG0FSMcnGi9dv2hvDSJ/Z39n3DY8sU+YpIyINlIENk0tPdmLjG/twor4D49PHBNWVn5eJssqT2jeWyMxa2EV9FK2FbEXZho3Rh1GhKPNcZmW7hiLiKD3QFsMOTzeccf3DK4v/Nbs4FUGWHoVGWeXJoHRJRQWhsceqsrE71WZiqVRznPJc5Dw+PxblTYAzIcaQFccql8ycySlAQP0e8iwQkYqdHEnQy70aCYSTHo6UMaoQAPqMzyyIBwudim4wIOo76+apAtm4ic7pWRTDbVfUjt5xG6Ew8q6jlSSZksXeO1EbPKVLxmOgJ6+I64SnoLPHRW2JNrBVNopEsvJI80RlZN40vPcNPd9FnmkEqYkJwm+6DCH9Ou/NNjM7TStLzhOLues8XwqPZ0X1Htsb2DZsjF6MCkWZBfuxEuXapV0mAX2mRTZu0uPzo8rdKLV60C9mkpfTqDWJhp4Fh5wnO8BkAUtYo2mCDENKGxM3yBtTnjIuklsElsiHjn8eKAsaK7cs/lrWNm2BsJVjfdAxylZswKjAaBw6EDpHjSoERjgHCIgb4d6DjXAlmHutm0mFx14jeo7ZjTm9ekR8Dnqu6axF3symJ1HwZYow+60g5554qRLNHV2G5stohPtkCy4OxGqKb9mek0AAKFwwCRXV9dIYU1rJYiF61lhlrbjMrbVHfl+9NCesTY+W8/c9Py9TIxxky4vkO1LXgk3bqrFmWS72HmrUZPN0+VFc5sbqwmDZ6G+XUspJqo9WfGvI++ZQbatufeS90tTWhVONnZqbNBkf3rMkAxmrdSvzQrzw9AwFRQVZIe85vXh0MjdXL7VDKYYifGfPoqe9g3suNikR8ePGDbBENkYaRpWiLFpkBZFoUe5D9KIP4O9ISmOOAXi7/NhzsEH7eMpkouOaVZRLtryK9Upz26Lq/nT/GSAAdJ0n+jAK4tpEM3yzCrlsEQ2EEmsIP/6MQm5W2WXvk1FrFy33noMNaGrvMkTkkp7sxLqVedi0rdp0bt3RBjpGWVWBDddrwNSGBodsyuii26hngVlLNA1vtz/kHaAyfvQ17PPIew+IwGvLqIXY6DioMJ7zvJF4/SGxoz09ffYGmA6efGkPluZPw+eHG1BScRxdXX509/WhprYZ3m4/SiqOw5kQE7RpLFNwAEh/Z2NoS3efQJe/FzW1zWho9iDgAFwJMdomFSkj4xcBgufPc1urcPhEK57bWoX//MGSkDkkU8j2HGzA0VNteObVL9Hd3avJphHDBRDSZ1rRlMm5o7wWu/bUBfVRBF4KKXo8aS8umtxLRoZG3itH6lrR29cHZ1y/EaG41I3PD/fHYfNI1Ui77KYJGeenX/kCi/LGa7wM+XmZWvYN1thA1igtHV2oqW1GoDegpaPkGQnIXNtzsCFkfgw0urq6cNttt2H//v1wuVwYP348nn32WWRnZwMAKioq8Itf/AKvvvoqli1bhq6uLgDAhAkTgq7Lzs7G3//+d8yePXJCQ3xnz6Ly/3wfgZ4e7nlHbCwW/OmPtrJsIyyMKkVZuMjikGiJUhqRj5Nokc5aNGrPtOPoqTZs2laNx+69WqubZ4EB0P+SP9GK2Jgo7QOgkh6JnNezwrBuW0RBTUtOQEt7/wvWqNJIW1VJedqSQ+rhsUwSlFWeRN3ZTo2MS7RoBoIVcpn1h9d3dtzCTedSUV2PhmYPTjedw6mznYasSMpswTYABMcoqyqw4XoNmNnQ4HENyFIaWQGzlmgaJK0bndqNbKzJGH3pMebFbtLnRBC9b1VjTgmMjoPo/Spqh+0P7XVEzpmJvxxt8PX0aZwWLe0+OKIcCPQCmeku1Dd50NLuQ1pSAuBA0HuaZjsWbWTzfqc3Nlo6urDj01rEBgL9WRqy04JCZ+jNEB6/iOj7nTUhCbWn25E1IQlA6PeO9w4g5XMnpyA2JgrXLboYf3nrgCYbAJw824ma2matXbL2yJmUgqqjjcidnAJvlx+9vX3cd2FRQVZ/THdAPwSCjT2mx5CsaYhiTojQ2HtByNC0dE7jxsIZH4PcKSlIT0rQPO3o8SVx2Bvf2KeNEVmn0LIUFWShp7cPsdEObW6Q8+R7kOSK086RMoTwq8rdiK5uP6aMT4QzPiYotWRQzPf5NWHWhCTtvg7mhvY999yDG2+8EQ6HA08//TTuuece7NixAwBQXFyM1atXw+l0oqSkBImJiQCAp556Chs2bMDWrVsHTe5IwuPxYM/Hn8Dn9SIhJgbf+7AM0Q4Hfr94CX740S70BgJ4+upC9LR3BCnKHo8HNTU1mDlzJlwuOy2VDX2MeEWZLK4BCHP58tx3yIt18ZyJIbEvskX69KwUlFQcR0tnF6qOdmLyRWPR2OpFWnKCttAUWWBaOrr6d9d9fsRER2kuaDKLpYoiIFtsbtl+EIfrWrEoeTxuuDKba4nRs4bRi+kt2w+G7M7SO/SsYkjcwqrcjUGLIF6/iELOptySKSF6C2GPz69EBCYaA3J/evzqVqRwY+FHK+gYZRLDV1zqlipxqpZZ2RxnNzRkliGesghAKaWRFfGt4cS489ikjcZDivrQ0tElHTNRCANPUVdlyVW1nJF2VMrL+C5IHTLXYBv9iI7q35iZmZ2GhmYPUpMT0NLWhdTEBKQmJqCh2YOZ2Wnat9nj86PT2424uGgtXzeriJK0Q3sPNXI3uMm82lFei7GuWExwjcHtRTN0v6lsfC19z2kZUhMTkJ6UoFlGiXVT+96dfwcQSybrHpye7MSW7TVBsgEIIouk1x5wAItmjYfH5w9JYUkjPfkCwRwJ7wLkHhm8zR6yNqAV3OJSd1CIA1HE6RRazvgY3HBldtDmEr3eChpfDtkYLcuO8lr09vZh2sWpGvcLOc/KTNognh5JrrgQvhhiLGD7Sq8Jd5TX4khd66BtaCckJOCmm27S/i4oKMBTTz2l/b1t2zbs3LkTUVFRmpIcCATQ3t6OqKgopTZ8Ph98Pp/2d3t7uzXCRxCff/45rlm9Cr+YtxBLJkxEtMOByqZGXL2tf2NgXlo6Dra2ILBvH1xtrVq5AwcO4I477sCHH36IxYsXD5L0NoYTRryivPtgPRCdoLFQ04ovAW/xI0u/ILMyvfbeEbR2+lDf5EHupBRU1tSju7sXXx5p1JQokQVmR3ktXAn9Fp1z3h5Mz0pBRXU96ls8aGj2wBkXExK7rLJwZD/8dJnaM+3o6elDfZMHP167kGuJ0bNqk8V02d46tLT5EBPlCFII9NwVS3efQFdPL7InJAVZitnFNxnrEGVeooSINhKIVbK4zK1EBCYag4rqevT09mFObobQgiVyHyW75jbUQMcoA8GkNghAOa5fL20azyJD/5RZhsh1bP0yRntZ3KsRWEE8BgBln9dprp68/svAjgNtyWGZikUKBw0VRd0M9O4XD6LctHQdkc7XPFKwIj9Le9/ylBWWcKqpzYuaY8044+lPAZiamIBN26rR3NGFTduqkTMpRUs71E6siuB/H8lcW7eSz6AvI7Vi8wvTyjDNCUKzMRPlsXD+JE3p5/GIkLrnTrsoKF6aJR1j/6a/2XoeVaoeGQCClEKel8aO8tqQvmzZXqNZkmmllJZLNr4isjEiC7t2IsfJBiYPojJ026wCTLcdrleS1fjDH/6Am2++GQBw+PBhJCUlYfz48dr5FStWoKqqCuPGjdOsznp4/PHH8cgjj0RE3kjh2LFjAIBffr4bGxOvxe8XL9GUZAD43uzLcPeu94Fd7wvL24qyDRWM+FX6whmZgAO6eQcJeB8r3gKJtjKlJiZo54kCTX62dfoQGxONKy+9oCCKlFtyfs/BBpxq7MQzr36JB+/MD0oFYdTaq4fbiqbjmVe/xG1F04WyqXwoigqyUFJxHN3+XjhiL+z6s+V5u/efVp9B3dlOZE1IkrqDAfwPduH8SXDXtQa1SSAjd6G9BoxuNtDH6ZhvFflpa7a9sFYHL4+ymbHkKTSyOR4yhzgbM3oKk8zqaiSO12i/DJfh9M2IlZodB5Elh3etKAwhEgtVMwqu3n0dagvqoQz6WRYpZjTSk52a9RmO0HhwYl0lyqvMuyeckBfa86Giul68rqDYmNl8xaKwAJFXBfv86f3N1qkXmqUKnoLL9oW2eJPNg3DaMHJe5IpPb0aYQThjZjUee+wxHD58GM8++ywA4PXXX8fq1auDrikpKUFfXx9+/etf49FHH8UzzzyjW++DDz6IDRs2aH+3t7djypQplspuNUjs9S/mLUTW2ET88KNdQeef3vclNi65FtM33AfXlMnacWJRJuVt2NDDoCnKd955J1pbW1FcXBxybunSpSgrKws6duutt+Lll1823M4tK6ajJxCr7VrrKZW8j5Xewpo9T2KR1yzLxX/+byWSxsQhPTlBWZElymtcbDQqquuDXJhVrb28OCoem/ah2lYkjonDodpWZE9I5o4P+6HgKefpyU48eGc+Ht9coclNFiEyZXVHeS1yp6SgqdWL2tPtSu7lrNLx3NYqnG46p8U3q4BexNNxW+Sc3hjQx/UsXiL5w4kntdEPM2PJU2iMLIZ41mEjCpMsFMKsy7VKuyplws3lLhoH1pIju1ZWp1VQbVs13V6k5BwtUNnwpTdEUxMTAIS6CO8or5WmY1QhopLJ6PH5kXveej13eoZmOQUucHNUVNdj7vSMEFlFG+W0xxQdZkD6Q1uOjWyKi+L+RSRodJ0yci72b1ZpF6W1sgosizfPu4NgJH1bf/e732Hr1q0oKSnRYmuLi4vxwgsvhFwbFRWF9evXY9q0aUqKcnx8POLj4y2XOZJwOvvve1ZiIhJiYtAbCGBBekZQjPKMlFRcPns2xuZMFZa3YUMPQ9aivH79evzyl7/U/g5nUpMPk158DiB/2aosjOkPyKHaVoxLdQpjh1hccOmcjN9+/5qQj40Ray8vdo5ndSMWUcJCqeL6KVLOcyenanKr5E2liUzi4qLR6eVbAfR2kc80nYPP59cIT1QWEWRMaPc5AqvzrsqsifbC2hoYGUtauTbDdh6O1QOQb/yEAzP1GLFOiSBawJu5J4MBFa8TIHzLlA0xVKz6tCWYvhdkA0bl+666ES4r64qPQbunGx9/eQrOhBhUVNcDCCWW4smqF/ZBb7qSOolcRj1GRBZqmeWVdw2vbZkskX6Wd5TzWbxlLt3DHU8++SS2bNmCkpISpKSkAABOnz6Nzs5OTJs2DQBQX1+P2NhYpKWlAQBefvllXHbZZYMlcsQxc+ZMfFD8Bnx/3ggAePrqQu3c7xcvkZarrKzEzJkjZ37YiCyGrKJMaPCthIx1mYD3klddGLMLKyOWoqY2L2pqm9Hb058iA1DLd6jnxk0rZDyrG7GIflR1KihNgwzsQp+n/NGLFmLVZseBVuBlZCR6shBG1E5vN554qVKJeZrEaz3xUiVaOvpJZMzuRBtZGESa/Xg0wYocyXrpWyIhY6QWkkZzHqtapVS8cHhZAKxoy4p7YrYOlqtCz8pmwzxUvCH0rhGdF3kFGCVVZDdXu7t74e3ya0Re5ByPWIpANexDtlGv+m0SXa9ieRW1ScZNRIw6ECgquMDiPZIsxiLU1dXh/vvvx9SpU3HttdcC6LcA33XXXVi5cmXQdevXr///s3fmcVVc5///XHZQQEBFjUbccYt7olnUVGPSNFGbfpu0Nf1qtP22/ba/NEvbrzZdYpeYpNmMW2KiYuIeF9QY4w64oQiigKICgiDKvt/LvVyY3x9kxnPnznJm7g7n/Xr5kjtz5pxnzpwzc57zPOc5sFqt4DgOgwYNwqZNmzwltssJCwvDpIenIP3LLYrbQwVGhNtdN378eHeIyOggGDiO4zxRsJrrdU5ODjiOQ2xsLL7//e/j73//uxDRj4b6+npERkbi5q27OHaxQojmmlXQPsOqNlDVM8gjlS5+wEibz7q92UjKKIa/vx/CwwLxMMW6WUdlziupwfp9OfjR9wZj1/E8NBgtmsuVW+sr5fpN7qfs7MFwXknNd27ffpg6ti/VPWw9lIszWaUIDwvC6/MmAJB2Q3Mm6/ZlIyWjBFPH9xUikTKU4ftyXV0dIiIihOP8ZMzogd2pA3mRiNsdnx/N+4EWV+QpBe2ae63y0KTnyxa/P5xRljPqT28eau3DXc+2IyHXl3lcMfkg95wceX5ybZ7mOl+fXHFWu2cTT47x1FNP4V//+hcmTpzo9LzV+qk3Ya6oQEt9g+S5wIhwtocyw2G80qI8b948DBgwAL169UJ2djaWLFmCS5cu4ciRI5rzOpZWjJTLleAMwLRxfamD5ehxc2owWuyU5Lc3ptHt0ftd8I+Jw2OFLSa0ImfZkWP9vhxcu1WDXcfzdK8rEq/1Xbc3GzC0r3WUmjGXsqjy1l1HPpLJ6bdhaWlFeFiQzVYySh9fcfRTGtc9KbSscQNs94Fm0EPuowzoC+RFIrbskssQaNoPDVJ56qGqzoTEpHyhb4nzSUzKF6LsOmKV0xoll2dQ3252Fh5nWMBovIBotq/TIgePeMmE2IqmN1+GPK6IHK7FskqL3rW4HWG5jVK9kVZ6qYjXZF8VjwWc8exp1l/TpPMFpf3bb7/1tAheQXCPHkwZZrgUr1SUf/nLXwp/jxo1CkOGDMHEiRORkZGh2WVi/PAeyC0xon+vCMkBptL+uGoDNBIpN+vEpHwU3qkHOE5x/1TAflsEPcyaLL+/Mw95v2SEbj2II4QfTi1CcmZJe9Rczna7HkEWIqqulNUZUP9ISj6z7yYaAgP8hHVkcmup5PZ11jtw0rrG7aER7UsK9KyP7cyQ+ygDdIG85Pq3nEu0ODCbUvuheXY0wd5oIPuWZD4GCF4zavKotVHxZJuazErRerVMgEmVRROhWK3/OUM5kbrHjqD0eBuumHyQe06OPj+16zuqxVQtZgi5VhuQX/ssjrCv9dlL1S+59A2A5NIamrgkrpiwYTAYvolXKspixo8fj8DAQNy4cUOzopxxtQItrW0IDQ6Q/EjJvRC1biEh+fEwAIEBfggWbZckd714UKn1w6o2yy0VnIaP0K3HmioePPLWM7mtrADbCQFyRnnu9HYLK81HUsoqPXfaIIADTBYrQoMC7D66ZL78Mxdvx6N34ET7gSfTabX+M+z3UeahGbgB0gM2cSR4pbV5annK4YzBP9m3pPKZO20Q8ktqFSfJaMtRm2wTozSpqFZXWq3BUhYrd1h2xWs0nb0WnNGOJyYf9Ci0tGv3aQJgebKtaPGGoqkjvp/IrdEW91VyglPrs5eqX6ntukirMa/EK6WTkpPBYHRefEJRzsnJQUtLC3r37q35WpOl3V3OZLFKBlFy1C1LbqsCoH07izOXS+Hv1+7mrKYQiQfvxmarahRqqYGjktIg9YGoqjOhqr4Zgf5+1BZ0wPajyFtH5bayktxOgphRpvlI8nmYLFZJq3RYSICwBl3J6iMoHaALtKYmj1Kdk5CyzJrcHxnXylFc1oDEpHwW2IsCqX2U1VDr30azVdGCKtd+pPKUg7R86/UiiIkMtWkj4oFqTGSo4CFC24flrOpSk21KA2p+UjE5/badu6VaXSkp0koRgsUWK1crV2Q7oI2uzCxSvgGtQiu+Rm2ik2bSTap8d6LFG4qmjsh+ImVgEL9PHblfpfrln4d4aQ0ASbdwd0fuZjAYvoNHFeW6ujpkZmbaHUtOTsbTTz+N7t2748qVK3j99dcxbtw4PPLII5rLOJl5G7OmDENocICNmw+PeB2a0voaKQ6nSm9VANxbN+vv72dnoZEaBPKWmZrGZiRnVuLBEb1U11TzH6yMa+UoqzEqroWW+pDweaTl3AVnALUFHbDddks8aBB/aJSswHx9qK0PIi3BT02Jw6SRsXh/czqqG5pt9rNUU2DE7rBa3ENJHBngxESGIj4uGuXVRlW3fIZ+1Nwuq+pMipZYZ0atduaAWCovrV4wNINdGtnJSQdxGrW6UlKkpZQRNYuVO6CZKGEWKefiSqur+FlJeUhIrd0XT3RKTV6p9Sup8uXul3b9rRJ6YxDQKv3uQGkPZ6V3jZoSz2AwGFJ4VFFOSkrCuHHjbI5973vfg9VqxfLly9HY2Ih+/frhBz/4Af7+97/D399fcxkWS6sQAEduHSOP2voaKWZNbt+qwCQRsMdkscJsacWDo3rgvu5dVd03+YGusawRzc305QNAVX0zyquNMFmsslYr8YeEt4abzFZMGtnLxmVZC6S7ZmJSvnQEYtF6JF4efmuq/JJaYTAsNygXK/pbD+WiwWhBS0sbahqa8enuLMT3j7aRjWYNuh4FRs8WGWJZpNokn4bNZrsHNUssbdugGcg7c3AplZfW/LWkp4nZMG38farvWDFKg1vyvcL3CXKCw1H0Kl80EyXMIuVcXGl1FT8rqQkncflSE516ZaSdmLJZ3wvppU1qSN2HVm8oOZlJXDmxwbZYZJCU1xhR32SxORbRJQg9o8I8JBGjo+ExRTkhIQEJCQkuL2fGpPuFIF5SSiLpMi22VpAuxXIve17h4df+koF2QoMDEBzoj5LyRkR1DbG5Tm6gy7tbBwf6IzRY/fGQA8eYiBDFCMBii7mx2YqUiyVo5TjcHxuue60sr2x8ujsLWfmVsLa12ZUvN1ExtH837E3Jh8ViFQbDcgN4sfWfDyQ2bcJ9WL8vB7fKGlBWY7Sx7Mt9VNNyylBvtNgEM5s1mW79ISAfwEgJsSxS3gxVdc04f/UuG2S7ESVLLK0y6ehaXK1IDVS1KmdaXMKV6shVA1elmAvOUJxo8mBrjb0Dd1owaSehxN80d06EtdTUICLtGCYMG+pwvq7Ape7kEpPujM5JeY0Rv377GFqsbTbHAwP88MniGUxZZjgFP08L4Gr++wcjbFyX1u3Lxrq92UhMykdKRgmSM0twOLUIwL2AWrxLX1pOGc5duSucl4PfmiXAz0+wKgPtH9J+vcJRWWuyKYcvi5/RJY+FhQTAbLEiKEg9ABgJn9/caYNk3bX5j9enu7NwMLUQJosVU8f3Re+YLoLVRi9pOWUorzaiqs5ktwZa7n4BYNfxPLRY22CxcjYWeam0/ICeH7xm5VciLCQAg/tG4fV5E/D4hH6YNravbdkyH9VZk/sjIiwIDUYLktNv29WRuC7Isvnr+XoWn5NF4QPPl1t0t749DUMX1M+CgHyWYsRrU/l8ldqDFHLtyhugafOK9+ekgavUsyODHJLH1eqbBpo8vPm5dRTMVdW4tW0HzFXVkr+B9nbw3MSeaDq4H+aqaps0UulpypGD7/NdrSYhvdQ3qavVhEdqLqOr1WRzXUxkKHVZSverVJ4l9RTuqy6E6fgR2XqgzVcPfN4NeQWS9/n4sAg80ZSDx4dFaKoLGuZOG4SnpsSxLRZFLF26FAaDAdnZ2QCA6dOnY+DAgRg7dqzw7+jRox6W0rmUVdai8vYNtLaYbY63WNsEK7PRaERGRgaMRqMnRGR0AHwimJezINcTTxvXF5NG9kLRnXobd0JyJpR69lViayJ+cLdw9kgkZ9y222NUDtLdUMt6YR41V0bgnpt2aHAAFs0eJezR6sher6QLOgztkwfi4GZS8JboltY2XLxerriFjtyzUQqoJmfJJq1VVfXNqtG3lVzW1u3NprKoKbn/i70ZGPrQY8mgscSqBbNxZC0uLVqsm1rSyskmvke5+1Nb1qLFS0MpQjl53BmuzTR5aH1uzAKtnbIjR1F9Pg0AcP9Pnrf7LZUOgOTf9//keZirqlF25Chin5iJ4JhoyevJfAFIXqOUXu28lrLUypHKM/aJmQCAVqNRth6k8hWXLVdXcsfFstRlZaPVZLKTnVfkLamnUAag8sxZ1GVlY+hrr0jmpwVH+77avfkiGRkZSE1Nxf33329z/OOPP8YzzzzjIalcT0HeDZzc/Doieg5EYHAXTPnxP3H2q7+Ca2sDXj0FAMjNzcWECROQnp6uedccBgPoZIoyr8yBax/cHU4tQl5JrY1CKl4HS/NC5geKZIAZcnC3aDa9O6KSu6Gj8PeTV1KD0opGwWItDm6l5yMUExmKRbNHYeuhXHx7tlAyuJkUg/tGYfywnjiTVSppiSZRGtDLBVSjfYZq0bcVB8yUFjUlWVigEefgKtdCR4PZOEOx0zIJoCWtrjYvup5/54kVRKkt6eSQK8+TgYOU7k0KFu1aO1ETJ6IuKxtREycCuKcExj4x00apIdMFRXVDq9GEVqMR3adOFf7m00spnuJyyLylruHliJo4Ebe27RB+89fEPjHTplzxOblrW40m1H1n9bv/J88r5kMqcmS9BMdEC5MC/mFhwjmy3lqNRkSOGmVTj+KyS/fuR0XKSbQaTegz51nZ+hArl3xd3vfcD9F444ZN+eK6DorqhrqsbFgbGlF25KjiZICUEkur3NPkxdet2sSELynTZrMZv/3tb7FlyxY8/vjjuvMwm+9ZZevr650lnlswGPxQVZyFrz+YCwCIjB2MnKxLqC8Px9WrVwEAJpPjcS0YnZNOpSgD9/btk4v4qGdAKxVgxlFLhCsHWVLrDfUMRqWsJ+RkhJ6gQkoDUbEbLD8gnTQyFhnXytG/V4SiVUtsdRZH0VaSV+mZ0ASK42Vg1ibnI44GK3Vca31rjWCrVJaznjtNQC0eZyiXtO8hJWU4MSkfRXfqERToryq3WoRyubJd3ae0KL+kZ4jercA6A+bqatz65lvEPjETNRcuoNVkQs2FCwgfPFBQAgHg1rYdNhZTPt39P3ke/mGhqD6fBv+wMJu/SYWSRFyOlIWW/19OiQZsrbZkueJz9//keTv5q8+nIXLUSEQ/OEkoKzgmWjEfHrJeSPnINGS91WXnIPrBSQiOiRbkEJctbDsBTrE+xMolX5eNN25IKptkXd//k+cx9LVXBHmVkFJilTwO+OcjpdDKKcRy7YPmWm/kb3/7G1588UUMGDDA7tzLL7+Mv/zlL8LvxMRExMXF2aVbtmwZli5d6koxXcoDM3+Dk5tfF37XleVh7tPTbdIUFhbq2jmHwehUirKSu6QzBlx8/vw+yPygiWbA5CpLhNI2VOKBq9FspXaZJmUm75e3LNPKpWUrLpJZk9sDn/H7t7a0tiEmMkQ2DymrM62CTnsfau1H7DrOlGbnwNerf1M9ulxJw6WAe8qh3j6l1B+lrA1K6Z3Vt7Vs/+TOqMuHU6X3ZwcAGNrXixn8DHZyO8Nq4w4LrtKkg/ge+Hqn2Wu5M1N+PAkt2TkAlBUXqXPiY+JzpEKplJeUhZZHSWmkkUFNfnF7V8tHjJoip3avPH3mzJa0SIvrQyk/KcTnpZ4J2Xf4e+o6ZIiN1V+tbCXLt9iDgCc4Jlq4NmriRNRcuKBovfdmzp49i7S0NLz99tuS52ldr5csWYLXXntN+F1fX49+/fo5TU5Xc/noGpvfkbGDsXHD5+gX225RfvHFFyUnCBgMGjq8olxdZ8KBs6WYNbm/4oDH0Qio5HZBMEDY/7NP9644f/Wu6vpV0hKxbl+25HpbGsTWNSlLDzngjgoPweHUIiECNq3LNCkzH2nb+N2WVvx2XDQTA/z+z1V1zYiJDKG2yPH/J18swYMjemH0wO6Ka6zJNdTioGGOwO/1ejTtFkJD2ruT2hrxWZP7IzEpHycyipFxrRyL509iyrID8PU65k46GioK8FgPYPLkGcL5x4dFCO6PcgqZWOFReleUHTlqt+ZOLr25qhrj76TDv/8QTNUhh9R90lqJadwYafMp3bsPgAF95jyrKJe4HQt7pRvs5VZz76S5t8cnP2ojg1Zo6kjpPSGnsHjSXdwX6Pm96TB9p6DJKbaAvYIlZ2EVn6PJS6lcJSWaVgaptqXnPtXko8lP7l5py6XJT3y/am7NpBs4AJs1z7zVX61s0m29Ia8AhRsS0NLQAABoNZpgul2KypSTCB88UCg3auJEIZ3cGmsl+b2J5ORk5ObmCtbkkpISPPnkk/j888815RMcHIzg4GBXiOgWOK4NMf1G26xRHjl6DAb37SakCQ1lYyyGPjp81OtjacVC1FK5CKqAdBTjvJIamyisShFQySjMc6cNEiIqF92tB9fKIbeoWjESLz8YS8sps4vGrQVSRilLj3j/X17Ryy2qxqSRveyjRlMwbfx9eGhEL8AAJGeWICXDVnapaLZ8fffvHQGulUN6bhlOZ5XK1q1kvRsArpVD0Z329TQXr5fj/c3pkvXMb+NVWtmIi9fLVeWjZdbk9ujZQYH+qmusyfZnslhhsbTiblUTi6irEz6aalerCT99Mh5xz34fPac8hJm/+amNu7Ql9RSqz6eh7Ih8xE9e4eHTKEWHjX1iJgLDw4U1d0rpy44chelyJiZbCnXJQaI1Yq1UXkr5K+VTkXIKFSknNcsVExmKRXNGYdHsUcJ5/rlFTZxo4wYqJZtcxFw+rSX1lO4ovuaqalz/4CNUnjmru45in5gpcmW9d9/OiC7cUQmObldEeAWyIa8AWW/8DQ15BbLPXCnStZ4o2IryxdjKR4O4XL4dle7dr0seLdG8b67fiJvrE5wWWZoGufsV9xu5dACHyFGj0Go0Cu+CuJcWSPYnubIBwD8sFHXZOSjckABrQyMCw8PbFWiTSfjHl1t55iyuvfMuLDW1CAwPVyzP2dG6XcHixYtRWlqKwsJCFBYWom/fvjh06BC+//3ve1o0tzBw8BA8Nu99PPLCMkz58T8BAFN+/E88/MK/hTTx8fFIT09HfDzz7GHoo8NblGdM6oewLjWCAiNnOZZa/5qVX9m+3va7tEpWArFV5fV5E5CYlA+Tpf36ZmKfYCVo1tsqISUjaekR7/87a3J7lO2ahmaUVjTK7qUsZdUV12VVnUnSeqQUtbaqzoTSikbUNJhlFU25ep87bRByC6txt6oJ/XtHCJMTcvUs5yLKTxZk5Vdq3ktaHHyNNtjP6EHd8eSUOE1ruRm2iK15tC6XUmhxtQuOibZbcydnDdXqUqlFDjVrKI3LqFp+fNpWoxGtJrMQcEiLhZo2yq+UbGppyWBJ4vJpIveSA2seOZdNKeTanC8FA/IGCjckoOH6DRRuSEDk6FGSUZKV1gqTQan49b78OTFSLr96npM4n+sffCRYM/kgXUB7ZGotUZ9Ji2tNZqbkdeK6qEg5CQDwDwujcnGWCoxFnlOrF36SSep+xe8W8tkMWDhf0nWalJu3/vKTaVKu0eIgZADs0vqHhsD/Oysin1ddVjZaWlsR2K2bUKdkeeS9K9W/ryBeo7xkyRK88MILHpTIucR274bu9w2R3Ec5oksQACAsLIxFu2Y4RIdXlKMjQ/HTJ++txaVxiePXv5osVoQG3VtrLOeCJ+caHBYSgKyCSowe1B3goLr9UlWdCev35cBksSqut1VCHKVVLK94fXJMZCgWzh6JZQlpqGloVlQyxcquuC5565H4nkgLthSD+nZTdDVXCvLTv3eEYFFWixZOureTz4ufLFBSsuXgt9ai3UPWGeuiGe3QKpU0bnRaXe2U1jQ60z1UCZrAN+K8lPJXuocBCxcIAYHIQS1N0BtxGrnnJiWbWloyWJKWLXrEeZODYHHQJx4tyq8vBQPyBuJeWoDCDQmIe2mBbJRk5Umne0Gp1N4LSgq3FsT5iCddyMjUjfkFilGfpYKHRY4aaeO5ojSp1Go02dw77f3KnVOrF6lJJnLtr20f4Wz+F68RBuwnvHi55FyjyTzJ9wbZX7tPnYrG/AKbeyEnOOUUb6B94iF60kTZ+vdWCgsLhb+TkpI8Joe76BkVhk8WzxD2TOaJ6BKEnlFhHpKK0dHo8IqyGLV1qbzSCwC5RdWICAtSzVMuSBOpFPFWy/ySWlmrpWJQHA0orbeWCgiUnH4blpZWREeEqCqZNBHCyYkDsQVbnO7tjWm4U9WEx8f3o1IcxZMSocEBwj+1ZysVaIeXceHskUJQMS0cTi1CcmYJDByottZyZ5CljopcxFeldI5YA2jyEQ9c3WFRVFIclCytcqhZUmkt1OJ7pwnsI3UdDUpKkVpdaPVAUFJ+1e6ZoUz44IEY/e9/CL+loiQrTTpJBaWSQ0rJFHtK0CDXH8R5iD1Q1PZsFucrFS1aXBcDFs7Xdb/iPi/3t1qefP+SijsAAD2mPoY+c56VtZaLr1PbformefMTXv6hIYKLNykXaUFuyM0F19aGVpMJxqIicG1t8A8NoY7WzfAcPaPCmFLMcCmdSlGmiWzNK5mD+3aDqdmK1tY2VSujWCEmlVTS+ppxrRzFZQ1ITMqXDOzlLGujnNVczrprslhhtrSif+8I2XK1KHjiiQMpWfh0d6uaYDZbhTXcWvcppd2aiUTpeWmlfU17M4ru1lNt28NwHFprnVTQLWeXJ6e008roSMAtJetwZcpJm/1SaZCzpCrJRFrN5AbLtFZyqToTu22KoQkEdXP9RsU8aPNUUn55OS1VNQiKiVKdxGG0o9auaJHbUoomgBW5NZMjXiVK16rJJ/Zu0OKFolVO8VZUfJ+X+1v8LlC6HyklX26bKtJaSyrs5qpqIdiW3PZTNO1DycVbbElvbTYjrF9f+IeGCH/3mTPbZ4J6MRgM19HhFeWvjl7H3BkjhX1z1daiCkGv6ptVrayk4i3njpxXUoP1+3KwcPZIxMdFo7zaKOumK3ab1qssyym1ctZd0iqrF7IuxAq/UhRoY3O7ktxosuD9zemSz0Uub/5eaepMbp9qR6PTtgeNCkHe7VqqbXvYXsqOQ2uti31ipqQLpzPLk1LuzFXVaDUaETlqlKqMNO7TWiDdNmmC4pBovU+583qtqdLXcaL/9eCMPNQG5+15G4sK0ZifB4C5XNMg164cmUASK1003iByVmXx9c7wFJEqjyZKNE2ZNGnJ+gmK6ibIRMoH2FqeAfk1y2R+attK8Wm7T52KPnNmC3mW7t0vRKj2DwsV3LrVPGOU7lccHVvpf/JvfyIaO4PBYHR4RfnCtTKEdekqBOPi16ImJuXb7P3LwytR6/Zlw89gQP/eEbKKjZzLNakYfro7CzeKa/Hp7iwsnj9J1foptzexM5BSCvlIz1PH9W3fykUHeSU1WJaQhsDA9iDqpCVdTFWdCYnJ+cKa5EVzRgku2HLWdjkrPZ+f1BZYYuSelRbklFwtyrYrn29Hx1xdjVvffEttreNdHkv37tflWkmD1IBLbEWRgtyqRHw9bTApqUEiPwjn1ytquV/5NYbqyq/SYFlJXnH5Yuu0FpdaOfi1it2nTtWdB6AsP1+GnKsow5bCL7cgPDREeCY0bu60E0g1Fy6gpaEBhRsS0HXQINRkZqI2IxPh8cMktzfjf1eknAK/BZp4vTBfpjPWniuVJxWQLved/6D5bpkQuEotQJ2afJUpJwWllA+ExcslZ3luNZpkvTKUPFHEeZJpbWMoSK8x1zJBR2vRl/rtTAs+g8HoWHR4RXnisFgb6yMf8Mlotipal3mX3qr6ZhxMLZTcB1nOhXfSyFjBiswHm+LdmsWKnHjfY3IvZkdcgqUgI01vPZRrs4Z49MDuui2d6/floLbBjG7hwTbbUEnldzi1CCkZ7fs1A2i3rnNA/94RstZ2NfdtmnXdUs+Kt2bfqWpS3eeaL0us5PLHaeuN9FhIziwRymWWZnXKjyehJTsHgLbBTGN+PloaGmxcK50VmElLACqpPPkovSRKA09xHmLX8uCYaN2upFKRbJXuk7+GX3PIyxwU1U2ybtUGtVL7q+pVOMnnS1ufalZMJfl55aPu0mUq9+7OTuXpM2gOCpKN0sx7ZJAWRVpLMelJAnAIDA+HqbgEzeXl8A8LlekT9xQ18jmLJ63Ivq1mbVZ+x0iXJxWQzny3DG1ms2paUj5lSyxd2eS9tu+jTl4rnU7tvSr3biQnxKQsweT98PUi1ybkImXLwSLUMxgMJTq8ovzjmUMREWFvMa6qMyG/pFbWukxalg3fbXkkRs6F9+2NabhRXIuVOy5h9ODueHJyHOZOl7bWkgo20L4XcGhQAPr3jlCMFK0XsQWWVND1KOZVdSb06dEVLdY2/Oq50YiJDFW08s6a3L99y63v6jQlowStHIfeMV1krdpK7tt8FO+Fs0cCgDABQCqbYiWUdPm+XdEIq7WNKmq1lJIbFhKgqd748t/emAaulRPKTUzKt1GcGfa0mkyy7sxygx2p6Kz8cXHQGanrtbhR82hZP9dqNMquV1RzO5RzLdfr+lx25CgsNbXgWixUWyPx14hdvfW6oyvlxU8o0A5mpbaPcdQNXrleOXBtbWjIzXWJ50JHo/sjDyM8NETWzZ/3yKi5cMF2LSmxhlZp8kochKl07z7UtfghOWQInpaIhSHlucC3P3KSRWmtMa31uarOhFPRYzDme2Ho8wOpCN6wOcZ7iPSZM1sxLX/vatHg5e5VLi+5a6TSaV0fTnuczBeAYpsgI2V3+f6zqhPQLEK972KuqEBLfYPwOzAiHME9enhQIkZHpMMrytV1JkRERNgc4xWnhbNHIjn9NnKLqoX9jsXKjlqwKLErMbllkbWtDSfSi9E7pgsAaUVZbC3NuFaOwjv1uFvZhOkT+jndypiYlI/isgb0iulic0/Txt+nOSgW0K7o55XU4qERvTC4b5SgJNc0NCMqXHp9N1mOyWxF+tUyNJosCAsJUFyfLKX8GputMJqtSE6/jfzbtZLKuVTArvzbtWg0WXBfj66I7x+NaePvk1SySaQmT/SscU5Mysfdqib06t7l3sSAAbITMox26q9cRbfHHtXkcigOkiN1XOl6GjdqPZBuxuIBqFwQKrEyL6UQ8NfLuVArQSreatZX8hr+f9L9m/wfoKtHpbykJhSUkd4+hoQmUrVYJrmy+8yZrboFEOMecT//md13mUfpOSj9TWIfFXoBth7KRfqVuwgItQ/OKeeKqzQ5orbuVe7aw6lFSL9Zh4ARD+CB79q5UkA6sYcCTdtSkltPsDDaoFZ6J+n05Cv3N2lR3k0RrNNVMnuSpUuX4s0330RWVhZGjRqF6dOn4w9/+AOeeeYZT4vmNMwVFUj/zf8D19IiHDMEBmLCmhVMWWY4FT9PC+BqjqUV2x3jFae0nDKEhQSg2WKVdd3llSOlKNkpGSVIziwRtpX66axheHJyHAL8/WA2W3G7ohHvb04X1gNL5c/n1b93BIKD/NGrexfB/ZrPVw3epVqqHAED4GcwID4uWghwdu7KXSSn36YqQ1zOrMn98dCIXjZuyA1GC6LCQ2xc2vlrEpPyhXuKiQxFTEQIQoL9YWlpk4wazct3OLXIplxB+TUAD43oBZPFiuKyBpt9r/lyxZG+eRm7hgahf+8IwNC+RRZNXetd023zbETPAGifqLivZ1eMHdodWw/lUufbmYgYMcImuAxJ7BMz0XXQYNRmXERDXoFwnB/gyQV64V0kpayd/PGugwbLlkvCr62VSmeuqsbN9Rtxc32CzXkp+fh8LDU1aDWZYKmpwa1tO1C6dz+qz6e1u2N+lwaA5P3xin/ZkaM2xxvyCpD1xt9s6oik66CB6DZ2jKzVXnx/UvJLHYt9YqZscDFeJktNrWxefebMlrxe7n66T52K0Pv6KK5L5l3Xc9/5D26uTwBgX5fkpIPcc+Wfw9DXXkHMw5M71IDbE5Dth+Zvqu8e2iczRw/sDqPZKqRVu1bu/SF1Tu03KQf5zSRloL0XNZTkVirD0fKVytUDL09jQKiQb2NAKE5HPYDGgFAEx0Sjy/efxe4L5UKa8MEDhbTiunaHzJ4mIyMDqampuP/++z0tisswGo1IO3MWJpNtO+VaWtBS3wCj0YiMjAwYv9sSjMFwhA6vKM+Y1M/uGP/ynDQyFkazFWOH9JSNgq3GrMn9MXV8X0wb2xeTRsYKSk5YSABaW9sQ1ycS9/XoigajRVEJS0zKx8HUQgDADx4egMXzJ2HutEGqL3kSPqq3lFLOf3Cmjb8PT02JE5S8SSNjERYcAJPFSq2Uk8qreCJh1uT+eHh0H7v6FCu2pCU2KjwEYSEBSMspsyuL/NCR9zdpZCweGtELc6cNwk+fjEdocICd8smXm5VfaWOt5mWMj4vG+St3kXShGLlF1VSu7uL8yLqgrbO50wbZPAOgfX/reqMFq3dexumsUpUn0DnxDw1BXXaOnfIHtA92TKW30XizEIUbEqjz5Nfl1mRegn9YqJ3bdl12Dkylt2XLJZVHOeWUz6si5SQqUk5JnhenrT6fBnNZGfxDQ2EuK/vOmsrZuSTL5SWnmBZuSEDD9RuSdcTfr7gexHKp1YMUSoNRJZnUrpe7llyXLEfsEzMRGB4O890yxeei9lwrz5zF9Q8+AiA9acFwLbTv4JjIUISFBCArv1JIS3utMxF/M0kZ3CGPUhmeqA8lpOQRH1OSWc3Q0dEwm8347W9/i9WrV8Ng6Ljuabm5uXhs7hz876lk/P50CgDg96dT8LtTycL5CRMmIDeXGR0YjtPhXa8B+3Wrggvt3mwkZ5Zg2ti+1NsKScG7EosjKxubrYCh3VqYllOmrIR953obGhxg4yJEu16Yt5yGBgUISrma+zHQbkktqWhEdGQIwoIDqPYCVtqnmXdDl5Jt9MDumDttkF2U8dfnTUBiUr4w0y8VhZwvj49anpZTZnMf08bfh/ySWkwbf5+krPwkBrk9VFWdCaZmK85fuYvSikbE949W/aCS9y63L7XadVJrrvl7a23lEBEWpJhXZ6Xn96bDJLNOrqrOhPRR38cQLhBxL80TjtGsT5NawwwAgZMfw9nb/vjBzFHA1UuS5V47cBRHM+9ipuUohv1A2U2zuq4ZZ2qC8MPJjynep3D98DE4cDTbpnyxS3Lg5Mew9VAuJo2MFd4xMZGhsq6ScS8tQOGGBMS9tEC2XDmLqNJ5sh7um6O+LpB8NkoySaUnvVTEz5xGVjIvPio6GW1XXJaa+60ztiBj6EfL8hdxWke3B3QGUjK4Uh6le/aG+iBRqhtveobewt/+9je8+OKLGDBggKbrzGYzzGaz8Lu+vt7ZojkV3pJsaWtDelUlHt23GwAQH9kNmdnZKGpssEnHYDhCh1eUj6UVI6uoEYC90mmyWNHcbBXWJ0uhtp0PGYSJD9hFpkm+WAJwUA3QRK6F1hMBWYhePai75Fpj2Y/Jdwp6WZURLa1tVHsBK+3TzEe05uuKX0ecVWC/fzOZHyBfV2R98FHLxffBK/zJ6bdt5Odl3Xoo126igN8DuY3j0GJtg8lipV6nDLRPwEjtS01TZ+JnTEZkZx98aYKjo9FDRhE5nFqEzLtmBE/7MR75bm2t3OQQidwaZgBIulaHa34x6HaXw09lyr0UMQR5XQLRIyIOD3ynnFbVmbBb1I6CY6JxNe5BXDfeRdK1Ovw0rrf8fX6Xz9ZDubLlk2nOXbmLrPzK9iB5CvcKAOGDB2L0v/+hWK6aXGr1kENR7+JnIyeTXHr+mPiZ08gqzku8BlR8Xikvcp04P2nBIte7F6Vgj2pptVzrKsQyuFIetbGFN9QHiZQ83vgMvYGzZ88iLS0Nb7/9tuZrly1bhqVLl7pAKtdQWFjY/n9jg83x3LpaPDZ3jk26Rx55xJ2iMTogHV5RnjGpH8K61EgqH6HBAcI/uai3qlGhiSBMdi/s784FV5Ui640diHtpgWyAHLECpjUCtdhiqZQ/Ca+gkxYpvZARrUkL++hB3dVdyBWCWSnto8wTYKzHhNJ0BAyVDhAjN1EgjsKtpd75vB4fFqEYnVgKqYE/++Drh8byIIWSEkRz/dOPxyMgNNRmgoufGALsI76r5ae1fNJjQmv/1TMhJ3cNWQ9i2ZTkdqQu9FqS1K4Tn1erJ/GkBeBaZYfhGjrDFn00k4fehjPfUx2Z5ORk5ObmCtbkkpISPPnkk/j8889Vr12yZAlee+014Xd9fT369bNftugtxMXFtf/fNdxGWY6P7IbPNm5EUWMDXnzxRSEdg+EIBo7j7DfG6wDU19cjMjISdXV1stE1yZdp08H2QDnRD06SHDirRV+WeiHz5+KPb4KpIB/hQ4eoWk7U8nQVztpLkMynMSCU+j6q6kw4diwLY+pvIO7Z79vIQFMfV9Z8joqUU+gx9VGM+M0vdMmup97JvWe7PzyF2vXybmEp0jftwYQXf4hecX10ydtZoOnL3gCvKJFeHd48SOPlfWhEL+pBs55rfB3ae+6Mg3OteHNf7gxt2xfbKHtP6SMuLg5ff/21rqjX3txPgfaAZRMmTMDQiEiEBwZi+SNT8fvTKWjlOJw8fx7X62oxYcIEpKenY/z48Z4Wl+HjdHiLshKkBa+raB2aWHGUs/YpWQFjIkPx3MSeKM7rCz+uVXENHm2ersJZewmK81G7D7KeJ1sKUX05E2UhgTYy0NQH6R2gFz31rrTGVQlL6incV10I0/EjuKVhf1gGPe4eFKp5dXgbeiyynXE9IO09M48Q38Zb2rYr31u+2EbZe4ohJj4+HicT98K8dh1CAtrHfMsfmWpzPj09HfHxvtXWGd5Jp1aUScQumM5QHHlro6WmBkFRUQiK6uYMURXL02sVdtZeglrzIevZERn6zJlttx+tO4iaOBE1GRcR2ofeKkxuRwRwTpmgYNjjbjdDXxuE6pHXG+/R1RMi3njPDG2QgSbnTh8k2U685Tn7onu0K+ko7yl3w6/jBYCkpCSPyeEKwsLCMOnhKUj/covdPsqBEeEIDgtjlmSG02CKsgzOUBx5ayPX0uKWqKj8ViV1WdkY+tormpRltUA+rspHHExJrwzOkl8rNRcuwFxeAXN5BYIoZeC34eG37+EVfGe5vzPaYVYF5+AN7ppKMrhbsfCG+mBoQxxo0puVKPbeYjDUCe7RAxPWrEBL/b01yoER4Qju0cODUjE6IkxRFkEqK/x+pXoVF14JjJo4EZUpJ9FqNMJcVS2bl6OKkie3KjFXVaN07z4ABvSZ8yy1/LyCy+/D6mtKYuwTM2G6fQf1OTnoOmQI9TX8/6SCf2vbDmZddiLMquA4VXUmvL85HfVGCwDPWbiUlGF3KxbM4ud7iANNejPsvcVg0BHcowdTjBkux8/TArgbXiEzV1VLnuddgcuOHLX5Ww+8EhQ+eCD8w0JRl52jmJe4PDVZpcob+toriHl4MpUlXGv+SpQdOYqKlFOoSDmpq75o61pKZkfvg+Z6uTTBMdGwVFehpaEBt3fvoSqPbxfiCYHYJ2YKVmaG71FVZ8LWQ7moqnPO3o3Ozk8Ph1OL0GC0ICIsyON7zcpFzucVCxrrrjPqVEkWhncSExmKRbNHYdGcUcwLgMFgMBjUdDqLsnjtsdiKK+VyrVdxEVun1fISp9GzTlqLC7KzAngB7TK3Go0ADLrqi9bVXUpmR1zOAaB421eoSEmBpaoGg3/7K+pyee577oco+ORT3PfcDzWVK8ZT7uMM5+BsS6M3WC69JUCZs6xszqhTZvFjMBgMBqNz0OkUZTVlVKysODMCtFpe4rKdFWBLjnbl1qToEk7rDh4cE40BCxfoloWfpFArS24ig3c5L927H/4ao0gbiwrR1tICY1GhbBqlZ1F36TLaWqyou3QZ0RPGUZXJ6FhU1ZlgNFsxemB3p1kavWGtYkdTCmnqlK1BZkjh7e3C2+VjMBgMX6TTuV6L3V5d6e6qN2/ezReApIuuswiOiVZ1CXfU/VwLNGWRCnVDXoFQT7zLOR9FWov7+oD/+SW6Dh6EsP79ZdPJuUu3w4n+Z3RElNx2D6cWISu/UvjbGe7SWlyKGXTQ1ClvdT6cWuRGyRjejre3C2+Xj8HQS3mNEXkltar/ymuMnhaV0QHpdBZlMa50d9Wbt6Mu0VqCgqlZrV1t1eYht0yidb+uy8pGq6ldIeEt9uaqapttomjqMnzwQESNHyco2FrrXM/WVCzCtXuQs7Josb7waY3NVmQVtCvDpJWVtCbDADvXXm+w9Dgig6fld8Yz1IJWSz4pBwCPP2uGa/AGDw8lvF0+BkMP5TVG/PrtY2ixtqmmDQzwwyeLZ6BnVJgbJGN0FjqdRVmMMwNaOYvYJ2YictQowSVaK1qswMqWUuXzzqo7fr/pmsxL8A8LpVLuox+chLiXFthZ7PV6DDjiWaBWhyR8nZXu3e82S31nQcriy1tZEpPybc4pWV/E+SQm5eNgaiFMFqtkEKfEpHwkXywBAMydNsguDVmW1mBSNOlp0hxOLcLprFK8vzmdqmwyT0ctVY7eg1z5NHLpCd4VExmKWZP7U3sGkHLwbSUxKZ+6PIZvQOON4MkAfMwDpXMSFxeH+Ph4jB07FmPHjsX27dsBANOnT8fAgQOF42PHjsXRo9493jAajcjIyIDReM8yXN9koVKSAaDF2ob6JotsXgyGHjq9ouxO12JaaFyilXBE6dPyoXe07viyrh1o3286MDzcRmb+fF5JjY1MZDRxNQWVVonVouw6wj0LN8ciXDsZKcWJj1DMW3r5c0qRi+3yMQAGDggNDpAeiH53HgbpwSpZllalkyY9TZpZk/sjIiwIDUYLVdlkno5Eeea3lzqdVar7HuTKp5FLr5Kv5TobOYi2wNAG7bdHjzLqDgWWtq27UhZviJRPIiePtz5DX2Xnzp3IzMxEZmYmXnjhBeH4xx9/LBzPzMzEzJnePd7Izc3FhAkTkJubK5vmzPY3cParvwIAzn71V5zZ/obuvBgMGjq967WUa3FVnQmJyfkAB8ydPsgtM7RiN0Ial2c510NH3Mm1RIV11C2bL8s6YAimPQw7N2T+fFZ+ZfsemBQyuQu9bp/iPZQdyYthi5TrIa+4VtWZEBYcIJxTClIlzmfutEE214qZO22QsDy9qs5k9wzJsrS6R9KkV0vDt6+Fs0ciLaeMqmxxtGteydfaRmm3l1K6B7lnRRNoTK87qpbrSDnU2gpDHtpvj57I5e6IIE/b1l0pizdEyieRk8dbn2FnxWw2w2w2C7/r6+s9Iofpu6V0V69eFY4VlzWgriwfXaP7wj8wGAY/P1QVZ+HrD+YCAGL6jQYAtLaY0VhdgpysbqgvDxfy4PNkMPTS6RVlKaXycGoRUjJKwBmAsJAAt7yUE5PykZxZAmOzFYvmjKJSdl3x4dAyQHR0fbftYNw+WjR/ftLIWJsBvqOKpTMUU711L9fe2ADAtWiJ3kwq11sP5WLW5P6y1/JtCQCy8isRFqz8vlCTQ9w2xeml2q5annralzhP8ftJTW6eWZP7w9hsVbWwaq0XpTK1oqdO5ehoUcLdCe23R8/khzvW79JupeZKWbxtnbKcPN76DH2VefPmoa2tDQ899BCWLVuGHj16AABefvll/OUvfxHSJSYmIi4uzu76ZcuWYenSpe4SV5bCwkIAwIsvvmh37rF57yMydhCm/PifgpIMAFN+/E8AQGN1CU5ufh0nN9vn+cgjj7hKZEYnoMO7Xn919LpmV51Zk/tj6vi+mDa2r+RL2SUuQITLnpzLsZScvMufs2TSs85Jb9lSZZF58ecH942ySefomklnRAfVW/dSafm8Jo2MZa5lDqDludKu66V1e4YBut2TtZSpp+1qcZ2WrRcVl2I5uWIiQxEWEoCs/EqH+pvU2l+p9edi+cVyaVnHznAd1RLPgZxkEJ9z9PvWWdbvett9yq33F8tJ46JNe2+OthVfc/FOSUnBpUuXkJGRgZiYGMyfP184J3a9llKSAWDJkiWoq6sT/hUXF7tJelt4+TZt2oT09HSkp6cj8ZskPDbvfXSN7gsAgts1D/+7a3RfPDbvfSR+k4T09HRs2rTJJk8GQy8d3qJ84VoZwrp0pZrlJy0Li2bbW014XGEBJF32aF2OxQMLvTI5aplxZn3Q5OXozLIzZqb11r3U/fF5OfIMGdqeq7PaGa0ViRa1MvW0XS1WTrl6UXMpVpLLKZYgCUWdz89otgoyA7ZRx8VlS92fVD6s/7mWY2nFyCpqBGBf11LPiDwG2EeW9wZc6Truy9Dcrze5aPva87n//vsBAIGBgXjllVcwdOhQzXkEBwcjODjY2aJpJjS0/Rs6fPhwjB8/HgAQUVKLyNhaIQ3X1oaYfqMx5cf/xNmv/gqurT3Ql39gMCJjB2Hk6DEY3LebXZ4Mhl46vKI8cVis6gBNbfsXMeLBl5KiqeWceOAmdjlWYtLIWGTlV2LSyFjNiq+SWyVNXqS8vKuqVos0X4bSoJpMp+aOKnctWacxkaEOTxLkldQg41o5Bt/XjXrtp7HZCqPZareelbmWOYYWhZCmrmnyU0qjp22plelq1165enFELmfILKWoy60/J+UXl61lHTvDdcyY1A9hXWqoJ1aUjnkLrnQd92W0TjhqvVZPea683p00NTWhpaUF3bp1AwBs3boV48bZL2PzFeLj45Geno74ePnvxcMv/Fv4m3e71psXg0GDgeM4ztNCuIL6+npERkairq4OERERiml5S97oQd2FgZIWpYm//qERvewGhHrPaYXMCwB1vlV1Jry9MQ13K5swfWI/O0u6nIxSSoDe+6G9Ti4dzfV8mrDgABjN97b5eX9zOuqNFjwyuo+uZ/Dn1adw7VYNht0fhbf+91Gqa9btzUZyZgmmje0rud6TYYuWvgw4NziaI3k5s38zGB0BrX2ZwWDIU1BQgB/96EdobW0Fx3EYOHAgli9fjri4OEyfPh23bt2y6WdLliyxiYothzf1U7aPMsPTdHiLcnWdSbWjq7lPqg2W9bodOmqJlcsrOeM2Rg/sTmVJf39zOhpNFvTrFd4evZdSfiUXRq0zsY7OxGuZsSYtyolJ+Sgua0CvmC66Z48Xzh6J9ftysHD2SPqLvnMjNVmsDj/3zo5U3+T3DM7Kr8Tr8yborlu+f9Qb2/dlFCu7jrwXtMrhi1HRXSm3t9WJt8nDYHQEXBmwryMwcOBAXLx4UfJcUlKSe4VxET2jwvDJ4hnC/shKRHQJYkoyw+l0+GBex9KkgxJoCRIhFaiG9nqac2k5ZUL+jgbGSsspa4++GxKg+EHglYCahmZEhYfIKhRyAbeMZqudMq50r0r3RRukQy4dzfXiwGAAkFtUDXBAfFy07uBlg/u2W5IH942ivn7utEF4akocQoMDHA4q1tmR2ztZy57BSnkrbfeiFljLWYF1nBF8zhO4Um5vqxNvk4fB6Ag4q1+x/unb9IwKw+C+3VT/MSWZ4Qo6vEV5xqR+ksfFFlGlGUcpy5AzAz6Q61YTk/Kp1kkr5SWWVQpeCVBSkpWuzcqvxEMjelFf520BMg6nFqHRZEFQkD+mjb9P87WO3AtbE+k85LwyXp83QejPjubtaouxFjm8Fan3pyvl9rY68TZ5GIyOgLP6FeufDAZDL512jbJ4YKd1PaGcYi0XNEoNPeukq+pM7dulGNqtlHoDaAHQ5JZEXlvT0Cy4HitZVfUGPNOaF2163qLeYLTgYcr1yeSzTU6/TV3vHdXty13QrJdi64E9C6t/Bg3etPaRwWBIw/opg3GPDu96TcusyfR7jQLybpW8tXH9vhxNrj58+WLrppLL8uHUIiRnliAlo0TzHqCk/Frdkshr1+/LwbVbNVi/L4f6Gqn7OJ1Vivc3p1PJr1VeqfS81fHh0X0wazLdXsh8Pmk5ZZr2hmX7tLoerf2XIY3epR+O1L+v7VsqR0e5DwbDW2B9isFgeJpOqyiLlSdnrSfkB4wLZ4/EQyN6YdLIWKzbl411e7MVX/ZS65Wl5BSXNW1sX0wa2Qu5RdU4nVWqaQ0O/xGaNDLWbpBLfqCUPlYLZ4/EsPujtAWzEuWvdU2p1kG5XHqtkwV8PpNGxkqu0Va7DgY4vBadIY1c/5WqZ1+se3fJrHctnyPvz46wfpD3UNH6Dma4Dl/r574mrzvQ+25gdclgMJxFh1+jLAe5ZsWZrrHkvp2D+0Zh66FcpGSUgDMAYSEBqm6J4rU0SmtrYiJDsWjOKGw9lItrRdWyQYfkUFprS54DIJuOD2alFXHZWtaUat2XlSY9zRomPp+th3I1rdGWWpPsbWu2OypSsQiUIlnLoXdJBXmtI+8Xd7UXrWv51O5Nyz7seq3R3rCsQS3wm6+wYMEC1NbWIjExUfL82bNn8cYbb+DcuXMIDAzE2LFjcfDgQYSGet+SEl97x/qavO5A77uB1WXHxlxRgZb6BslzgRHhCO7Rw80SMToynVZRJpUnfn0dAEGJcWTgRQ7eZk3uD6PZCnB0L3uxUqem5PERqMcO6Ym50+nWKfPyDe3fDVn5lZg0MtYujfgDxQcb46N8O4o4f63KLy1aBvK05ZPB1/TWx6SRsbJ1z1CHVkEStzOtCg1fjrHZiqyCSmTlV7b3Z9APwJwxaNM7YNSqSGrth2r3lpiUj+TMEhibrbJ7hsdEhup+7/LlG5utCAuRju2gpQ70Kt5qgd86AmfPnsVTTz2FJUuWYMWKFQgKCsKlS5fg5+dexzSl+BrkObl3rFzMCldMuGj5/sgFJnRWWd6MnOzk+0hLnBO196UzY6Yw3Iu5ogLpv/l/4FpaJM8bAgMxYc0KpiwznEaHd73+4psrqu43pGuu1vWyYsQueDGRoVg0exQWzRmlyQJF6zbER6AOC2mf86C5jl/b/J8v01Hd0Iy0nDK7NKQrZUxkqOqaXK2uTrSumlV1Jqzbm411++Rd19XWcSu5bul53uL6oL13sqzk9Nswmq2Sde9rLFiwAHPnzpU9f/bsWXzve99Dly5d0K1bN0yfPh0mk2MucbQueeJ2Nmtyfzw8ug91pHdBETTAZkmFFoXVGeun9bo2u9qtmVyOINkHvtszHAbXyCm1rMGRvD3heu4rvPrqq3j55ZexePFijBw5EkOGDMF//dd/ITg42K1ykM9I/LzI32k5ZZLvWPE1rnSbp/n+8Oflll85qyxvRuqZiN8nSvendSmdlrx8jbi4OMTHx2Ps2LEYO3Ystm/fDgCYPn06vv76aw9L5zh1ZeXIrShHs9UqeZ5rabGzNhuNRmRkZMBoNLpDREYHo8NblI+dv4XQ0K6y1gzAdtZy1uT+yMqvFNbLanXNNDZb0WC0IDQoQLfFUclKozRzSmu5mjQyFntT8mFuaUWzuZVKTrUZWhrLkR54pd7AAWHB0q7rSvetJrfe503mS3vvZFm84uXLbpo0uMoKpdfCqtViKmUp1LJntp4ynYmrt0UhlyNI9cG50wZRbYHm6PNU2mpNS96uri9fpby8HOfOncO8efPw8MMPIz8/H/Hx8fj3v/+NRx/VvvTGEaSekdJSJfHyKke9TByVVe48ubxD6Rqlspzt+eUupJ6J+H2iVJdS3gNKlmElj66O8A7YuXMnRo1y3jjMm7ien49FKSewburjWJF9Gf4GA5Y/MhW/P52CVo7Dyken2V2Tm5uLCRMmID09HePHj/eA1AxfpsMrykFB/qrWDMD2papnD1b+xT56UHc8PLoPjGZru6VXRrlTQskFS/wBIQfh/Mt/aP9uiq5baTlliIoIgaWlFcMHRCP5YgnAgXoyQQqTxYrmZitMFulZPr3wH38Y6AYbYtTkjokMxcLZI7F+Xw61G7TdB5jSaibe39eXBjJ6Ia1QPEOGDHE4X3cpn3pd/7wFd9WTXB+kLd9ROZWup32GzpCjo1JQUAAAePPNN/Hee+9h7Nix+OKLLzBjxgxkZ2c7pU/TIn5GSkuVpJZX/fTJeJs0rnSbp/n+yMmop6ywkACcu3JX17jDk4jrSep9olSXpPcAP5GpNIEulZ6mnI6K2WyG2WwWftfX13tQGnr8DQakV1Xi0X27AQDjomNwrbYGXHY2wupqhXRXr14FAIc92Ridkw6vKM96sD/mThske168BhGw/5BSlSP62CpZOGhJTr9tI5O4HDFpOWWoN1qweudlhH7nii11H2QeWw9fc4qCGxocIPxzNnJrD3kc/bApfTSlEH+Aaa1mnQ1vskI5A9rgd51tkAX4zuCysz8nvbS1tQEAfvWrX+Gll14CAIwbNw7Hjh3D+vXrsWzZMk+Kp4ojk6nuwhmWzI5gDQUc8/xROkZzriMwb948tLW14aGHHsKyZcvQQ2W97rJly7B06VI3Sec8lj8yVVCSAeB3ox7AopQTQMoJyfSFhYV45JFH3CUeo4PQ4dco/3jmUMVZYvEaRL0vTnJNjF7rEr8uJzEpX1YmpbU3sya3b7MUFOiv6EZG5uEsBXfutEF4akqc4qSEHtyxXmjSyFiEBQdQW5TJNadan7Wvr3/SAmmF+uUvf4lvv/0W48ePx4wZM3Djxg2nliW3Tlxp/bjWdfXitcbiLc46gyu9rzNrcn+MHthdcE9l0NG7d28AwIgRI2yODx8+HLdu3fKESJrwhTXkzpDRF+7TFUjdt1JddOR6SklJwaVLl5CRkYGYmBjMnz9f9ZolS5agrq5O+FdcXOwGSR3n96dTbH6vzL6MdVMfx8nEvUhPTxf+bdq0CUD7+m0GQysd3qKshpTblSNulGrbzyjlTbpv84NuLeXrce111BqqJ2q0Ftwx86vVokzOdq/bm61pbXZHn8kmcZcVSq7PVdWZ8PbGNNypapJ8PjTWRXF/JdOR13fU5+kOl3J3uq37snuqJ4mLi0OfPn1w7do1m+PXr1/H97//fQ9JxWAwxNx///0AgMDAQLzyyisYOnSo6jXBwcFuD8rnDFo5DhNiutusUR7WLQpjRo1C10ED7dJ74zZ2DO+nw1uUlZAboDkS+VocGERstZKzKPLbPI0e2B1zpw1y6WwnKRO5NYvavWqNRKl2LQ1yM79q+dGWV1VnQlV9MwL9/fRt1WQAuFYOuUXVVPfWkWeyxbjCCiXXBmsammFqtto8w8SkfNy8Uw+z2Sq5fpzGCqwUjZW83hX9QG+fcSbO8oBwJDK92vVaoXnuvvacnEldXR0yMzNt/hUXF+OPf/wjPv74Y+zcuRN5eXn461//itzcXCxatMglcuitV6nrxMdc9czUynHWd4vmOrVjjnjh5JXUUF3raL3T3peevNXKkqorb6epqQm1tbXC761bt2LcuHGeE8gFDB00COumPo7+XcOx8tFpWP7IVADtbthSgbwAID4+Hunp6YiPZxOjDO10GouylFIsZ1GaNbk/Mq6Vo+huPd7emIbF8ydRKzZii6HY0iVnUeQjJ08b21fTNlJS93Q6qxRZ+ZWyW+CIozTTrtvj05F7lioFHpO6Vq0MWtTyU4pEXVVnQmJyPsC1/z5/5S4MHKgtymS9z502CPkltULUbF5p8ragTp7AFVYouTbIRxO3eYYGICTIH71jukguCaBZBycVjZXsXzSxA6TkB9T7gTvX08pNGjrLA4ImMr3SO0Tqer2WaJrnLvYWUCpHqk36ct9PSkqyG1zPnz8fCQkJaG5uxquvvorq6mqMGTMGR44cwaBBzl1uw6O3/UtdJz7mqr6lVo5aua68Z/ExAJJl0cRikNtP3tH713tfanLToCQr0F5X3u6BUlZWhh/96EdobW0Fx3EYOHAgvvjiC0+L5VQiY3sivkdPxX2UAyPCbY6FhYWxaNcM3XhMUV6wYAFqa2uRmJgoef7s2bN44403cO7cOQQGBmLs2LE4ePCgbtcJLdsNxESGIj4uGkV36nG3qknTtkHiKJbibSdkB2miyMk0g0CxMshbpUODApS3OxKVRTsY5s8bzVa7CKIrd2QiObMEVXXN+N3zY2WvFW+DkZZTpjqwlKoL1cG1QiTqw6lFSLpQjGZrK6aN64tpY/sqRtWWup5Ulkh3dz3uvHLHfAneCkUSHR2NP/7xj/j73/+OMWPGYOzYsdi4cSNyc3Oxc+dOXeXItUGpSPXksgK9dSoVjVVqOzHa4DNaFE93uunLtVtnRf2mCaYkFfVXacscV04kkPKqlSPXJn2RhIQEJCQkyJ5fvHixTQR7V6K3/dMEdnJV31IrR61cV96z2jEaGcjvLv/tVrrW0XqnvQc9eauV5YvLpAYOHIiLFy9KnktKSnKvMC4iuEcPTFizwm6vZJ7AiHAEqwQvYzC0YOA4jvNEwUqKMrn36rPPPivsvfrss89Sr6Oor69HZGQk6urq0MIFChbEudMHSQ7kxAM90uood40UZD4AqJUfsfLIR+F+aEQv2UHXyq8ykZJRgqnj++J3Px4rDDRHD+quqCDkldRg/b4cLJw9UvOesHL3eC7nLgrv1GNIv274z8tTFa/n5QwLbt9rWukeyfTidOTa1EdG97Gx/PByyQ3q+bWrj0/oh0Wzte03yJfbYLTg4dF97GQStyOxHPy65mlj+wrWbrl79AUWLFiAjRs32h3nrVBvv/02Vq1aJVih3n33XU1Rr8m+HBERAcCzEwu+PqkhBc09KbVRpT5KU1dy71ulMl39HJwxocewRaovOwNfrHtflNkVsHrwPlzVTxkMX8QrXa+dvffq4dQiZOW3K51yL2Kx1SAmMlSTAsW/7PVuMyW2qpABveQQR6zm91GeNv4+RQWYD16VnH6bagAoJytwbyA7uF83hIUEYOHskarXz5rcvjeyydJu/aa1ZE8aGYt1e7MBQ7u1ULweXPwMf/pkvLC2iLzHmMhQLJ4/yc4CqeX+5fbaVgr4xMuTlV8Jk8l2Sy5fnL3m8YQVSsv2IY4G5xNfq1S2swd97hpE8vck1V94aCxN4nNq1ljxe1P8jubfaVLxA1y9rY/S8g2GdyHXzrx5Qs2dSyu8GVYPDAbDm/E6RdkVe6/SKCFSrsFaPq5SEau1QFovjM1WQRal8sURq5PTb6OkohHJ6bcVFWUpV0HSGqtlQEHWm9x14vrkI89KDYylICcRkjNLYOBgc998vlLPWUpRJV059aLX1ZYPmmYwwGZLLm/Zy7Mj4shAjPZauYkyR5Frv64a+Cvdr1IblTun9u5Vem9W1Zmwfl8O6sVrz92FwvINKdiA33PonahxJbQu+744OepMWD0wGAxvxusUZXLv1ffeew9jx47FF198gRkzZiA7O1uXZZlGCZGykgLqH1epNXR6BrDkRzUsJACns0qRX1IrG5BLLDMAxYGdeIDND7p5hVPvjLzWwDh8uXyEby0fR94Sza8nJiN2k/clvob8XxyMxNUBeKTWuPL34Ow9pxnSODIQI70ZaILV0U6U0Sq8cu0X0D/wVyqbpq60KOtq7welibbEpHwUlzWgV0wXjwyitWydp/edxnAOeidqXIla2WxytB1WDwwGw5vxuu2hxHuvjhs3Dh9++CGGDRuG9evXu0WGWZPVtw/h4QeuaTllgsu2nm0KyDJnTe6PiLAgIWAQj1q+c6cNwlNT4iQVMF5OMj9yqyK5eyav07v9Ap83r2wkJuUjK78SYSEBNoNjtfxjIkOxaM4oLJo9yi5yOXlf4mvI7ZgmjYxFWHAAfvS9wXhoRC/AAKdsf0MLfw+863hH2VLGGyG39NCzJRepEKbllCluGTdrcn+MHthd+FttOzO1dssjbr9a3k1yKJUtLk+qT9LKLnc9NQbAz2BAfFy06tpgZ2/1o9Vyn5iUj+SLJQDA1ll6EZ7cjo+cyPXEe95V2ygxGO6kvMaIvJJam3/lNUZPi8XoRHidRdkVe6/SQga5op3hpHH3pUFsHV04eyTW78uxcRF2xJoktoyJA9SIZ3WlLOV6y1dbf82XVVXXjPNX72paE6jVYsCvz75eVIufPhmPvJIa5JfUOuyKrYW8khosS0hDYGD7PBWbTdcGrRIjjk6udbBMtvdZk6WjXfPwywn4IHVy26oAytvEqd2rnPVFi2InLlvpWnEdyEWglkPtGfD5S3l2kBZdWhkd6UtkGVJ5KtaxaD91piwzAO90/WZLBBi+QnmNEb9++xharG02xwMD/PDJ4hnoGRXmIckYnQmvU5RdsfcqLev35eDarXZl+a3/pVsPreTuq+auKYb8gAHta4jJtXm06/0A+fWFvLIqtw+iUl6OurHJuVnyZQX6+2laEwhod9sS3wOvOLtzDeSnu7NQVdeMbuHBzE1TB7QDPTXlVg1xe5UL4CaVXu0cbbulvVctg1/xlk/ivd7l5NYzwFZ7BlLxEqS23FJaDqP2XqKdRCCDd82dPsguT6X7F++nzhQQBuCdrt9sTXDHwmw24/XXX8ehQ4cQFBSEcePGYdOmTZg+fTpu3bplE7X6vffew8yZMz0orTpGoxG5ubmIj49HfZPFTkkGgBZrG+qbLOgaDCFtWBhTmhmuwaOKsrv2XqWFt+LSRG5WQmlfUCmU9gol/1aLtkuzRo5U4qX2QSTTGZutMJqtgoXEUWuW2joyNZmcgdSaYfJ/d9C/dwSK7tRj4vBYZnnSAe0zo1Fu1a6X21OYJj3tOSVo71VvOxZHjhdDyq23jEF9uwGc9HVS8RKkUCpbrW6pFXwixgNNvAOxDI60NUbHxJPrb+XKZmuCOxaLFy+Gn58frl+/DoPBgDt37gjnPv74YzzzzDMelE47ubm5mDBhAtLT0xHRcyAA4Mz2N2Dw88OUH/8TZ7/6K7i2NuDVUzZpx48f72HJGR0VjyrKSUlJGDdunM0xfu/V5uZmvPrqq8Leq0eOHMGgQa4NfjS4b5SdJZlmX1w5aAeWcgM5LfuGkltgAZC1ZJMfSSULqporKY38tNDKJIWzt/5xJnL5/3TWMMREhLABtU60DPRcNSh097ZNzkonRimYFiAdBFALNFvzAdLyO1o2D+17WC14F81EIVNAGAyGu2hqasKGDRtQUlICg6HdFY9fvqgFs9kMs9ks/K6vr3eajFoxmdrXzl+9ehVdyxpQV5YPGICq4ix8/cFcAEBk7GDkZF1CY3WJzTUMhivwWDCvhIQEcBxn94/fj3Xx4sUoLi5GU1MTzpw5o3trKEcRB67REsiGNpAIbYAefr2fVEAhMg+xjGrBO+TO08rljABDetHyPKSuVQrQ5EzZyDr2dJAXhuM40u68BRpl39H7dOTd4Kw6pn0P6w381BHaQkeCBatidBby8/MRExODf/3rX5g4cSIee+wxHDt2TDj/8ssvY+zYscK/wsJCyXyWLVuGyMhI4V+/fv3cdAf28DK++OKLmPv0dJzc/DpGTltok6auLA9zn56OF1980eYaBsMVeF3Ua29Cyp3ZFUqhFoVaKhq2VDpSxsSkfBxMLURiUr6QhhxMyA30XD3AdAZ6nwf/bEODAlTr0xmyOTLhwlDH3YNjT04OOQuaNkjep546duTdwEeod2egPT10hLbgS6i1Q6nvnTPy1YOWPN3xDqMpw5MTDeKyaWXprJMjLS0tKCgowIgRI3DhwgWsXLkSP/nJT1BRUQGg3fU6MzNT+BcXFyeZz5IlS1BXVyf8Ky4uduNd2MLLuGnTJiR+k4TH5r2PnGTbHW8iYwcj8ZskbNq0yeYaBsMVMEVZAd5tkNzGiGb7FDHOetnz6+AeHt3HblBGDnrtBqfE2ju+jMSkfJy7cheJSfkwmq0YfF83YT2yHvR8qJzxcSPvVcuz4Leoio+LlqxPZ6C0/RYbXDsXV048SLUrT04OOQuaNkjep7snd8hAe95MR2gLvoRqOyS+d07NVwda8nRH/6Ipw5OTuHonlDvrxHP//v3h5+eHefPmAQDGjBmDAQMGICcnR1M+wcHBiIiIsPnnKUJD29+jw4cPx8jRYxAZOwjggJh+o/HMa4mI6Tca/gHBGDl6DIYPH25zDYPhCpiirIDUQFLPfqh6XvZySp/UoIy3jsopu+T+ysJ6YgOEfYSz8itRWtmIrPxK3R8aPR8qZ33cxMo/zbPg73/utEEO7X9Ni/i5scG1c5FT+pwxSdVRB2FKbVCqPtxt4Z01uX1vakcm8MS4c0KP3MeboQ2lPYDVglaS3zstOGPyUiy3ljzdMXlK04edKQdZHzT7OvNlk9tYkr+l+qBUm1Dqsx3J+ty9e3fMmDEDhw4dAgAUFRXh5s2bGDZsmIcl0098fDzS09MRH38v3sPDL/wbU378TwDAlB//Ew+/8G/ZtAyGs2GKsgJSA0nxoJlGmab98EwaGYtAfz9U1TdLKn1yL3je8i2n7EpZNqeNvw8AMG38fXhoRC8snD3SoY8jTT3QXKMHsfKrFvWbV5DF64T1KEQd6aPry8gpfc6wSHRG679UfbjbwssHFHRkAk+MOyf0xNv9MeiRq3MpLy8xeichnTF5KZZbS57umDyl6cPOlIOsD6VnKvaGS8spw7krd5GWU2bzW6oPSrUJpT7b0SY+P/nkE7z77rsYPXo05syZg7Vr1woBvcRrlLdv3+5hadUJCwvD+PHjERYWhoguQQgMsFdTAgP8ENElyCYtg+EqvG4fZW9HHEFVKhIquR/nojmjqCK2VtWZsH5fDu5UNaG82oip4/vaDc7loktr2V6J3LrqdFYpsvIr8fq8CYiJDHVoH2Gpe1SLhu2siMRqkXvlyhRv36Vn+xtHI34zXIsztldyx3Yq7oqiTSuH0lZ1UlZ7V8kutU2do/mR/zvzGnE9dKaJFWcjV+d6tyhzF0w+9fJonqn4mJLcNNerpfdlBg4ciKSkJLvjUsd8jZ5RYfhk8QzUN1lsjkd0CULPKKYcM9yDgeM4ztNCuIL6+npERkairq5Ocr2FKwd36/ZlIyWjBFPH98Wi2aMUy+LPGZutyLxRjpCgAMTHRWPutEGSaROT2kPlS53XQlWdCe9vTkdNQzO6hgYhvn805k53LE+pMvj7BqBa3+5WFkilgJ9g0FpuXkmNsPe2IxMNDHnU+rIU3qJ40sJP2jw0opdHJ1z0yOEM2ZWelyfrRks74icfI8KChMlHhi16+jKDwXAvrJ8yGPfotK7XWrdQ0oJ4jRSNGxAMwMOj+2Dx/ElYNHsUAEgGEFJyRdRyD3xgsK6hQbh5px4nMop1uSIplak1EJC7XKLItYNqbl1q+ErAoc6Gr7nXeYt7tx45nCG7t7q+a2lHtLsSMBiexNsjXzMYDIY30Wldr8XuN4dTi+xckfUgZYGgdQOSWgsNSLtZS+WlxQ2Yl7N/7wjcqWpC75guugaitGWK5ZayjutxidJjOSRlnjW5v2pwGCX0yuwszwCGNJ52r9PaLt3h3k2DHjmcIfukkbHIyq+UDDLk7rohn52WdsRPPpJeNAyGt0HzzWZLihgMBqOdTqsoiwdfsyb3R1Z+pWAN0PpxIF2oswoqAdz7wCgN9OTOyQ3QlPLSMqjjJwZCgwLw+Ph+ut2uacsUy304tQjJmSUwcEBYcIBgedZa73o+6KTMfCCQh0b0Urx/OcVHr8zie2c4F2cpV3pduNlAUxukZ4anlzDwz87YbEVYSICmZ+8tEx6+hK8tk/B1aL7ZWicaffkZ+rLsDAbD9XRa12sxSnsU0yAVedkR9yXewkpGZRYjzl9LtMpZk/sjwM8PhXfqYTJbdX8g9EbInDW5P6aN7Yup4/s6ZH3h3TKVto8Qo7S/sRxyW3dpfcb8VhYPDu/l8L0zHEft+dG63ipFuu+sboxa7ttbXM9JWWCAT7nv+yq+tkzC16H5Zmv9rvvyM/Rl2RkMhuvptBZlKRyxBki5UJNRlXmlV6+LsJRcjlo+AgP80GJtQ15JLbYeynV4RlXLzGxMZCgWzRklez2gHvyLz2fW5P54f3M66o3tkRG1PEPaZy62QpPbvmixHJIWbGZ58jxqfYzWsiLORym6emdBi1XdmyyxvCxVdSaEBQd4hfLekfH0MgkavMHqqCaDO2WUivBOG51ei5y0YwKagKnic2QwT2dG1mc4F3NFBVrqG+yOB0aEI7hHDw9IxOhsMEUZzvnASA305JQrpQGhlvVx/HGj2aprIP6r50Zj/b4c9OnR1aGBPL/mNreoGiaLlSofqTrXqoCS7u41Dc2wtLRJrnGkKVsN8vkqbUehhi8MCjsTas9Dz0SK1jK8BWcPtJXWHfsC3qS8d2R8oZ69YSkF7cS53HlXysIHGj135a7qciItctKOCZTylDtHHqeVneFezBUVSP/N/wPX0mJ3zhAYiAlrVjBlmeFymKIMxyyzcsjtqanVMqX00nbU8jG4bxTe+t9H7WZttcKvuW1r43B/bDj1Gmnxx0urAkqus+4aGoRmf7o1jo4OKMQDO1dYsBnK0Ch1NGnknodeq4dUWkeeuTOVV7W8nD3Qdsa6Y2c9Z0fSMxjeMNlFO3HuDhmVvtVq5WuRk3ZMoGei0pEJb2/GbDbj9ddfx6FDhxAUFIRx48Zh06ZNmD59Ov7whz/gmWee8bSIVBiNRmScOQuzyYSQAHtVhWtpQUt9A4J79IDRaERubi7i4+MRFsb2V2Y4lw6vKFfXmVT3gXPUMiuFkiumEnqsMOR6Zi2DP3LA6Mj98m5XWqI4S32ktCqgsya3B2Dj94IeO6Sn7o8vw7egjdyqN5K9XquHsydBnJm3s9zMaXFGfq6I0OuK58WU746NN0xwqslAK6OrPOhoy9dSl7RjAmdE6/f083UWixcvhp+fH65fvw6DwYA7d+54WiRd5Obm4rG5c7Bu6uNYkX0Z/gYDlj8yFb8/nYJWjsPKR6fZpJ0wYQLS09Mxfvx4D0rN6Ih0eEX561M3ERNdQ2VV4i2zfGAorR8SvduKkNfya2V4K4zUR03JbVnJKi6+zlkDRqn1xjTX8HWupa7F9/D6vAl4f3M6GowWhIUEuH0rHj2DjrySGqzfl4OFs0d6PMKvr0LTv/iJFD2R7B21ejgL2rxp2qGz3MxpcUZ+tM9ZLY0j6QH3W+MZDFfR2dpqZ7rfpqYmbNiwASUlJTAYDACA3r17q15nNpthNpuF3/X19S6TkRaTqT0IZFFDAwwA0qsq8ei+3QCAcdExuFZbAy47G2F1tbh69arNNQyGM+nwUa+vF9fgdFapTURDuWis/MAuLadMVxREMnqi3qiRZNRscZ5S5fDMmqweqVUcudmR/YOdhdaIk+L0jkYrdzQisZ6Imev35eDarXZlmaEP2v7Vp0dXhAQFSHpoKD17Lf2XJkK9Xmjl6KiRW10RoVctvVRU+8SkfMX65d+/zEuF4e10traq5359daeC/Px8xMTE4F//+hcmTpyIxx57DMeOHVO9btmyZYiMjBT+9evXzw3SKlNYWAgA+MfFC/jdqAdszv1u1ANYlHICj82dgwkTJuDFF1+0uYbBcCYdXlE2W6yICAuyeUnKDSr5l+OkkbG6PiSOfID4a+dOG2QziJPKU+oYP/ibO22QrAzkdXz0ZVorrBZcuS2M3L3z95RXUqNaNimfowqGnme+cPZIDLs/Cgtnj9RVJoOOw6lFSMu5i7IaI9JyyiTPO0u59LSiStMOPS2jr0DWk9wEphi92+R1VszV1bi1bQfMVdX256psz6n9ljsmPi6XRqlsZ8imVxYa9Nxf08H9eG5iT6GtarkHqXLVzqnJqKXOaWUlj/N9s6vVRN2Ojh3LwqWLeUhdsd7hZ+ROWlpaUFBQgBEjRuDChQtYuXIlfvKTn6CiokLxuiVLlqCurk74V1xc7CaJ5YmLiwMA/G3cRKzMvmxzbmX2Zayb+jhOJu5Feno6Nm3aZHMNg+FMOrzr9YMjemPujJE2Axgp17uqOpPuLYZ4SFdDWpdctXXCWtcC0Z7j712vm7lYdvJasauTUl3oWVcllT4xKR/JmSXIuFaOltY2oWwpSPkcjcyrx72UD6LGcB7mqmqUHTmK2CdmIjgmGsB3a+fNVoBzfTRqvXlJya3lPE9XqwmTb59D/a5UdJ0z2yYtn8fjkx9VlVGpvIa8AhRuSEDcSwsQPngg9XW096A1rat4fFgEItKOYcKwoQiMioJ/Uz3GVF9C3LPfRzBThJ3CnQPfojntAlqNJgxYON/mXNmRo6g+nwYAuP8nz6v+lrpGKi8Akml4zFXVuP7BR2hpaLBJQ7ZJPbLpkUVcbnBMtGTf0Jpn2ZGjqDxzFnVZ2Rj62isIjomWvAdxGrFMrUYTajIzJdMo1YmUjEp1Jj7fajShIuWk0G7kri3du98mnTif2CdmSj5rPs2oIfWILspFpF8Lyo4cla1Pb6N///7w8/PDvHnzAABjxozBgAEDkJOj7L0WHByM4OBgd4hITWho+7u2f3g4OAATYrrbrFEe1i0KY0aNQtdBA+2uYTCcSYdXlH88cygiItSVs8OpRWgwWuyszzz8FkjigFW0yqIcnlo/4+j+w4D8umix0kDeo5agY1V1JiQm5wNc+++sgkpZOU0WK5qbrYiNCcN93btSr2k8nFqEeqMF6/flaA74xPAepAZMMZGhWDRbfu28M9fk6s1LyyBRabBWunc/7h46DL/gYPiHhUkqC9EAfqoy4FMqr3BDAhqu30DhhgSM/vc/qK+jvQetaV2FJfUU7qsuhCX1FHr95HlMthSi+nImykICqZUahhqc6P97xD4xU9P/csfU0oopO3IU1oZGBIaH26Qhla4+c57VLJseWXh51JRwrXnGPjETdVnZsDY0CgqglOziNGKZIkeNRGB4uGQaLc9L7rxYZv7/0r37vjvKqVxr377ItHLPmv+71WhETGAbAsIjFevT2+jevTtmzJiBQ4cO4emnn0ZRURFu3ryJYcOGeVo0zcTHx+Nk4l6Y166zCdy1/JGpkmnT09MRH9+x16AzPEOHd72mZdbk/nh4dB9BWRK75fBbIKVklKiuF+bzo3HJdeZ6Ia3uXGqTA2qI10UfO5aFW9t2oKvVJOs+TuP+Sbo/pWSUIDmzRNX1MTQ4AKHBAYgKD9G0pnHW5P6ICAsSAj7pwRE3Ome54HV2Yp+YiegHJ9kNahryCpD1xt/QkFdgd42jbpa0eSmdk5ObPB85ahRajUbFNtJqMgEch+DuMZLKQvSDkxA1caKqS2TUxImy8sS9tADhQ4cg7qUFivchvl+lezRXVePm+o24uT4B5qpq1fpwB1ETJ8IvIBCW7+pFLJPU8+StcLnv/Ee4F4Y8vX/wffR6ahb6zJktHOPrFbinzJD1aKmpVTwvzsdcVY3gmGghrdp1sU/MRMzDk+0spKTSFRwTjft/8rxwnsxf7T1Cli+WRapNidudWt+QkkWcb3BMNOJeWoCA8K6ImjhR8rrgmGgMfe0VxDw8WfZd0mfObMk05IQRAMn75pVqqWckrgvxBFSfObOFdiNlceev6z51KkLv64PuU6faycWXRz5r8hnd/5Pn0WfObNnz3s4nn3yCd999F6NHj8acOXOwdu1aqoBe3kZYWBgmPTxF1kpsCAxEYES4kHb8+PFsayiGS+jwFuXinbsxWOSKKIXYIiSevSW3QJLad0+swDmyVYJeN0at1hhSdj2WVHG08DF30lF9OdOufCmXb3F9Sbm3jXmgBQ3jxwCc+rZTc6cN0rWXNB8MjLdy67EMaa13voyoiRNRuCHBzv2LoR1+ACtGrxVU6rxeq6nSOTm5yfP+YaGoPp9mZykm8Q8NgX9YGCJHjbRrt3wZt7bt0OQSKSZ88EC7OpS6D3E5SvdYduQoKlJOtt/Dd/fn6n6g1sdrLlxAc3k5msvLEfSd7HLuvKRlry4rG6biElSUVyg+KwYQHB2NHjL9pNVoQmN+vvBeBNrbZl1WNlpNJrvzYnfhroMGoS472+YcTTuXa6d95syGf1iYoiVanH+r0QT/sFA7d23yvNQ9kteJ5ZGST81tWsqNuubCBbSaTKi5cEFYQiF2S5brH2IZaN3Lyb/l5KS5Tuk9I86DvEdxPYnvg/a8L/TpgQMHIikpye641DFvJ7hHD0xYswIt9Q125wIjwhHco4cHpGJ0Njq8olx1/jzCdQxaxC49clsgqSnEzla8lM6puTBplZ2WmMhQPDexJ4q3NcAQECDMVJOQ9SBVpvhDzf8/7Ls6a5/R3S87edB05Ciee2KmrjWEvPxlB/ej3miyGWTRoLXe+Xvl3dvE7l8M5xH30gJhXa0YLS5/aun1nqOB5nq1wbxUPkoukY64Emu539gnZqLVaALAyaZXk0Vp7bQUahMk7TIZARgkZYqaOBF1Wdk27zneCle6d7/ivTDkId1epd6LURMntit5RiMsNbXgWizCM4h9YiZqMi7CVFyC0D597Cyx/PWVKSmIHDVK8K6gad9qk1lS7b3VaJT8npHnrQ2N8A8JQavRKFg+LVXVqEg5CUtVDYJiolTlU3OblnKjlmq/5DFywoJU2mnQ4mZNykWWHxTVDa1Gk029SFmtyWdvrqpGq9GIyFGj7MqTO6cmt9R5hvsJ7tGDKcQMj2LgOM5+kVAHoL6+HpGRkTjz+p8wfsn/ORQoxxH4Wc/oBydRK16OBMbx1Fq5W9t24O63hwEAvZ6aZXevavWgJrfS9Y7mTeYROWqkoHDQ1p/WOjdXVaN07360mkzwDw1FnznPsnWNCvB9OXvdBirvEG9Dqn14+5pWPe8tORy915vrN6Ii5SR6TH3MLvATAFz60xI05uWj6+BBGPPuMtX8tCrWYpxZN50Nvi/X1dUhIiJCMg3NN+76Bx/B2tCImIcnC8/g5voEVKScQo+pj2LAwgV215HPDYBLnyHtd7rVaERddo4gB38PIT17oM1q1SWfWhAwqfZLHuMtymLZnI2UFxlfltbvvSPjA4Y9NP2UwegsdHiL8v3zfiY7OHNH4Bg91iSlGWy12W29bsCODtjVrDBq9aBn1p42b6U6kZqd1loPUhE2leDdaeuysxH94CSvVJS8kZr0DJTJeIfobcdaJqX0llG87StUpKTAUlWDwb/9FQD7NultirNcn9Ijp9b+IS6r1cRv9WY/p2uuqgZntcIQEIAu/emWXVSmnITpdikqU07qUpQd9RBgfLc91DffyvYtNfdf3l2XfAZqXhVq1k4quUVrcJUmwPh+LWW55r935qpqG5n5e+Ct51q9LKTWCPOy8EhZlMm6kZONRg61+iEhv/mOeu/oGR84K1I/g8Ho2HT4YF61Fy/Knot9wrWBYxryCnD9g48QNXGi5IvYFUGctN5T6d79uPPNt8h95z8OycIH2vAPk3Z9FgdBAfhAPgm4uX6jatlS19OcA5TrhFdYai5cUMxDjO3zk4/gKkfUxInwDw2VdFNnSBM1YbyNazDZf/jnyAeM4VHrZ/xauesffGSXRpxn6d79uPvt4e/ca+lpzM9Dm9mMxvw84Zi4TarlTfO+cOY7RbwWUKme1cptNZmEfzTw+ZXu3S9MJpCBeUjKjhwFZ21F+JDB6EcoJsp1wIFra0NDbq6uupJ737jqnd4RKT+eZNPvxO2K/C1Vr1LPQO07QJ4n/xbnLw4wx8NbsivPnEXp3v02f/PXS92H3PtFSmb+d/jggZL9j0fufUGWL/dOJCeKaOqTlEEcaIuvA/45kb/Je2/IK1DsG3L1IHf/UtfzkyvitHJBzsSy03xPGAxG56PDW5R7fm+67Dk1K6ajOBJIiAbnzHpyaDObYb5bJqxh0iuL1L6ESrQH8jkFAPAPC3WZBVzpOfNrJPmowrSWQ3IdFwD0mPqYsHUIDVIBVRjK9Puv5xD8nRuYuP/IWQ3UrJlSa/jIc7Z5Kk+IyLWbroMGwXS7FF0HDRKO2bdJ+bxp+5Yr3inioDtS9axWrn9oCPxDQ+EfGkIlA59f5KiRiH5wElqNRtm+IraEiQP8SNFnzmw05hdIPnOaOpFLo/X915np+b3puEs8AyWLoqs9v8T5y221Vnbk3pZCAGfzt9x6ZKX3ixpSbUrNy4LOak4/sSuWAbANtEWuJSfrhy+Tv/fCDQmCzFrqQOrZy7UHLbFdxLLSfk8YDEbno8MrysHR+twwAWW3IZq8Qvv0QVtLi65AQmJ5pGTQ8hGRo/vUqWjIvYbg2F42yqJWpD6Saqi5a8uVo2fQJFeX/N/tCrsBAxbOpyqDl5dcx6Wl3tiH2DHE9Sc/GSI9KCTbg5QbpzhP3tKgNCEip5T3+8nzCPrOqiGHktsobd9yRpuSGjCKB/pagwjSBBoD5JdB0LiA0soCyLvuykHzPtDz/uvMBEfbPgOlCM+ueldKtbd2OPgHByOkV6yiey/ZJsm4FuL70NLWSLlajSa7NkVOIvV6apbiOwuQbq+0/RFof6eZiksQLFMX/N/BxPuN/Mby967mSi6HFjdrLe7XYlnpvycMBqOz0eGDeWkJRqAn2Ed7YKZ9AAw2QZmcEUBCT5AqrRZXvgz/0FC0mky65XXXmh6996xUl+IgMFruhQ/MBXDo44OBpnwBRwKLyD1Lrf2TJv3N9QkoT0pBaK9YDPu/PzqtLdAGn3JGoD+t/cuZ/V7PO9MdgXr01hvDHnFf9mSgO7m248zy9eSlFFhSax93tH7VAqQ5C9Z/vAsWzIvBuEeHtyjT7qMM2M82il1ypZBzH9Y6Cy71oVDLQ2rWU+tMKJ+33hlfveXqQe5jSrpBy21noVSX4hl2LffCB+aqPHMWjfkFwl6VDOcjDgBkd16ifcg9y3ZvBvX+TaYHoLitjFaXXhrMVdXCXttSrsdSkWMBun2hpdD6TlHre1oGwHosh0rX0AQ8oumrNO8DZoHShzO8ovQi13ac+Sz13IuUZZZWNikXY0fqV4v1mQa1bziNTAwGg+FOOryirBQpV4z4I0SjAMm5D5MBJGgGZFIfCncMvsgy5KxVzrYo6Z09lvuY8kpPQ24urM3NducBxyKJqyHlnqoGm0HXTvnxJLRk5wDQrwjy8BMc1efTbNYhKqUnty0Rl8E/z7iXFjg04SRGzaWXvGc1RVPr5AAN5BIEresGSfT2BxolXq9MjsrGUEeLa60elJ6dO76veu7FEbmUXIz1yOTsOlL6htPK5A5Yn2cwGDwdVlHmPcoDRwxH6OQHUV9frzmP0MkPwnwhHU1VVcjbuw/9/us5+0SBAYj57rgZgJkop3jvPtSkZ6DBaJS+VlRWoNGoW1ZXonQfWu7RkWsAhToKDIARHOrq6xHQtav76zAwAL1+uRDlx5Ooy1arg/DwcBgMBldI63PwfTl00oT2/2XqWGsf0tPn5K4RP0/xu0AvoZMfRJDRiJ7fmw5zYIBdnqQ85sAAdHv6Kfmyv+snNekZMAKa+p4sfJnV1TDC/tnQ1rHed4IScmVrfe6Oysb68j34vizUu1SbVWvHGnBFu9KEE+9FV3kurl+tKH3DPSWTFHLtprP0Zbt+ymB4Ma7ulx12jXJBQQEGEVFmGQxfory8HD169PC0GF4B68sMX4b15XuwvszwZTpLX2b9lOFLuHotfYe1KEd/F+361q1biIyM9LA0HYv6+nr069cPxcXFLNCDk+HrNigoyNOieA2sL7sO1pddB+vL9rC+7DpYX3Ydna0vd6Z+2ln6TUe+z/DwcJfm32EVZT8/PwBAZGRkh2sU3kJERASrWxfRGdy7aGF92fWwvuw6WF++B+vLrof1ZdfRWfpyZ+ynnaXfdJb7dCZ+nhaAwWAwGAwGg8FgMBgMb4IpygwGg8FgMBgMBoPBYBB0WEU5ODgYf//73xEcHOxpUTocrG5dB6tbe1iduA5Wt66D1a09rE5cB6tb19HZ6rYz3W9nudfOcp+uoMNGvWYwGAwGg8FgMBgMBkMPHdaizGAwGAwGg8FgMBgMhh6YosxgMBgMBoPBYDAYDAYBU5QZDAaDwWAwGAwGg8EgYIoyg8FgMBgMBoPBYDAYBD6hKK9ZswYPPPCAsFH2lClTcPDgQdn0SUlJMBgMdv9yc3Nt0u3atQsjRoxAcHAwRowYgT179rj6VrwKrfW6YMECyXodOXKkkCYhIUEyTXNzsztuyWtZtmwZDAYDXnnlFcV0ycnJmDBhAkJCQjBw4EB88skndml8ud2yvuw6WH92D6wvt8P6sutgfdk9sL5sz+rVqzFgwACEhIRgwoQJOHnypKdFcgkpKSl49tln0adPHxgMBiQmJnpaJJewbNkyTJo0CeHh4ejZsyfmzp2La9eueVosn8InFOW+ffvi7bffxoULF3DhwgV873vfw5w5c5CTk6N43bVr13Dnzh3h35AhQ4RzZ8+exQsvvICf//znuHTpEn7+85/j+eefx7lz51x9O16D1npdvny5TX0WFxcjOjoaP/7xj23SRURE2KS7c+cOQkJC3HFLXklaWhrWrl2LBx54QDHdzZs38fTTT+Oxxx7DxYsX8ec//xkvv/wydu3aJaTx9XbL+rLrYP3Z9bC+fA/Wl10H68uuh/Vle7Zv345XXnkFb7zxBi5evIjHHnsM3//+93Hr1i1Pi+Z0mpqaMGbMGKxcudLToriU5ORk/Pa3v0VqaiqOHDkCq9WKWbNmoampydOi+Q6cjxIVFcV9/vnnkudOnDjBAeBqampkr3/++ee5p556yubYk08+yf3kJz9xppg+h1K9itmzZw9nMBi4wsJC4diGDRu4yMhIF0nnezQ0NHBDhgzhjhw5wk2bNo37/e9/L5v2T3/6ExcfH29z7Fe/+hU3efJk4XdHbLesL7sO1p+dB+vL6rC+7DpYX3YerC9L8+CDD3K//vWvbY7Fx8dzixcv9pBE7gEAt2fPHk+L4RbKy8s5AFxycrKnRfEZfMKiTNLa2opt27ahqakJU6ZMUUw7btw49O7dGzNmzMCJEydszp09exazZs2yOfbkk0/izJkzTpfZF9BSrzzr1q3DzJkz0b9/f5vjjY2N6N+/P/r27YtnnnkGFy9edIXIPsFvf/tb/OAHP8DMmTNV08q1yQsXLqClpUUxjS+2W9aXXQfrz86H9WV5WF92HawvOx/Wl+2xWCxIT0+3u49Zs2b51H0wlKmrqwMAREdHe1gS3yHA0wLQkpWVhSlTpqC5uRldu3bFnj17MGLECMm0vXv3xtq1azFhwgSYzWZ8+eWXmDFjBpKSkjB16lQAwN27dxEbG2tzXWxsLO7evevye/EmtNQryZ07d3Dw4EFs2bLF5nh8fDwSEhIwevRo1NfXY/ny5XjkkUdw6dIlGxe7zsC2bduQkZGBtLQ0qvRybdJqtaKyshK9e/fuEO2W9WXXwfqza2B9WRrWl10H68uugfVlaSorK9Ha2urz98GQh+M4vPbaa3j00UcxatQoT4vjM/iMojxs2DBkZmaitrYWu3btwvz585GcnCz54Rg2bBiGDRsm/J4yZQqKi4vx3nvvCR9kADAYDDbXcRxnd6yjo6VeSRISEtCtWzfMnTvX5vjkyZMxefJk4fcjjzyC8ePHY8WKFfj4449dcQteSXFxMX7/+9/j8OHDmtaASbVJ8XFfb7esL7sO1p+dD+vL8rC+7DpYX3Y+rC+r01Hug2HP7373O1y+fBmnTp3ytCg+hc+4XgcFBWHw4MGYOHEili1bhjFjxmD58uXU10+ePBk3btwQfvfq1ctulqy8vNxuNq2jo6deOY7D+vXr8fOf/xxBQUGKaf38/DBp0iSbuu8MpKeno7y8HBMmTEBAQAACAgKQnJyMjz/+GAEBAWhtbbW7Rq5NBgQEICYmRjGNL7Vb1pddB+vPzof1ZXlYX3YdrC87H9aX5enevTv8/f19/j4Y0vy///f/sG/fPpw4cQJ9+/b1tDg+hc8oymI4joPZbKZOf/HiRfTu3Vv4PWXKFBw5csQmzeHDh/Hwww87TUZfhKZek5OTkZeXh0WLFlHll5mZaVP3nYEZM2YgKysLmZmZwr+JEydi3rx5yMzMhL+/v901cm1y4sSJCAwMVEzjy+2W9WXXwfqz47C+TA/ry66D9WXHYX1ZnqCgIEyYMMHuPo4cOeJT98GwheM4/O53v8Pu3btx/PhxDBgwwNMi+R7uixumnyVLlnApKSnczZs3ucuXL3N//vOfOT8/P+7w4cMcx3Hc4sWLuZ///OdC+g8//JDbs2cPd/36dS47O5tbvHgxB4DbtWuXkOb06dOcv78/9/bbb3NXr17l3n77bS4gIIBLTU11+/15Cq31yvPiiy9yDz30kGSeb775Jvftt99y+fn53MWLF7mXXnqJCwgI4M6dO+fSe/EFxNE1xfVbUFDAhYWFca+++ip35coVbt26dVxgYCC3c+dOIY2vt1vWl10H68/ug/Vl1pddCevL7oP15Xts27aNCwwM5NatW8dduXKFe+WVV7guXbrYRE/vKDQ0NHAXL17kLl68yAHgPvjgA+7ixYtcUVGRp0VzKr/5zW+4yMhILikpibtz547wz2g0elo0n8EnFOWFCxdy/fv354KCgrgePXpwM2bMED4YHMdx8+fP56ZNmyb8fuedd7hBgwZxISEhXFRUFPfoo49yBw4csMv3q6++4oYNG8YFBgZy8fHxNh/szoDWeuU4jqutreVCQ0O5tWvXSub5yiuvcPfff7+Q56xZs7gzZ8648jZ8BvEHWap+k5KSuHHjxnFBQUFcXFwct2bNGrt8fLndsr7sOlh/dh+sL7O+7EpYX3YfrC/bsmrVKqHtjR8/vsNuI8RvVyf+N3/+fE+L5lSk7hEAt2HDBk+L5jMYOO67qAQMBoPBYDAYDAaDwWAwfHeNMoPBYDAYDAaDwWAwGK6AKcoMBoPBYDAYDAaDwWAQMEW5E/Hmm29i7NixHiv/r3/9K/7nf/6HKu0f/vAHvPzyyy6WiMHwTVhfZjA6BqwvMxidjwULFtjtda4Hft90hutga5Q7CGobws+fPx8rV66E2WwW9v5zJ2VlZRgyZAguX76MuLg41fTl5eUYNGgQLl++zMLZMzoVrC8zGB0D1pcZDM+wYMEC1NbWIjEx0dOiSOIs+UwmExoaGtCzZ08A7RNviYmJyMzMdFxIBgBmUe4w3LlzR/j30UcfISIiwubY8uXL0bVrV498jAFg3bp1mDJlCtXHGAB69uyJWbNm4ZNPPnGtYAyGl8H6MoPRMWB9mcHwPiwWi90xjuNgtVo9II1+WlpaEBoaKijJDNfAFOUOQq9evYR/kZGRMBgMdsfELl6868dbb72F2NhYdOvWDUuXLoXVasUf//hHREdHo2/fvli/fr1NWbdv38YLL7yAqKgoxMTEYM6cOSgsLFSUb9u2bZg9e7bNsZ07d2L06NEIDQ1FTEwMZs6ciaamJuH87NmzsXXrVofrhsHwJVhfZjA6BqwvMxieZ/r06fjd736H1157Dd27d8cTTzyBpKQkGAwGHDp0CBMnTkRwcDBOnjwJjuPw7rvvYuDAgQgNDcWYMWOwc+dOm/z27duHIUOGIDQ0FI8//jg2btwIg8GA2tpaANLLKT766CPFCalvv/0Wjz76KLp164aYmBg888wzyM/PF84XFhbCYDBgx44dmD59OkJCQrBp0yYb1+uEhAQsXboUly5dgsFggMFgQEJCAhYuXIhnnnnGpjyr1YpevXrZvUcY9jBFuZNz/PhxlJaWIiUlBR988AHefPNNPPPMM4iKisK5c+fw61//Gr/+9a9RXFwMADAajXj88cfRtWtXpKSk4NSpU+jatSueeuopyVk6AKipqUF2djYmTpwoHLtz5w5++tOfYuHChbh69SqSkpLw3HPPgVwJ8OCDD6K4uBhFRUWurQQGowPA+jKD0TFgfZnBcC4bN25EQEAATp8+jU8//VQ4/qc//QnLli3D1atX8cADD+Avf/kLNmzYgDVr1iAnJwevvvoqXnzxRSQnJwNoV1j/67/+C3PnzkVmZiZ+9atf4Y033nBYvqamJrz22mtIS0vDsWPH4Ofnhx/+8Idoa2uzSfd///d/ePnll3H16lU8+eSTNudeeOEFvP766xg5cqTgtfLCCy/gF7/4Bb799lvcuXNHSPvNN9+gsbERzz//vMOyd3g8toMzw2Vs2LCBi4yMtDv+97//nRszZozwe/78+Vz//v251tZW4diwYcO4xx57TPhttVq5Ll26cFu3buU4juPWrVvHDRs2jGtraxPSmM1mLjQ0lDt06JCkPBcvXuQAcLdu3RKOpaencwC4wsJC2fuoq6vjAHBJSUmq98xgdERYX2YwOgasLzMY7mP+/PncnDlzOI7juGnTpnFjx461OX/ixAkOAJeYmCgca2xs5EJCQrgzZ87YpF20aBH305/+lOM4jvu///s/btSoUTbn33jjDQ4AV1NTw3GcfZ/mOI778MMPuf79+0vKJ0V5eTkHgMvKyuI4juNu3rzJAeA++ugjm3Ti94pU2RzHcSNGjODeeecd4ffcuXO5BQsWyJbPuAezKHdyRo4cCT+/e80gNjYWo0ePFn77+/sjJiYG5eXlAID09HTk5eUhPDwcXbt2RdeuXREdHY3m5mYbNxESk8kEAAgJCRGOjRkzBjNmzMDo0aPx4x//GJ999hlqampsrgsNDQXQPlvOYDCUYX2ZwegYsL7MYDgX0nNC7viVK1fQ3NyMJ554QuhHXbt2xRdffCH0o2vXrmHSpEk2eTz44IMOy5efn4+f/exnGDhwICIiIoRgebdu3aK6DzV+8YtfYMOGDQDag/IdOHAACxcudEzoTkKApwVgeJbAwECb3waDQfIY7/7R1taGCRMmYPPmzXZ59ejRQ7KM7t27A2h39eLT+Pv748iRIzhz5gwOHz6MFStW4I033sC5c+eEF0R1dbVivgwG4x6sLzMYHQPWlxkM59KlSxfV43x/OnDgAO677z6bdMHBwQDag36Jo9lzos2D/Pz87I61tLQoyvfss8+iX79++Oyzz9CnTx+0tbVh1KhRdksn5O5Djf/+7//G4sWLcfbsWZw9exZxcXF47LHHdOXV2WAWZYYmxo8fjxs3bqBnz54YPHiwzb/IyEjJawYNGoSIiAhcuXLF5rjBYMAjjzyCpUuX4uLFiwgKCsKePXuE89nZ2QgMDMTIkSNdek8MRmeE9WUGo2PA+jKD4TgjRoxAcHAwbt26ZdeP+vXrBwCIj49HWlqazXUXLlyw+d2jRw/cvXvXRllW2q6pqqoKV69exV/+8hfMmDEDw4cPt/PkoCUoKAitra12x2NiYjB37lxs2LABGzZswEsvvaQr/84IU5QZmpg3bx66d++OOXPm4OTJk7h58yaSk5Px+9//HiUlJZLX+Pn5YebMmTh16pRw7Ny5c3jrrbdw4cIF3Lp1C7t370ZFRQWGDx8upDl58iQee+wxwdWLwWA4D9aXGYyOAevLDIbjhIeH4w9/+ANeffVVbNy4Efn5+bh48SJWrVqFjRs3AgB+9atfITc3F//3f/+H69evY8eOHUhISABwb9/06dOno6KiAu+++y7y8/OxatUqHDx4ULZcPlL92rVrkZeXh+PHj+O1117TdQ9xcXG4efMmMjMzUVlZCbPZLJz7xS9+gY0bN+Lq1auYP3++rvw7I0xRZmgiLCwMKSkpuP/++/Hcc89h+PDhWLhwIUwmEyIiImSv+5//+R9s27ZNcG2JiIhASkoKnn76aQwdOhR/+ctf8P777+P73/++cM3WrVvxy1/+0uX3xGB0RlhfZjA6BqwvMxjO4Z///Cf+9re/YdmyZRg+fDiefPJJ7N+/X1h6MGDAAOzcuRO7d+/GAw88gDVr1ghRr3n37OHDh2P16tVYtWoVxowZg/Pnz+MPf/iDbJl+fn7Ytm0b0tPTMWrUKLz66qv4z3/+o0v+H/3oR3jqqafw+OOPo0ePHjZbuc2cORO9e/fGk08+iT59+ujKvzNi4MSO9AyGC+A4DpMnT8Yrr7yCn/70p6rpDxw4gD/+8Y+4fPkyAgLYUnoGw1tgfZnB6BiwvsxgOM6///1vfPLJJ8J2bd6K0WhEnz59sH79ejz33HOeFsdnYBZlhlswGAxYu3YtrFYrVfqmpiZs2LCBfYwZDC+D9WUGo2PA+jKDoZ3Vq1cjLS0NBQUF+PLLL/Gf//zHq12Z29raUFpair/+9a+IjIzE7NmzPS2ST8EsygwGg8FgMBgMBoOhwquvvort27ejuroa999/P37+859jyZIlXjuBVFhYiAEDBqBv375ISEjAjBkzPC2ST8EUZQaDwWAwGAwGg8FgMAiY6zWDwWAwGAwGg8FgMBgETFFmMBgMBoPBYDAYDAaDgCnKDAaDwWAwGAwGg8FgEDBFmcFgMBgMBoPBYDAYDAKmKDMYDAaDwWAwGAwGg0HAFGUGg8FgMBgMBoPBYDAImKLMYDAYDAaDwWAwGAwGAVOUGQwGg8FgMBgMBoPBINClKFssFqxatQpTp05FdHQ0goKCcN999+Gxxx7Dv/71LzQ2NjpbTgaDwWAwGAwGg8FgMNyCgeM4TssFtbW1mDlzJtLT0wEAISEhGDRoEEwmE0pKSmCxWHD16lXEx8e7RGAGg8FgMBgMBoPBYDBciWaL8u9+9ztBSf7tb3+LqqoqZGdnIz8/H7W1tdi5cye6d+/udEEZDAaDwWAwGAwGg8FwB5osynV1dejevTusViseeOABXLx4EX5+bJkzg8FgMBgMBoPBYDA6Dpq03OvXr8NqtQIApk6dKijJv/71r2EwGIR/ixcvdr6kDAaDwWAwGAwGg8FguAFNijJpfDYYDMLfAwcOxEMPPeQ8qRgMBoPBYDAYDAaDwfAQmhTlYcOGISAgAABw+vRpQXH+05/+hNTUVOdL14HhOA719fXQGEuNwWAwGAwGg8FgMBguRpOiHBkZieeffx4AkJGRgSVLlsBisbhEsI5OQ0MDIiMj0dDQ4GlRGAwGg8FgMBgMBoNBoDkS18qVKzFu3DgAwDvvvIOYmBiMHTsW/fv3d7pwDAaDwWAwGAwGw/lUV1fj888/x9WrVz0tCoPhlWhWlKOionD27Fm8//77eOihh2AwGHD16lVwHIdp06bhvffew8svv+wKWRkMp8BxHPbv34+UlBRPi8JgMBgMBoPhEb7++mvcvn0bO3bs8LQoDIZXEqDnouDgYLz22mt47bXXnC0Pg+Fy7t69i4yMDADt0dsZDAaDwWAwOhsmk8nTIjAYXg3bBJnR6WDr6hkMBoPBYHR2/P39PS0Cg+HVMEWZwWAwGAwGg8HoZDBFmcFQhinKjE4HuSUX256LwWAwGAxGZ8TPj6kBDIYSrIcwOh1MOWYwGAwGg9HZkbMoP/vss5g5c6bkubNnz8JgMCAjIwO///3vMWHCBAQHB2Ps2LEulJTB8AxMUWZ0OkhFua2tzYOSMBgMBoPBYHgGOcPBokWLcPz4cRQVFdmdW79+PcaOHYvx48eD4zgsXLgQL7zwgqtFZTA8AlOUGZ0O5nrNYHiW6upqNDc3e1oMBoPB6NTIjYGeeeYZ9OzZEwkJCTbHjUYjtm/fjkWLFgEAPv74Y/z2t7/FwIEDXS0qg+ERmKLM6NQwRZnBcC9VVVVYsWIF3n//fU+LwmAwGJ0auTFQQEAA/vu//xsJCQk2ab766itYLBbMmzfPXSIyGB6FKcqMTgezKDMYnqOgoAAAYLVaPSwJoyPR3NzMltIwGE5k4cKFKCwsRFJSknBs/fr1eO655xAVFeU5wRgdDm/etpUpyoxODVOUGQwGw7epqKjAe++9h88//9zTojAYPoWS4SA+Ph4PP/ww1q9fDwDIz8/HyZMnsXDhQrfKyOjYJCcnY9myZbh+/bqnRZGEKcqMTgcL5sVgeA42OcVwNgUFBWhtbcWdO3dY+2IwNKDmYbdo0SLs2rUL9fX12LBhA/r3748ZM2a4U0RGB4f3WPjmm288K4gMTFFmdDqY6zXDndy5cwfLly9Hdna2p0XxClifYzgbsk21trZ6UBIGw7dQ6zvPP/88/P39sWXLFmzcuBEvvfQSDAaDO0VkMDxKgKcFYDDcTV5envA3G7QzXM3OnTtRW1uLXbt2YdSoUZ4Wx+OwPsdwNsxLiMHQh1rf6dq1K1544QX8+c9/Rl1dHRYsWGBzPi8vD42Njbh79y5MJhMyMzMBACNGjEBQUJArRWcw3AJTlBmdjrS0NOFvNmhnuJqWlhZPi+BVsD7HcDZMUWYw9EHTdxYtWoR169Zh1qxZuP/++23O/eIXv0BycrLwe9y4cQCAmzdvIi4uzvkCMxhuhrleS7BmzRo88MADiIiIQEREBKZMmYKDBw8K5zmOw5tvvok+ffogNDQU06dPR05OjgclZuiFDaoYDPfCFGWGs2GKsi3Jyck4efKkp8Vg+AA0fWfKlCngOA6HDh2yO5eUlASO4+z+MSW541FdXY1du3bh7t27nhbFrTBFWYK+ffvi7bffxoULF3DhwgV873vfw5w5cwRl+N1338UHH3yAlStXIi0tDb169cITTzyBhoYGD0vO0AobtDNcDXsv2ML6HMPZkAP8zq4o19bWIikpCcePH2dbsDFUIdcld/a+w1Bmx44dyM7Oxtq1az0tilthirIEzz77LJ5++mkMHToUQ4cOxb///W907doVqamp4DgOH330Ed544w0899xzGDVqFDZu3Aij0YgtW7Z4WnSGRtignaGHlpYWJCcno7y83NOi+BwsmJ4t58+fR35+vqfF8GnYYP8edXV1wt+dvS4Y6pB9hwXCYyhRVVUFoPN9t5mirEJrayu2bduGpqYmTJkyBTdv3sTdu3cxa9YsIU1wcDCmTZuGM2fOyOZjNptRX19v84/hGSIiIoS/O1uHZziHpKQkJCUlYc2aNYrp2MDDHqYo36O4uBgHDx7Epk2bPC2KT8MU5XsYjUbh785eFwx1WN9h6IF8z3R0mKIsQ1ZWFrp27Yrg4GD8+te/xp49ezBixAjBNz82NtYmfWxsrKLf/rJlyxAZGSn869evn0vlZ8hDfhg6+0CdoY/bt29TpTOZTC6WxPfwxfWk165dQ3V1tdPzra2t1ZS+rq4O2dnZ7L0lgg3278Hc0BlaYBZlBi3kUg53L+toampCdna2R5aTMEVZhmHDhiEzMxOpqan4zW9+g/nz5+PKlSvCefE+chzHKe4tt2TJEtTV1Qn/iouLXSY7Qxmyo7GBhPO5ffu2ZgXA16BVVJiibA/Z/3xB4SsoKMC2bduwYsUKp+et9f6//PJL7Nq1CxcuXHC6LL4MG+zfg00aMLRAvo/ZDg0MWtytsG7YsAG7du1CSkqKW8sFmKIsS1BQEAYPHoyJEydi2bJlGDNmDJYvX45evXoBgJ31uLy83M7KTBIcHCxE0eb/MTyDrw3UfYmqqip8/vnnWL58udPzLi8vh8VicXq+eqBtNyyYjj3kum5fGMjTeg/oQatSx68RS09Pd4U4Pgub/LwHU5QZWiDbi9r3leM4FBUVobS01OkyFBUVse+llxMQcG9HYXc/K/7bd/XqVbeWCzBFmRqO42A2mzFgwAD06tULR44cEc5ZLBYkJyfj4Ycf9qCEDBo4jmOu1y6ksLDQJfnm5+djzZo1+Pzzz12SPw/HcaioqHDaAJN9+O0xm83C32r1zHEcampqPNpP/fxc95nct2+f8LeWe2TvLVuYu/E9mKLM0ALZXtQsyunp6UhISMBnn32GvLw8p8lw/PhxJCQk4KuvvnJanq6krq6uw7yDW1pa0NTURJV29OjRwt+eGtsoee66CqYoS/DnP/8ZJ0+eRGFhIbKysvDGG28gKSkJ8+bNg+BJQ84AAQAASURBVMFgwCuvvIK33noLe/bsQXZ2NhYsWICwsDD87Gc/87ToLsVsNvv8y0FswfH1+/E2vv76a5fke/nyZQBARUWFS/LnOXfuHFavXm2jwEhB2260WAwtFguam5up0/sqWqx/mZmZ+Pjjj5GcnEyVN6mEOwtXKsokWmbK3SWTr8CUw3uwumAA9AqQFotyamqq8De/Xaoz4APhXr9+3eu3U7x69So++ugjJCYmeloUp/DRRx/hvffeQ2Njo2paUkn1lKLsiW8f+9pKUFZWhp///OcYNmwYZsyYgXPnzuHbb7/FE088AQD405/+hFdeeQX/+7//i4kTJ+L27ds4fPgwwsPDPSy5dmg/pKWlpXj33Xfx7bffulgi1yLu3Gwg4Ru4a0Lj3LlzAIBLly4ppnO263VjYyOWLVuGd955B2fPnqW6xlchrRZq9Xjo0CEAoFKUz549i7ffftsmloQzIAcHrmyHJ06coE7r7+/vMjl8EV9zvXaljO5SlH2hnjsrVqsVK1aswHvvvYfr16/Lpmtra7N5p6kpytHR0cLfgYGBjgsqgau80pwFv0aWn7z3dfjo1bdu3VJNS/Z5ZlHu5Kxbtw6FhYUwm80oLy/H0aNHBSUZaH9Qb775Ju7cuYPm5mYkJydj1KhRHpRYH/X19XjvvfeEwagSaWlpaGtrw/nz590gmesQd25mUfYNfPU50VqUydn5w4cPd+hBKDkYU7rPpqYmTRbiw4cPAwCOHj2qXzgJyBlsVwaKUht4kHXFFGVbfMmKeuDAAWoLjh7IduSq9lpfX493332XauzAcD9NTU2CZfbOnTuy6cTtQ629dO3aVfjbVe8gch2sN+Lt7xe90Cig5DjMFYoyjQxMUWa4ldOnT8NkMtm408gRHBws/O3MF4XJZMKKFStw7Ngxp+WphKsV5VOnTmH58uVsn2w4t524S1Gm/fi7OpiXqwbR3gCtopyRkaErf2cHSiQVZVdGhVUbpJKTBsz12hZfUpQvXLgAk8nksklnd9TFqVOnYDabqcYODPdDtgGlb5D4naPWXkgl1lUBab19EtBXJ+2lIO+FRgElPe2YRZnhtRw8eBCbN292SmfVMtgiy3Pmljfnzp1DdXU1Tp065bQ8lXC16/WxY8dQW1uryY2yo+JMa4YnFGWltuGKNcok3hLd2xWQyqaz2gi5ri0sLIzqmvLycnzyySfIzc1VTHfw4EHhb1cODtTy1hIEzZmkpKRg/fr1Xr11jC9uD+Wqd1p2drbwtzvaCdsCz/ug3e9Wq6KsJWgex3HYsWMH9u7dq5hOjLdblD2hKGdkZGDt2rVOX79NPkM1BVR832yNMsNrOX/+PPLy8pyyD7OWBlddXS38za9pcAYXL150Wl4HDx60GdRK4a41ys6sI19B/CL1dYuyMwJrkQMR0m1NjY6qKHMcZ3NvSsqXlvdTUVGR8Dfp/aLE7t27UVZWhu3bt8um4TjObRGV1QYeZL3RDFK+/vprwR3dEU6cOIHi4mKnvqudjSusqK2trdi+fTtVzIAjR45g3759XhG5nGz/Sm63zsJdk9zeRkpKCnbu3OmVFkZXWZTJ9GlpaYppa2pqcPXqVWRmZirKQL67fQFPPO/9+/fjzp07Tve8JJ+LWhRz8bfaUxOnzKLMUMTZA7YbN25QpyUVZWdFlm1ra6NyUT558qTqusPm5macP38e58+fV1RS3aUod1RFRwnxs1Sz7OTl5WHXrl1UFgl37Z1Htm0luWgHoLQz++KPrzdb7xxBy8eWD6zGo9SeyD5Pa1GkaXfi94OzrZV9+vSRLUsM2TbVFOXa2lqkp6fj7NmzTpv5d8U7zWKxYPfu3Q73b1cE87p69Spyc3Nx+PBhxW9Ka2srzpw5g4sXL9p8J9Vw1YCbrIsDBw64pAxS9s44KQy0TyDl5OQ4rOhZrVbs2bPHKZNaPHoVZbU2Saavq6tTTEuWe/fuXdl0CQkJNr+9femEuxVlss6dvSsGmfeFCxcU04q/1cyizPBKnD14JrfaqampoS7bWYPF27dvq6Zpa2vD8ePHcfr0acWtgWj3AnSlokx+ODri/rlXrlzB0aNHZT8U4ojoanW7efNmZGdnY82aNZrkcNWHlOM4G2Xf2RZlLf3XFUpJY2Mjvv76a8VBi6NkZ2fj+PHjsm1Ey8dW7GamVH/kYJ2m7xmNRqpJOnGZzt6ejGzLvXr1UkyrRVEm5XbWu8gV/e7MmTPIysrCjh07HMrHFRZlsg6Vtr3T8lxIXDXgdrfruS9965qbm/HNN9+gpKTEoXxolUAa8vPzcfnyZZw9exYFBQUO5cVDtoHMzEyqdIA2i7IaZP/ZunUr9XVyMphMJnzzzTdU40ZXQsrnjkkicl2ws98ZWvquOK3StdXV1Thw4ICqXqEHZlFmKEI2TGd3GH4fOzlcoSjTKA5kGqX1GbR7AYo7tzMHFbt37xb+9kZ3LEf56quvcPr0aVy7dk3yfGVlpc1v2rrVuu4mKytLU3pampubbdqHM9beiSPQyrUL8X6XrlCUv/32W6Snp+PTTz91et48u3btwsmTJ2W3mhDfl9w7QKqelD7MZP3RvFdot7kT57Vt2zaq62ghB11qrvlaXK/JfJ01weqKd5qzgh5qUZTT0tJU16UDtpYLJYs3qShrqWt3WJSjoqJcUgaJL3m/HD16FGlpaVi3bp1D+ZAKkqORv8nJty+//NKhvHhoLcWOrFFWg+wXWhRKuXHDoUOHkJaWhs8//5w6L1dA1qWUp6PFYsGJEyewb98+TV6bctTW1kqW7Qz0TnwAyt+gTZs24cKFC9i0aZNqvlrHOkxRZihCNlQtLl5SiDucmvXMFYoyzWwWmYbWpVrJNdyVFmVPz3S6EhqXK1e7qfKIlUpnIX5hyynKWj5W4jqQa/NiS6UrrHelpaVOz5OErBe594k4mrfcIFvq/pXaE6lw0Xx4y8vLVdMArlcCtCh45PNTe3eSM/nOugdXtElnDfxo67GiogLffPON4rp0HrGLn9x7j3wuWpYluUJRFnvFDBw40OlliPEli7KzPEKc6QKrtf4aGxtx9uxZxYlccZ5y7wBHLMqhoaGKafVONMvJQPvOdjXke0FKpqSkJKSkpODixYvYsmWLw+WR3zMt74ySkhJkZGQoXqOl7WlRlPnvT3V1tWo7UHP5Bmzvm7leMxQhG5ySKxgNYqVOKSQ/x3EuiSpKkw/ZOclonmK8QVEmozV6u0XZbDbj0qVL1B98chZX7rmJ71lLO9HyHNSCNRUUFOhSCsUfArm6EadTCoIhrgO5AYv4uCuUEtoPzO3bt5Gfn685f7JvyUUuFQ8stCjKtG7aNFZK2rpwhesYCXmfav3l9OnTwt9qA5zExEThb2e5B7pKsXNGHqTVRanvkO1ErWxxG5F7Pjt37hT+dpWi3NLSgkuXLqk+yytXrtj8docbti9ZlMln6oiC78zJAa3r87ds2YLDhw8rrj8XP3e5dqN1PESmV9vGSe/abWd8+0pLS3V9w2jo0qWL8HdISIhk2c6E7F+074yqqiqsW7cO+/fvx/Xr12XTuUpRJlGLek5OngcFBUmmIduEs5c/0cAUZR/CmR1fy/o/8TlXWZSlXpBk2deuXZO1FpEyeYOi7AlKSkqoB/arVq1CYmKizSBPjqamJpt1WHLPn/yAANoGjVpmn+VepkC7m9KXX36Jzz77jDo/HlqLsjidlg+R3MdF3A5doSjT5vn5559j06ZNqsFaxJDPW24QRfsukTqu9GEmn0ltba3qO4pWUaaJeEzS0tKCGzduUA8i9E5Aqikn5LNwVqRU8WBFLaBdU1MTrly5oiirMxTlnJwcm99K9UiWp1aHevqgq9Yob9++HYmJiaprPcXrZR39Vt+5c0dyYKqlHmm5ffu23ZKNmzdvqi7Nyc/PR1lZGVUZpNumI9Y+ZynKt2/f1mwp5fud0ndH/NzlvmVag3mR+ai1LfF6a1oFR67fkc9OrW9+9tln2LRpk+J4qLKyUpdSSz77bt262Z3Xug90a2srbty4ITu21aMor1y5UvhbSztRglZRFnv8yS3V4yHrUG6pCFmWs5braIEpyj4E2UkcdakSKzFK7oruUpSl8qWNkkvmpbZGubW1FdXV1Whra/OIolxXV2djAXEG/Azixx9/rPoRLy4uFgYfNJMvtNGsY2JibH5rmbBQUpS1tDdy0KF1EE67flYsu9KzpLUoiwd6NO2ytbUVJSUl1G2YlEWubsh702pNJS3wtAqwXDqtrtfiZ6emHNJ6UmhtQ19//TW2bNmCb775hiq9Ftdrcg2zeNsqMeT3wZGovFJR2zmOw+rVq7F27VqbfstxHEpLS4V0+/fvx1dffaWokDhDUS4sLLT5TdsfkpOTFc+LJ4po8nWFotzS0iK8p9WCUIm/QY4odCaTCWvXrsXq1aud5r4pR3V1NT7//HNs2LBBeJ9eu3YNX3zxhV1UZJL8/Hxs2rQJn332GZUcZL+/efOmbo8RmrIqKytVlwlJKcm07UJpv3jx+1BO3tbWVmRlZeE///kP9uzZo/qtJS3Tav1BvJZUvOyG57777rOTSQ2lAGVk/Skp56tWrcJnn32mOUaKmveiVkX52LFj2LJlC3bt2iV5Xuu2gGKUJjRdEczLkeCsNGMuTxikmKLsBdTW1lIPjJ2FFkVZ/LJ3hnLZ1taGqqoqVRloXVJpLcpmsxmbNm3Cxx9/jF27dlHVKcdxqK6uVvyAcRxnM7CS68xtbW346KOPsHz5cqduHk9aEsigYlJoHTiL96aWqzPx81N7DiRKLoVaJmrIwCpa+wutoqxlFp5mrRi5jof/yKr1MY7jsGnTJqxbtw6HDx+mst7TTCaR+Uh9uGtqamRlIydUHFWUHbEoA+37zSshfvfIobUNXb58GQDd/vAcx2my0Ig9KZQseWS+Dz74oGQaq9WK8vJyxfZLKvz8oJOUk3zm6enp+Oyzz4T1v7wlobCwUNZyQ5at9/sm9g5Q6jvkObU2Ip5s0bpUSApymQbtd5RmPTWPeJDuyJiBnAAUW7XIc2oT02ptDABWrFgh/N3Q0ACO47B//34AyvFY+GBBra2tuHXrlmo5YqVBHICSFrV6raysxKpVq/Dee+8pppPybKH1xFJSwsWTt3Ly1tXV4cCBA2hqasKlS5dU90bWsg0f7Xebtv+S738lKyW5rzffhpTQatFXi3IvHvuptUnea0nO8kuWR/vdIrlz547shJBYfiVZ9VqU1aAZu4u3O3P30kamKHuYvLw8LF++nGp7DLJhqn2QGxsbYTKZZBuU2IJHG1EWoP/4igeCJImJiTZr7gB7qxpAPzNKu0b52LFjuHnzJoB2lz2lmUmetLQ0rFixQtECQRs8g7yfDz74wGmTDmS+amuetM54FhcX2/yWe/7iduIJRZkcVGmdfRW3VRo3f7VyaGZhyfoNDAyULEPMyZMnBUvauXPn8MEHHyim5zjOps7lLKpkmsbGRps6yMrKwscffyxrLaXZHq21tRWlpaU4cOAAbt68qUlRVlobL35WzvIU0SKHVvgtqk6cOIHc3FxNARUB5fZJ41mxc+dOrFmzBhkZGbJlkgo/3z/EbnD8b17x5JVBvi0DEN65YkjZ9FomDQYDrFYriouLYbFYFJ+9OAq9FqTy5TjOZmCsdg9kxP6amhqqAZ+WJVdiK54jbZVsb+R7ITU11UYmpXf3V199hTVr1iA1NZW6XKvVivPnz2secH/55Zd2e6+rodc6pfacV61aRZWP1LeYNgqw1WqVVJxaWlpw8uRJm2Ny7SA5OdnmvXPkyBHZ8lpaWjT1H1oLJP9NuHz5MlpaWqiCeUm5PPMcP35c+FvOik2WoSUwW1NTk42BQ+qexLsXyMXW4TiOqmzSKt7U1KRrazM5q7J4IkHp3dnS0iIYhNra2qjf19HR0YrnaXasoR1fuwqmKHsYfnCh5scP0O+NefXqVbz//vt49913Zdc08S+dQYMGqeYnftnQWmH37t2L//znP5LWBKktfqSUavGLRK5sUkYlBY18iQJQDIjBw1tUlRRlcZkVFRWqa64B5Zd0W1sb1UAqISEB+/btU03HI/VxVnpBxsXF2fyWaistLS24desWKisrcfHiRZhMJk2KslL7o1WUxTPDehTlxsZGXL16FSaTiXo9sVI5Fy9exPHjx7F582aUl5dLvuD5wW12djYOHDhA5WFy4sQJm99qCoLFYrGpN7kBhPi5kAMxfhCVnp4ueS3ZBuWeUXNzM7Zs2YK0tDRs3rxZVoFqa2tDa2srDh06hC1btqCiokJxoNXS0oKDBw9i48aNuHPnjmK/0aJEt7a2wmw248aNG4JC4Ixtw4D2dWQbN25EcnIytm3bhvPnzysOAJqamrB7926sWLECV69eld16o6Wlhcqlm//myD1PqXwB2/a+ZcsW/Pvf/wbHcTZKWnNzMyIjI4XfcltfadnGSu59aLVakZCQgHXr1mHdunWK7x3a9X5S56TqsaqqStI9nSbfmzdv2kw6KW0fR0taWhquXLmCLVu24MqVKw4pyuQ7gtzL9fDhwzbp+AG0FLyV7PDhw9RBqywWC/X2bWKUtmqSejYpKSl2x2jqTEusE6VzUoq6lu1ypKyQUkuB5O6J/47069cPQPv3SmkfY6D9O1tVVQWO4xTbK+03Pjc3F5999hl2796NnTt3Un23yUk4PZD1QROnhYefiOfrSEpWcZ1ItTGg/Xv6zjvvKJbHcZzdhJHSxKYccgFQxcvq1MYQiYmJ+PDDD/HZZ59RB4lU286JLFPu3S0eJ7ti+0wlmKLsYWj3BLNYLDauYkoNhRz4yO3jVldXh5aWFpSVlcFsNit+HPhZtNTUVJSVlQnuhUqsW7cOly5dAsdxuHDhguQLtampCdu2bcPnn3+O0tJSSRnEHUdOTrLD89eIyzSZTMKM8/Tp0wG0W+aUXvZkvkp7UvJlBgUFwc/PD1arVdK1Wk1R5mVpa2vDJ598gnXr1qkOnsQWXzXEivI777yDZcuWyUZvFrt8SrW9yspKVFVV4bPPPsPevXuxceNGxaALtM8VgF17k3uZi2dNpQbeSnVZUFCA1atXY/v27Vi3bp2s/LQWZY7jcPHiRaSkpODGjRvYuXOn7MRIbm4udu7ciZMnT2LTpk26th9RUuDEH1u5QF3i50LWoZ69MMX1ffr0aWEAbrVaZd1KW1tbcerUKZw9exbXr1/H1q1bZS1MFosFSUlJOHfuHG7evIktW7Yovh+1fGQbGhqwdu1abN68GZ9++imampqcZq0+ffq0jbUgOTlZ0Q3wyJEjuHz5MqqqqrBr1y7ZdztN7AdyMK00MCW/T3zbkOpXzc3NNi6UhYWFNuXKeSGQz0JJOWptbcXq1auxceNGm+Mcx2HLli2ClaWsrEzR3ZLWrVWqTqTqUewWrEVRBu5tjdLY2Ij333/fTnat7/aysjJ89dVXuH79Or766iu79du0HDx4EF999ZXwW23NP43CIPdcxPUqtVe5XJ+TmoCRe8dLvb/E9ZOeno63335bsJjLKYNnzpyRlU+cXm0CyGQyITk5GadOnUJLS4sma5nUFk18DJbVq1dj2bJlyMnJkfWM4S3Pjz/+OIKCgtDQ0CC7bMRoNCItLQ2rV6/GypUrcf36ddnnkpubS/Ueam1txddffy3U2bVr1yQn7sRB6mgnweXWcWsNYsZf8+mnn2LTpk34xz/+gR07dkh+c2ndmWkCRYoDogH6JgloPSeU4pgkJycLE2Z37tyhMjIB6s+KxqIs9pDQY1V3BKYoexhyILJ69WrZdORHC1AetNIM5CorK7F27Vr84Q9/wOrVqxXXAaWkpODzzz/Ht99+i3Xr1qkGwOA4zmb7qcjISGzcuBFffvmlTec7dOgQcnNzUVJSgi1btkjOhIpnz+QUKrI+LBYLDhw4gFWrVtl0vEOHDgmWjkceeQSBgYEoLy9XdL8mA4koKcqFhYUoLy/HunXr8OWXX6KiokJSGRHPAJMKUXNzM1asWIFvv/0WNTU1qKiowO3bt3W5JCq1AfHWYs3NzbJKC+8WeuHCBRw+fBiVlZWSLzM/Pz+kpqYKA9G7d+8qBjSidQ0D2l/Qra2tgpVeLq3aGpoTJ04org1fuXKl0I4qKytlPwStra1obW3F1atXcevWLcW1OuRHv7y8XHJ22WAw2Ay8KisrFS0jgPSHT+mdQG7vxcsmhdgDhVQslJ6R2L3sypUrOHXqFD788EObfs0rQ7wF4/jx45JyNzU12bhrVldXy7an2tpam0nEhoYGxT4tNQkhFfTFYrFg7969glW9rq4OKSkp1P1RzloOtPdPvm1MmTIFBoMBxcXFstc0NTXZrB+0Wq02a/FIaNaBk8telJ4rGRSMrzep+zebzTbvHD8/P6oBEHlcHL2ahLdiFRUV2eTb3NwsfCP4b6k4poJYTp4hQ4bIpuPv8caNG0hPT7e7Px7xZJqadV7uvZyWlgaTyWSnpIgnD+Qs80D7d/fo0aPCN5bjOOqgcmKk1m+LB86VlZWC94b43btlyxa78Yx4VwSg/Z387rvvAmivy6tXryI7OxsFBQU230+l9sMrhny7+OCDDyT3ZlVz5b5y5Qq+/vprWK1W7Nu3D+fOncM//vEPvPXWW3Z9RElxE0/GvP3227JBpaxWK3bs2IETJ07g6NGjSExMVNwGUzymkDK0WCwW7Nq1C+Xl5TCbzdizZ4/ddqBA+zOuq6tDSEgI+vfvL3iOHT16VLLs6upqwSOPb1tyz2X79u0wGo04cOAAEhMTUVdXJ/neyMnJEcZEw4cPByA9qSbuB7STCUajUXJsK36e77zzjuI2j0D7NyIpKUlId+XKFcnvtHjdu5SiTBulfefOneA4Drdu3RLW4KspvVoDYVZVVQk7NfDX1tbW4qOPPrL5xvBBGfl3UFJSkqoFGlBXlMkyLBaLZH3l5uba/HZmfB8amKLsYciBkVKEvry8PHAch6KiIly/fh2NjY2SisH69esVB2g8X3/9tVAeH9BBjrS0NOEFbbFYVINFiT8U1dXVKCoqQkFBgTDYKi8vt7EUNjY2Subb3NyMxsZG5OfnCy6QYjiOs1mbZDabceHCBVRVVdl8dHhFcPjw4QgMDBQGgXIDK7PZbDMpoPRyrq2txfbt25Gfn48bN25g27ZtdoMos9ls92IlXxIZGRmoqanBuXPnbD6AH3/8sTCD98UXX1CtE5KzLirNnEp9dFNSUvDtt9/i66+/xpkzZ/D5559LfnTr6+uF5zlp0iQA7cGg5MorKCjAnTt3hLal9CI3Go349NNPsWrVKnz66aeyUabV1rOnpKSgrq4OH3zwAT7//HOb9Hl5eYJi9qMf/QhAuxVFbhb8q6++wvbt27F+/Xo7pZ/nwoULuHPnDvz9/TF58mQAtvvbkmXfunULBoMBjz/+OACoutJLuVKtXr1aNjiNyWRCVlYWtmzZgpMnT2L//v1YvXq13btCXIe8Eqs0kQbYB/7y8/PDsWPH0NDQILj3Xb58WVAk5s6di27dusFkMknus/jNN9/AZDIhIiICU6dOlSyDLNtisSAmJgZPPvkkAFtXUTGVlZXIzc3FypUrsXr1ahQUFEg+l4yMDEE5nThxonBMrS54vvjiC9kgVufOnUNpaSn8/Pzw6KOPYujQoQDkAzft2rULzc3NiIiIwM9//nMA7ZFfpSYtaRRlsq9XV1dLuvMVFBTYrEXlXbr5fmU0GoUBy/Lly22s4VevXlWdsDWZTJotpgBs3vUFBQXCN2H+/PkwGAy4evWqpCUGsLWM3rhxQ3inp6amCh4DQPu9pqamYvPmzdi/fz+++OILyXdqXV0dUlNT8eGHH2Lr1q2qg0KpOrFYLLLumVr2Li0vLxfa/eLFiwFoa688vCx8IC6pAW9ycjJWrlyJTz/9FF999RUaGxuxceNGLF26FBs2bMCNGzfs3kWkKz5ZVnNzM44fP46PPvoI27dvx86dO/HFF1/gww8/xPbt29Hc3CypkHEch7t372LFihX4+OOPsWLFCpSWlqKxsVFyPMN7xm3btg3Lly+3e7+Txoj6+npBOePrgUTsZUV60Kxfv96u7NWrV+OTTz6xG+DzsRp4cnJyZKPEp6Wl4aOPPrI5lpiYaKe0Hz16FLdv34a/vz8iIiJgtVqxYcMGu/z4scjAgQPh7+8vjIfkvAd27dolvJODg4NRW1trN+nOw3EcduzYgbS0NGRmZmLTpk2S3hxvvvmmIMPChQsBtE/iqQVx1WI8kFL8xWMYs9mMpKQkyev37NmDpUuX4i9/+Yswoc0r9YcOHbKbvKioqMDOnTvx1ltvYdeuXZL3Lfd9F4+X2tracODAAaxfvx7r16/HgQMHVL1Q+bbY3NwstFOp905bWxuuXr2KlStXYvPmzUhISBAm6pKTk1FfXy+0hYsXL+LSpUvw8/PDkiVLEBwcjKqqKrs6u337NlpaWrBt2za89dZb+Oyzz1R3BeH1Gj5midT3qkuXLrBYLLhz5w6sVitbo8yQ5+jRo9iwYQO2bNmCLVu22L0Abt26RTXwuHHjhqAUvP766wDaZ8KlBtmtra3CQPcHP/gBgPaZSPF+hyRitwjy42AymVBTUyPkOXLkSPzqV78C0P4iJju01WrFjRs3sHLlSnz55ZdYs2aN3aC6oqICn3zyCaqrq7F79258+eWXNson/+Ixm82C69fw4cMxYMAADB48GIC9otzU1IQvvvjC7iWg9HLev38/qqqq4OfnB39/f1RVVdlZ56QGo+S6LXLdNjmj39jYiK1bt+LChQu4efOmzUcvNzcXHMfh8uXL2Lhxo7Duc/Xq1Vi6dCkyMjKwZ88eYX0pfw93797Frl27sG/fPmGwLfUCLi4uFmQJDw9Hc3Oz5HYdX3/9NcxmM6Kjo/HWW28hMDAQJSUlsuu6r1+/jrVr1+LAgQP45JNPFCd3UlNThYFKWVmZZKCUixcv2gUiUVrLc/v2bRtl6h//+Ac4jsOQIUPw+9//HiEhIaipqZH8eJ46dcpmhnPfvn2Sg1E+wNbw4cPxzDPPAGi3oIjXB/MDtPj4eDz11FPw8/NDbm6u4hKHpqYm3LhxA1988QW2bt0qKGRSs/Ecx+HSpUvYtWsXrl+/jmPHjuHQoUOoqKjAF198IaQjoxSfPXsWlZWVgqIsDrx35MgR7Nmzx+bDXlJSgj179mDfvn02fZD/qPGDori4OPTq1QsPPPAAgPYgPGL4Y+PGjROU34yMDDtXSYvFItTz5MmTMXr0aBgMBty+fVs27sPGjRuxY8cOVFZWory8XFjPKebAgQNobm5GVFQUnn76afTs2RMtLS3YvHmzZL5SSLmRAhCi4Q4fPhzdunUTIlMnJiZKDmp4j4CxY8di4MCBiI2NRUtLC9auXWuXll9XnZOTg/Lycsn8xJFmpdxiv/zyS1RWViIhIQEffPABjhw5grNnzyIvLw8HDhzAu+++i/fffx+bNm0Svh1tbW0oLS3FqlWrsGfPHly8eFF2UHPz5k2YzWZcunQJN27ckJ1U4zjOZhKV7OcbN24Ex3GCRYy3islNqlitVly+fBkXLlyA0WgUlOxDhw7h7t27wkC4tLTUJp7F7du3JRWYEydO4Ntvv0VdXR2uXbsmyCNHc3Mz9u/fj/feew9bt25FXV2d3WQKaZWOiYnBlStX8OGHH+Kjjz5CRkYG9u3bJ1nGihUr0NLSgp49e+JXv/oVYmNjYbVaqfcLrqysxNKlS3HixAlBAV29ejU++OADZGdnC8rqtWvXbGIkXLlyBYsWLRLe4fzYwGKxID8/X3g3igMw8YrooUOHkJKSgra2NsTGxqJ///7CVoNXr17Fli1bsG3bNrtJZn45Cz8Qr62tRUJCguzYpKamBlu2bEFubi5qampw8uRJYb21WtwBcX1HR0fjxIkTOHjwoM2+7aWlpbIGj7KyMnzwwQcwmUxobW3Fxo0b8e9//xtA++QsPxl3+vRp1NfXY+nSpVi6dKmQ9zfffIO2tjYkJSVh5cqV2Lp1K2pqamzW2HIcJ+yh++CDD2L27NkA2pU98aQaX5+DBg1CSEgIBgwYAKD9+yZW7vhdFgDgmWeeEd5XUpMCFosFN27csHlXV1RU2Fnmm5ubhTYwadIkjB8/Hl26dEFDQ4NdLBmx8qQ0+cOvpV23bh3S09Nx5coVm+e7d+9eydg9t2/ftvvmtrS0CEHGEhMTwXEcxowZg3feeQfR0dEwmUw2exY3NDRg//79Qn/JysrC7t277dqP3NIq8diAf1fxXLhwQXZSjcdqteLSpUv4z3/+gzfeeANHjhwRxn2lpaVISEhASUkJLl++bPMuKSkpwV//+lchD55jx44JEzQjRozA0KFDMWrUKAD2e5EnJibi6NGjwvjo9u3bsu9ioH2iMTk5GRs2bMDGjRtx6NAhyYkFg8EgGErWrFlDbZF3FkxR9jLk1hQVFRXZDFbz8/OxfPlymzWt/OBSLSLdP//5T7S1tWHw4MF444030Lt3b7S2tmLdunV2aXfv3o2qqiqEhITgz3/+M+Li4tDW1obPPvvMJh3HcTh06BBOnTqFmzdv4u7duzhy5AiOHTtm40JpNBqxatUqQUFcsWIFpk+fjuDgYJSUlNgorYcOHRIGq0D7h3DPnj3CwI9ft3bjxg1s2LABly9fRn5+PlavXo2DBw+ira1N+HjzWyCEh4ejX79+iIiIEFzvzp49a/MROXHiBG7evInU1FRYLBbcvHkT1dXVwpru7du328wwNzY2CgrHb37zG7z44osA2tdpkzPhfMClvLw8XLt2ze4ZkTPD4uid5GRDaWkpTCYT7ty5gx07duCbb77B7t27cfPmTdy4cQMbN27EgQMH0NbWhv379+Py5cs4c+aMEB371q1b+Oyzz5CVlYWMjAysXbsWFRUVkrO4/PMYO3YsNmzYAD8/P1y+fNlOKeUtYY888gh69uwpKEFSSm1xcTH2798vtF2TyYQ//elPkgNq8sPw1FNPAWgfYIkthvv27UNeXh5Wr16NVatWCe7iNEGdysrKBIXm0UcfxX333Sd8CKTWRPJKzpQpU9CzZ0+YTCa7oBwtLS3Cx3706NEYOnQooqKiYDabbWbhGxsbhdnliRMnIiIiAsOGDQMAyf4ItPehrKwsbN68GQUFBbh27RrWrVuHgoICyTo8dOiQMCDhg/edP3/eLrjOtm3bkJSUhISEBBw6dAirV6/G8uXLAdgrVmfOnMHly5dx4sQJ7Nq1C1euXMGGDRtw6dIloU3xLnUcx6G1tVWYNBk/fjy6du0qtJHDhw/bfPhyc3ORmpoKg8GAmTNn4sEHHxQGcaRiD7QrRIWFhTAYDJgyZQrGjRsn3KPUhE5LSws2bNiAtrY2DBo0CHFxcYIyQc58cxwnTGBMmjQJP/vZzwRr/8aNGyWVT/6dYLVahQkGKRexhoYGoQ1MnDgRTz31FO6//34EBQWhpKTEbu3arVu3hImHsWPHwmAwCB4KK1aswN69e23esfn5+Vi/fr0QcVg8yXHt2jWq6MARERH48ssvUVhYiPr6epw+fRo/+MEP8MMf/tDGDTwvLw9r1qxBQkIC3nvvPaxduxZHjhzB6dOnsXfvXqxdu1ZyG5zbt29j3bp12LNnDzZv3owDBw5I9lej0Sg7ict/8yZMmICwsDDB0iMenHEchw0bNghBg77++musXr3arq75d/Jrr70Gi8WC++67D/PmzQMArF271maAW15eLuwZOm7cOPj7++P69evCDhb19fXYsWOH8A3iOA4fffQR0tPT0djYiGvXruHTTz/Fp5/+f/bOOyyKa+/j392l9yq9qBRBUBEEQYqAvSHWqDFRoynG5Ca5Se7NTd50UzRRYxJjL1gRsStVVIqAICBNQXrvvbPsvn/wzLkzWyg2onc+z5MnuDs7c2bmlF8/+9DY2Ij6+noIBAJidAT631VwcDCam5vR1NREIllElR4qVxvo71MyMjJwcHAAIFmZ6e7uxrlz5xhzAPXM8vLycPjwYeIp6+rqwrlz5/Dzzz/j4cOHuHDhAgDAxcUFq1atAofDwdWrV0m9j9raWoSGhmLHjh04fvw4du/ejRs3bohtT5eYmIjU1FTSF/38/PDOO+9g/fr1eO+997Bp0ybIy8ujpKQEJ0+eREJCAlGY+vr6sGHDBlRUVEBBQQHvvPMOzM3N0dPTgxMnTqCkpASBgYEMx8G7776LyspKKCoqkholiYmJ2Lt3Lwn/pubWu3fvIjc3l7wH+paKLS0t2LVrF27fvo3ExEQcOnSIrN2UQkYZgrdv346jR48iMTGRKEHbtm1DUVER8TBramrCz88Pn3/+OXg8Hh49eoT33nuPXO/Bgwd49OgRBAIBLl68iFu3bqGurg45OTk4fPgwMfbk5ubi888/R2pqKng8Htzc3DB27Fjo6emhs7OTsb9tbW0tMYBbWFhAS0sLo0aNgrq6Ojo7O8WqlMfExCA3NxcyMjKYO3cuPDw8APQ7b0THZnJyMomycnNzI+t2bGwsY90+efIk8VBbWVlBUVGRjF/RXWD4fD5KSkrI2i9tmyRK/klLSyNyRkxMDMNgn5aWRgrG7d27F0FBQWT9ofo2BTXeQ0NDUV9fD1VVVaxevRo+Pj5kDj506BBZD86dO0f6M7W+JSQkiEWdUWMhLy8Ply9fJl50urx4//59Iht4enrCzc0NAHDgwAGpxsesrCx88sknuHz5MvHWxsXF4fjx4+Dz+Thw4ACKi4tx9OhRbN26FZ2dnRg1ahSJoouOjkZubi5jvr569SqRj6ZOnQodHR3Y29uT+6Urtg8fPiT3v3z5cnA4HDx8+FCs+Ci9vfRnk5CQIBbRUFZWhj179pD5qL6+Hp9++inOnTs3pHpJT4OXUlEeasGOvwNCoRB1dXVkQFJVUOn09vaSUKLJkyczvFPUIkwJQ7m5udixYwe+//57nDhxggh/WVlZuHjxIv744w+yoC5cuBAyMjIkVPaPP/4QEwC//fZbAP2Lr66uLrF67tu3jzFYa2trSSffuXMn9u7di7i4OMTExGDv3r0IDQ1FT08PsrKyiLBrb2+PiRMnQkZGBpMmTQIA/Prrr+ScR44cQWFhIWRkZPDqq69CVlYWRUVFJPcpJSWFVNFtbW2Fjo4OmbwSExNx/vx5MjFTXlh7e3twuVyoqalBQ0MDpqam6OvrIwphb28vsehnZmZix44dOHbsGHbv3o2jR4/iwIEDePjwIf766y+yaH/33XdobGyEpqYm/P39MWPGDKioqKC6upoh2FdWVpJiEKdPn8a+ffvIhE8JiJQXPSoqChcuXMC5c+dw6dIlREZG4t69e+T4bdu2Ye/evbh06RIRWt3d3TF58mQA/aEzgYGBjLHQ2dmJwsJCBAYGoq+vD2ZmZmQRPXPmjFiu6JEjR1BRUQE5OTns378fU6dOJX3l448/Jvefn59PJkdPT08oKCgQi7NofpRQKMSyZcuIgPD+++9DQUEBxcXF+Omnn5CVlYWwsDCkpqYiPDychGPZ29vDy8sLNjY2EAqF+Mc//sFoKxWyVlNTg9raWgQGBjLCMiVBtetf//oXent7YWRkhJUrV0JRURETJ04EAIbHAui3Rqenp0NWVhZ+fn7w8vIC0G8QoFuDQ0ND0d7eDmVlZVhYWEBOTo4o3/Tw2uPHj6O9vR1aWloYPXo09PX1yTs8cuSIxDzUu3fvksgKe3t7WFhYoK+vD4GBgWJheADw1VdfobOzE7q6urh//z6mTZsGoN+LKFrZlvKg6+joQCAQICgoCCdPnkRycjK6urpQXFzM2FM8OjoaR44cQVBQEPr6+mBhYQFzc3MSfpWdnQ2hUIgLFy6goaEBCgoKsLGxgbGxMXR0dMj4o3teqT1VLS0tMXbsWMjLy5P54ejRo4w5ihJsrK2toa+vDx6PR449ceIEwxNRW1sLPz8/lJeXQ15eHpGRkdixYweUlJRQU1ODd955hxybkJCAnJwccj4jIyNMnToV8vLyKCwsRHh4OCoqKnD58mW0t7cTo11cXBy2b9+Obdu24cCBA6ioqMCVK1cYY+u3334joeLm5uZwcHCArKwsERJFrfQHDx6EUCiEubk52WrD3t4eysrKKC8vx/HjxxEWFob29nYIhUJs3LiRCH5CoRD79u1j9IszZ86gt7cXt27dQmBgIJKTkyVWlL506RKam5uhoaEBPz8/qKmpoaWlBfX19VBXV8cPP/yAyMhI0v+KiorQ0dEBOTk5WFlZwdnZGcrKyqitrcX+/fvFvHY//PADampqSHhgcnIyWW/oSKqW3NbWhkuXLqGqqor0KVdXV9jY2IDD4SAxMZFENvH5fHz22Wf47LPPUF1dDUVFRejq6qKtrQ3vvPMONm3aRM7L5XKRn59PvG2zZs2Cp6cn1NTUUFNTg3379pFjP/nkEzQ0NEBZWRn79+8nhpT//Oc/6O3tRVhYGB48eEDWgJ07dyItLQ0cDgdz586Fvr4+Ojo68NNPP+G3337D77//jh07diAtLQ1RUVEoLi7Gr7/+ir6+Pri7u8Pe3h5CoRDBwcH46aefwOfzUVlZiStXruD69esoLCyErKws1q9fDx6PhwkTJoDH4yE1NVUs9/nEiRPIyspiKPINDQ1ITU0lxfDMzMzw6aefwsXFBUD/Ojd+/Hh0dXXByMgIM2fOhLW1NWbOnAmgv97A1q1b8eeffyIhIQFdXV2k2FRMTAwjvaGjowOVlZXEYOTl5SVWh8XIyIjIOjExMSguLibr2ZEjR4jM4+fnh48++girV69mKMvXr1/H4cOHUV9fj82bN5N10t/fH9OnTycpHVu2bEFCQgKuXLmCHTt2IDg4GNevX8epU6ewfft2hIeHMyIuPvnkEzx8+BAcDocUwKJC3alIjlOnTqGiogLt7e0oKipCSEgIduzYgbNnzyIvLw9ffPEFUUbnzp0LRUVFGBoawtHRkTxLap4LDg7GyZMnERISgvT0dHC5XMyYMQO6urpobW3F8ePHUVVVhRMnThDjoKOjI1RVVaGqqkoUrN27dxM588SJExAIBDA0NIS6ujq0tLTA4XBICohoZXNqXNrb20NfXx9jxoyBgYEB+Hy+mHf28uXLKC0tBY/Hg6urKxwdHaGsrMxI8RMKhdi5cyeAftmSx+NBVlYW48ePB9DvoKErjampqThy5AgSEhJI1JIonZ2d2LhxI8rLy6GgoEBklaioKEakFSWHJSQkoKqqCllZWdi/fz/Dc0uNsx07diA+Pp6RMtTZ2QllZWVMnDiRrAeU/Lh792709fVh9OjR2LBhA2xtbSEUCrF+/Xqx/Zdv3ryJEydOICUlBREREThy5AjDYLxx40Z0dHRAR0cHa9aswY8//gglJSVUVVVJNH5R7/X06dPo6+uDpaUlVq5cCaBfXqQ/s4yMDBKJsGDBAtjZ2ZF5fMuWLWQt6O3txaVLl8h8YGxsjHHjxsHU1BRqamqMfbiDg4PJOj558mTs27eP6Auff/65xPZ+9tlnRG6gZC7RNeDbb79FQUEBeDwe3n77bfB4POTl5eH06dNiho1nxeNtIvc3IywsDKdPn0ZMTAxKSkogEAigpKSEyZMnY9asWVi/fj0MDQ1HupkSoXIuORwOJk+ejBkzZuDWrVuYMGEC0tLSYGFhQbaWUVRUxIwZM6CgoIB79+6hsrISX3zxBU6dOoXKykqkpKQwPHV5eXnYt28ffH19ce/ePTQ3N+PkyZNkENna2kJBQQF2dnYIDw9HWVkZQkNDMW/ePAD9OTGZmZngcrlwdnaGrKwsxo0bR4SfK1euYMqUKcjLyyMhb3FxccTbSE26ubm5SEhIQG5uLi5duoRHjx5BRkYGPj4+UFRURHt7O6ZMmYLExETcunULjx49gq6uLhFWvLy88N1335GCPp988gkJrzx9+jSqq6uhoqKCV199FRoaGjA0NCRFMdrb29HT00MWZMrKTuV4Tp06FSUlJdi7dy9Wr16N3Nxc8Pl8hIaGkolTSUkJHR0dSE5ORllZGZYsWYJRo0YhPDwc0dHRxMM4Y8YMKCkpoa+vD25ubggPD8fWrVuxcuVKpKSkYOPGjWhvb4eCggI4HA5qa2tx+PBhrF+/HjIyMrh79y5iY2MHrBYNAHp6erC2tkZJSQnxpi1dupQoYqamprhy5QpycnLw119/Ydq0abCzs0NBQQEWL16M9vZ26OnpYc2aNejp6cH+/ftRX1+Ps2fPwtPTEz4+Puju7sann34KoF8Bt7W1RU9PD7y8vJCWlob09HQcP34c69atIwuehYUFDAwMoKCgAD09PYwdOxb5+fnYv38/vvnmGwD9lmLKkr1gwQJoaWlh3rx5OH/+PL799luUlZWRsXr79m1kZGRATk4OM2fOBJ/Ph6+vLx4+fIjbt28TT/Mff/xBil7Y2NhAW1sbsbGxCA4Oxrp162BlZUUE/MjISFRXV0NVVRVGRkb466+/SAqDj48PdHR0ICsrC2NjY+jp6aG6uhrHjh3DP/7xDyQlJZE0galTp8LAwAA2NjbQ1NREY2MjDh8+jPfffx/AfwvzUcKqjIwM7OzsEBMTg5CQEOTk5KCgoADfffcdgP4wOS6XCy0tLYwdOxZaWlpoaGjArl274OrqSiqVX79+HWvWrAGfz4eFhQX8/f3R19eHEydOoLi4GNu2bYOfnx/pCwkJCURAnDt3LpSUlODt7Y1Hjx6hpqYGly9fxo8//oiYmBiykLq7u2Pbtm3YtGkTsrKysHbtWmhoaKCpqYnMLerq6hgzZgza29uJ55gy4lGhsllZWQgKCgKXyyXFtVxcXCArKwsHBwdkZGRg/PjxKCkpQUBAABYsWICkpCTiSZ86dSp4PB5RhKh8vpiYGHh5eaGxsZF4yh0dHaGiogKBQABra2soKCigrKwMERERxKPx448/Emv1jBkzYG5ujs7OTixcuBCBgYEIDAyEi4sL3nvvPXz22WcA+gVDFRUVqKioQFVVFQ4ODkhISMAff/wBT09PdHZ2orm5GS4uLrh+/TrD01peXo4DBw4gJycHeXl5UFVVRX5+Pgljmz59OrhcLkl5sLe3x/3793H27Fn88ssvUFRURHd3Nwnto4QOU1NTlJSUwNnZGTdv3kRERARMTExw7do1xMbGIisrC1wuF6+99hrCwsJQWVmJDz74gAgxPT09OHPmDMnjpTxWixcvJvPjr7/+Sgy2/v7+WLx4MWxtbfHw4UNwuVyMGzcOdnZ28PDwwJo1a1BaWor6+npoaWnB2NiY9NepU6fi4MGDKCsrw9tvv00iNM6ePYtbt26Bw+HgyJEjOHLkCCIjI/H9999jyZIlsLe3R2ZmJsrLy3Hs2DHExMSgqqoKWlpacHR0xIULFxhG3DFjxsDW1hY3btyAqakpiouLcfz4cSxcuBBRUVE4ceIEWSfeeecdeHt747333iPed29vb0yePBl37tzBjz/+SCIOqDXS09MTV69exdatWzF9+nTk5+cTr9eMGTOgra2NFStW4M6dOygoKMCvv/7KCDW+cuUK/vWvfwHoj4wJDg7G1q1bERUVhfT0dHR3d0MoFKKtrQ0XL15EVlYW2WdbX18fv//+O4KDg9HU1ITS0lIcO3YMixYtwq1bt0hBKKA/4oAyGCkpKcHa2ppEezg4OEAgEOD27duM9KiAgACsXbsWV65cIR52e3t7+Pn5QUZGBnPmzIGKigpu3LgBgUAAXV1drFq1ihQVcnV1hVAoxM2bN8Hn88HlcmFhYYEpU6Zg7NixSExMRFhYGI4fP47XX38d3t7eKCgoIMY1S0tLrF+/HrKysvj444/Jeqqnpweg3xCblpaG4OBgTJ48GRMmTCDzrJOTE1asWAElJSXIyclh9erVOHXqFIqKihAQEAB7e3uEhYURQ66Hhwf+8Y9/ICQkBNOnT0d1dTVycnIYxaJ0dXWhra2N6upqNDY24s6dO8jKyoKnpycqKipIusOCBQugp6dHoiIiIiJQXFxM0gQmTpwIJycnlJWVISMjAxUVFcjOzmakeUyZMgVWVlbo7u4Gn8+Hu7s7UlJSUFZWhmPHjsHIyAgCgQCVlZXEq+3v748VK1bg7t27pLiqj48POU5eXp4YARYuXIjm5mbcunUL1dXV+PHHH+Hm5obvv/8ewH/lIarQmo2NDZKSknDgwAG88cYbGDNmDLKyskh01NSpU6GkpEQMiJWVldi9ezeWLFkCIyMjAGAoS6qqqgD65/2oqCgcO3YMn3/+OcLCwpCVlQVZWVliHBg7dizMzMygoqKCpqYmXL9+HYsXL0ZeXh4pBGtgYIDKykrExcUhMDCQKIIAsGvXLuKd/Oyzz+Dv748333wTCQkJ+PPPPyEQCNDU1IQzZ86gr68PKioqmD59OnJycvDo0SNcvXoVlZWV+Oyzz1BYWEgipqhz+vj4kGgloF+GdHR0xJ07d7Br1y4oKyuTdW7NmjVwcnIiEV8FBQX4+eef8eWXX5JCaNT8amdnh/z8fFRUVGDFihWIjo5GREQEkT8XLFgABQUFjBkzBl5eXggJCcGXX36JV199Fe3t7UhPT4e7uzvKyspIGpiamhr8/f1hZ2eH9PR0PHjwAJs2bYKTkxMaGxsZhSRNTU3h7OxMKqVHRESgtbUVHA4HWVlZaGlpgYyMDEm9VFRUBJfLxcSJExETE4Pvv/8e6enppNirkpISZs6cCS6Xi7lz5+LevXuIj49HbGws3N3dyfO7fv064uLiwOVyMX/+fIwdOxYffPAB7t27h5iYGHh4eKCvr484BZydnWFubg4vLy9ERUUhNDSUpE8+a15oRfnixYv417/+hebmZsybNw+ffPIJjIyMoKioiIaGBmRmZiIyMhLfffcd1q1bh++++w66uroj3WwGlJIsFApx79495ObmYuHChYiIiMCDBw9w9uxZIjjOmjULSkpKMDc3x5w5c3DkyBGcOXMGS5cuxZ49e8jAmzRpEqZOnYpLly6hsrISCxcuhIqKCvE4KCsrY+HChcSKp6qqikmTJiEhIQHffvst1NTUMGXKFBL+Y29vDzU1NXC5XBLSFRsbi99//x1eXl5Eab158yZpg4eHB3x8fMDhcPDo0SMygKncktmzZ0NTUxMKCgowNTVFUVERLC0t8ejRI7z99ttQU1NDW1sbtLS0MHfuXKioqMDJyQnZ2dkoKirCP//5T8jIyKC9vR3y8vJYs2YNEUwmTJgAJSUlBAYGorCwkIRVOTo6QldXF/r6+mSRNzY2hoyMDGJiYvDhhx+isbER169fJ3lGnp6eWLZsGVJSUnD27FlUVVXhr7/+gqmpKU6dOoX8/HwinNva2kJGRgZdXV1wcnJCQkICioqKYG1tjerqaggEAujr62P16tXw9/fH8uXLUVVVhSlTpkBGRoZYHJWVlWFpaQktLS3Iysqit7cXbW1tqKmpQUlJCaqrq4nlUUZGBv7+/sQSS71/HR0dBAYGoqmpCdeuXUNISAh+/fVX8Pl8KCoq4u233yYW8VWrVhHv/fvvvw8XFxeUl5ejoaEBGhoaxJOmpKQEJSUleHp6IiIiAu+//z6qq6tJ/uS0adOgqKhIvAgODg7Iz8/HTz/9hKqqKowdO5YohhMnTsTUqVNRW1sLe3t7PHjwAA8ePMCxY8cwbtw4UsAN6Bcs1dTUYGtri76+Pjg6OiI5ORlr166FtrY28ZY4ODhg4cKFWLlyJXx8fFBdXY1//etfSEhIwBdffIF9+/YRKzVVYI6CEuo0NDSIIcPJyQnXrl3DDz/8gFWrVuGf//wnampqoKSkBDc3NxQWFoLL5cLNzQ3Xrl3D9u3b8eabb6KgoIAIXpRyIysri1GjRmHcuHF4+PAhKTxUWVlJjHrKysrQ19cni9DNmzcRGxuL0NBQTJ06FQKBAJs2bUJTUxM0NTWxdOlSfPTRR0hKSgKfz8ehQ4dQV1cHLy8vfPLJJ3j11VexcuVKCIVC2NvbY8yYMeBwOJCRkcGSJUtIePSoUaPQ3NwMgUAAGxsb+Pj4wNXVFUuWLIGcnBxSU1NJqKeqqio6OjrQ3NxMnjuHw4GPjw/c3d3B4/EgEAiwdOlSyMrKIi0tjQhOKioqxDtFVZCnjHQpKSlYs2YNioqK0N3djdGjR2P06NGwsbFBY2Mj8cinpKTgzz//hJ2dHfz8/NDa2gpdXV2MHTsWXC4Xvb29kJWVxcSJE5GYmIivv/4as2bNQm9vLyn6ZWJiQoQzyrhib2+PjIwMfPrppyR0T0ZGBtOnTyfCHuWlSEhIwPXr16Grqwtzc3NkZGTgwIEDREmeM2cOxo8fj5CQEGRnZ+P27duIj4+HkpISiU6wtLSEnZ0dw5s5evRoqKmpoa6uDl999RXJAW5sbISqqipsbGzg5eUFe3t7/PHHH3BxcSHbRe3ZswfBwcEk1HTu3LkwNzfHwoULsX//fgQGBmLjxo1wdHTE8ePHUVpaSoTUpKQk5OTkYN26dbhx4wbCw8PxxRdfAOg3mixbtgw2NjZITU0lVn+gX2GXlZUFh8OBqakpTE1NAfSnn6SnpyMuLg5aWlpYunQpjh8/joCAAJiYmMDLy4tEinh4eGDatGnIyclBUVER8vLysHDhQmzduhXBwcFISEhgbPtWU1ODkJAQ4sGRk5PD1KlTYWlpCQUFBTIPFBcXY+fOncjPz0dISAgqKiqgqKiItWvXwtDQEFpaWli1ahUuXLiArKws3LhxA1FRUVBWVkZbWxt4PB5mz54NeXl5Yti5c+cOamtrsXjxYnR3dxPP6sSJE8HlcqGrq4sZM2bg8uXL+Oyzz2Brawsul4v6+npyD/b29nj33XehoKAAWVlZzJ49m+Tg8/l8JCQk4ObNmyQShmqngYEBZGRksHz5cuzfvx81NTV488034eHhgZycHDx48AAyMjJwc3ODvLw8Wd8mT56M7OxsnDhxghiKrl+/TupdUEVBqfoB1Dvx9vYm4ZdcLhceHh6wtbVFS0sLTExMICMjg1mzZqGoqAi5ubmYNm0anJ2d0dTURIo9GRoaYtq0aZg3bx4qKyuRnp6O5cuX4/Dhw/j888/R0NAAdXV1+Pv7k/B2ZWVlKCsrE+O5hoYGuru7UVJSgoaGBnz44YcQCATEGzp79myyjlH9YfXq1QgNDUVKSgqj7oednR28vb3h6OiICRMm4Oeff8aKFSsQGxuLR48eQV1dHVOmTIGZmRmRyXJzc0ke8ty5c8m5nJycyBzi7OyMxMRELF++nFThtrKywvr169HU1AQTExO4urqiqqoKycnJxJDl5OREIpKsra3R3t4ONTU1LFmyBOfOnUNxcTFjjeLxeJg/fz7s7e1hZ2dHjNeHDx9mRF34+flBRUUFEydOhJaWFng8HpydnREWFoZffvkFo0aNQkNDAyP9hTJOW1tbQ11dHbW1tXj//fexefNmfP755xAKhRg3bhz09PQgJyeH4uJi2NnZISIiAnl5efjoo48QGBiI4OBgFBcXg8fjwd3dHSYmJigtLcWUKVMQGxuL/Px8bNmyhXgzKW+zvb09ZGVlydoXFxeHH3/8EbNmzcKcOXPIWFu/fj1u3bqF2NhYbNq0CXZ2dmhqaoKBgQG2bdsGoVCISZMmYd26dZCXl8esWbPQ1taGzMxMRhqYtbU1Fi1aBGVlZTg6OiI2NhY3btzAvXv34OHhAQcHB1y8eJHIWR4eHiTcnHrv1LuPj49HZGQkkX3t7e0xYcIETJ06FZGRkZg6dSri4uKwc+dOaGtrIy4ujkRuzZo1C25ubhAIBPj111+RlZUFKysrst46OTmRdEdKMadqtrz++uuwsbEBj8dDfHw8zp07h+zsbHC5XCxfvhxKSkrgcDhYtGgRGhoaUF1dzYgUsLOzI443a2tr3L17F56enrh58yYj9F5FRQVLly7FqFGjAPx3xw0XFxfcu3cPqampJNIM6FfsFRUVIScnBx8fH1y9ehUpKSn45ptviBOto6MD7777LoB+48tbb72F0tJSODg44N69e/j6669x4sQJ/PHHH6ipqYG8vDw8PDwgFArh5uaGjIwMkuIx2F7UT4MXWlH+4Ycf8Msvv2D+/PkSc6BWrFgBoN+y/9tvvyEgIIAUr3oa7NmzB9u3b0dlZSXGjx+PXbt2kcE0VMzNzbFq1SoSQlVfX49Tp04hISEBmpqayMzMRG9vL8aOHYtJkybhww8/hFAoRFFRESZMmID09HQsW7aMnI9SUNXV1bFhwwZERUUx8mNMTU1JGB1V9MLU1BSurq4kX+jTTz9FX18f7t69Cx6PR/J5qFAgR0dHxMfH49atW8TLHBwcTBYlHx8feHp6wsPDAzExMbC0tMTmzZuRmpqKhoYGWFtbk/xgDocDNzc3REdHY9asWcjPzyfWSw6Hg8WLF2PixIlkf+Jly5bh5MmTqKysRHd3N9TU1LB8+XIYGBhg1apVJAzIwsIC69atQ0hICOrr62FjY0M8S4sWLSKKsJqaGlxcXBAXF8eoKKmoqIglS5bA0tIS9vb24PP50NLSwrVr15CTk8NYwMaOHYslS5YQJcTExARVVVVYvnw5jh8/ToQkGxsbLF68GK+++ioMDAywbt06nD17FgUFBejr6yPbVlGhmJLo6OhAdnY2SktLoaysjMmTJ0NHRwdAv5BAKYLGxsbYsmULUlNTkZycjLq6OggEAmhra2P58uUwNjbG0qVLybWpPa3z8/OJgiorK4tly5Zh0aJFDMOCi4sLsrOzUV5eTkLOqJDbgoICEopna2sLCwsL5OXlMYoOjRo1CnPnzoW2tjZqa2vB4XCwYMECUtiGnsfk7e1NrN5+fn7IyMiAl5cXsrKyyJYJQL9A7+vrS4SmZcuWYd++fUhKSoKhoSFZ8MzMzODh4YHW1laUlZWhqakJVlZWJEyLqvxJCcfUomRlZUVyZObMmQNFRUWMHj0ampqa6O3tJV6atWvXklDGcePGkaI0MjIyZNGi5/EA/UXy5OTk8NZbb5FxOnnyZLJv+RtvvAF9fX0UFhaipaUFioqKWLNmDby8vKCuro4JEyYgLi4Oa9aswZEjR9DQ0EBCTYF+5ZYSxgEQY+GKFStw/vx5sijb2NhgyZIlZC7l8Xjw8/PDtGnT0NLSAl1dXaiqqqKnpwdFRUUk1NPe3p6c8x//+AfKy8tx9uxZLFq0CJqamrh//z6UlZUxf/58sq+lmpoagH7B2NvbG5GRkeSZKCkpYeHCheBwONDT0yMeVycnJ6SmpiIoKAjR0dHknc6ePRtcLhdjx45Fa2sr8vPziWcmMTER8+fPR0VFBUpKSiAnJwd/f39yj5QnZcGCBejo6CDeK8rKraGhQYxQeXl50NbWhp2dHTIzM3H06FFi0BMIBODxeFiyZAk5fsWKFcjIyEB4eDhaW1vJ2Jw4cSLmz58PDofD2HKOx+PB19cXFy5cwPbt2xn5+TNmzACPx4Ouri5RCBUUFPDqq68iKCgIFRUVREmePn066c8ODg6YMmUKkpKS4OfnR6KBFBQUsGbNGvzf//0fvv32W5w6dQrp6ekwMTEhtRSMjIzg7e0Na2trifMRVTiNzqhRozBq1CjMmDED1tbWqK+vx6VLl+Dj40NCc6kCRkZGRvDy8iIeCn9/f5JDR9V5oMais7MzJkyYgOLiYty5cwdNTU3ESKiiogIZGRnyXOzt7UlYJWVkpp6Vnp4eSYWQkZHB0qVLYWVlhfj4eFRVVaGtrQ2ysrJYvHgxEQz5fD54PB78/f1x9OhRUkdEUVGR9CVKwXNwcEB1dTUSExPFCsRR+ehycnISCydSkUU2NjYkvWPy5MlQUlIi44ta744fP06MixS+vr7E+Ez17zFjxkBHRwd1dXVwcnJCc3Oz2H7zFBoaGpgzZw7GjRtHDHpAvwGnoKAA2traZD4D+gVleiEyWVlZhiNiypQpsLW1RWZmJhYuXIja2lpUVlbCz88PQL9HbuXKlZgxYwZjy5s333wTRUVFGD9+PFpbWyEvL4/XXnsNZ86cISkEo0ePxrJlyyArK0ucIxQfffQR5OTkMHnyZGRkZKCzs5MYpjgcDng8Hol44PF48PLyIgorHQ6HA3t7e7i5ueHEiRNISkqCUCjElClTMGfOHBgbG5Ooj6KiIjIfmZqaYtmyZTA0NGSk7ejr62PBggUknJyOoqIiOdbW1habN2/GgwcP0N7eDh6PB0VFRdja2pLUCxsbG7S0tEBbWxtvvfUWEhMT0dHRgYkTJ8Lc3ByTJk3CnDlzSD9zdHREamoqampqUFRUBC6XCz8/PxJZR9WA4PP58PHxwYULF3Dt2jUSKq2oqEgiDanfKCsrw9XVFTExMbhw4QJ8fHyIguXq6krkmYcPHyItLQ0zZ87EtWvXSK60pqYmMchQkUjUb5OSknD37l0YGBigpaUFCgoKWL58OWRkZODt7Y3i4mKUlpZi5syZZK1samqCjo4OcaxQire/vz+MjIyQmZlJxpS9vT0mT56M1NRUcDgceHh4QE9PD8HBwbh79y6JepOXl8eCBQtITq6zszN8fX3Je9PQ0ICHhweio6PR29sLdXV1zJ49m6wH69atQ1dXF3JyclBXV4ctW7aQ386ePRuurq5Yt24dbt68iddffx0BAQEkvY4us5qamhID2Lx583Dq1CkEBwcTuYJKg+RwOPDz84OJiQkWLlyIK1euQFFRERs2bEBiYiLKy8uhoqKCcePGwcLCAhwOByoqKuSdenh4QEVFBY8ePYKioiIsLCxgZWXFmP+pY1VUVDBz5kxcunQJDQ0N4HA4mD17NmxtbSEvLw9FRUUYGRnBw8MDaWlpiIyMxPHjx+Hv749FixahqKiI7Goxbtw41NTUkGOjoqIwf/58smWgh4cHqUGRlpaGhQsXkrpEz4MXWlGWtNefJIyMjIhX8WkRGBiIDz74AHv27MG0adOwb98+zJ07F9nZ2cSyPhS+/PJLjBo1CsnJyXj77bcRFRWF+Ph4xvYWxsbGWLZsGV555RUiYAL9YTV8Ph/Z2dlQUlLCrFmzSH6elZUVkpOTMXv2bHh6eqK+vh4qKiqMcDADAwMA/UK8uro6fHx8EBISwihwsmDBAiLMUYqypqYmpk+fjhs3biAiIoJYiTgcDubMmUO8RtOnTydhK4qKiiRXhoLaj42yPgPAypUrERISQrw5pqammD59Osk1VFFRwcaNG1FUVESqnVKD2MDAACtWrICsrCwsLCzwzTffYOPGjWLPXENDAzo6OiS/wcfHBzIyMsjIyICsrCysra3h6upKFl9ZWVnIy8tDTU0Nq1atQn19PUpKStDb2wt9fX2YmJiQBUlPTw9WVlZISkqCiYkJtmzZgsLCQmhra8PY2JiE81Eh2GvXrkVNTQ34fD4JmaNwdHQU25dTSUkJTk5OxFNJh8vlYsuWLThz5gzq6uogLy+PqVOnYurUqWhqakJPTw90dHSIEKWpqUmsoxYWFti0aRNu376N6upq6OjowNvbG/r6+mSRoK4vIyODNWvWIDQ0FEVFRTA1NSWCP+WRpdqzYsUKREVFISMjA319fRg3bhxmzpwJBQUFdHZ2khBjZWVlvPHGG8jLy0N1dTVkZGRgaWnJELyoZ6Oqqoo33ngDd+7cQW9vLxwcHIiCa2BgABUVFejq6mLx4sW4cOECqquriUDk7u5O7p9SwOlQ79HExAQFBQVYtmwZTpw4gebmZuI5pazw/v7+aGxsREpKCvz8/HDy5EliKVdQUCDKqbKyMvF4KCkpYd68eYiMjASXy4WPjw/Gjx8PDocDVVVVMsZUVVWxfPlyBAYGMiIIdHR0sHz5cujp6ZHwulGjRhGF76233kJYWBgyMzMhEAhgYGCApUuXMvZfpcbSuHHj8OGHH6KwsBBqamowMjIiCy0dHR0dYoz56KOPsGPHDlhZWZHUCvpxampqZNxwuVypQiiXy4WhoSEqKiowbdo0qKqqIjs7G2pqapg2bRqZp0aNGgUdHR0EBwfD0NAQM2bMQEREBKqrq8nCTIVfOTg4oK+vDwKBANHR0Vi0aBGCg4OJd19WVhavvPIKtLS0SD4pNVdTUSnUtjZUDh4AYihUUFBAV1cXFi1aBIFAgOzsbJImYWBggEWLFpHfUIqGvb09xo8fj+rqanR3d2PUqFHEWACIbzMzYcIElJaWIjk5mRRAmThxIulzmpqaDKFFU1MTGzduRGlpKRoaGmBoaEhCVl9//XUcO3YMM2bMQHV1NUpKStDR0QENDQ288sor0NfXh5mZGUxNTbFhwwZSRRfoN+CuWLECPB4P+vr6EveglWScpvczExMT8h7d3d1JkSBq3l65ciVRAjgcDpSVlbFx40ZERUWhqKgICgoKsLS0JLnOQP/86ujoiIqKCmhqapLr9fT0MAw8/v7+uHTpEioqKjBmzBiS5uHh4QFXV1dSEZ3yYE2cOBGNjY1obm5mvCNKQC0oKICJiQnWr1+PxMREyMjIwN3dHdra2jAxMYGOjg4MDQ3JGjh+/HgUFRVBRkYGampqMDMzI5EJlLIjirGxMYD+StdU/wT+W1eDGi9mZmbYuHEjIiMjUVJSAhUVFbi5uZG5nB4xRRl8qGrP1Gc2NjaYNGkSiVqSkZEh7wHoj0igjtfR0RHbbmv06NHgcrnQ09OTuu8vFYprYGAAWVlZvPrqqwgNDUVeXh709PQwd+5cGBsbMxQPoN8YQPV3SijX0NDAW2+9haqqKsjIyEBHRwccDgfW1tZwdHQEj8fDsmXLoKCgAG1tbSKDUM+Ugp6CR41nUd555x2kpKSAw+HA1tYWWVlZmDt3Lnx9fSEUCkmb5s2bB21tbTx69AgbNmxAfX09qqqqMGHCBJJqY2lpicrKSlhbWyM6OpphYPf19SWpIBwOh9EvdHR0BnS6cDgcst2WmpoaMU5TzJw5k7GFoJycHDZs2ICUlBR0dHTAzs4O+vr6jGcBgEQfVVRUICkpiRjMKOcKAIaxxNPTE2VlZSgsLCTz1dixY8mcaWlpCU1NTaSlpcHJyQnd3d1ISUkhKVfy8vLEeEStfSoqKpg3bx4uXbpElORVq1ZBQ0MD7u7uiI2NxdKlS3Ho0CGybSb1HF555RXIy8tDWVmZYQxxdXWFq6sr4xktWrSIFCkF+mVm6t1T84CDgwNjvvb19SVz9nvvvYfff/8d3t7eMDIyQlNTE+zs7KCsrEzuRVtbGwoKCnjttddw/fp15OXlEdmKKtppYmICS0tLFBcXY8uWLSgoKICKigqRK+fMmYPJkycTQ4KlpSWWLl2KkJAQMi9zuVwYGxvDx8eHpEGamJiQdtPD8UUxMTEhcxOXy4WjoyPDa05HW1sbMjIyUFVVRWtrKxwcHGBgYICysjKYmZkReY161kpKStDU1ISbmxtiY2Px2muvkd9yuVwsXrwYjo6OxMGhoaEBHx8fREREkIg1MzMzcr45c+YgLS0NpqammDNnjtStXZ82L7SiPBB9fX3IyMiAmZkZw2r/tNixYwfeeOMNoojt2rULYWFh+Ouvv/Djjz8O+TxLly6FmpoaOBwOkpKSMHv2bDg5OSEnJwcdHR0kD5LKC6PYuHEjDh48iBUrVqC7u5tYz2bPno2uri64ubmRHAdFRUWxBQMA8URTgpeLiwvJf5aTk4OLiwvx/Oro6JDJFOgXfDgcDuLi4tDZ2QkzMzPMmDEDJiYmMDMzg5ubG7hcLjZt2oTz58/D1dVVbM89W1tb8vfo0aNRUVEBa2trMoEAIJZ/SuBoaWkBj8dj5IpQqKiokII40tDU1CSCPDVgeTwevL29GcIJHS0tLejq6hIvtKhlnY5oLryamhojXJGKcqDaQHnNgH6lYN68ecjPz8fkyZOJN6u8vJwsqHSvsShGRkbQ1tbGu+++i6qqKlJ4hm5coaAEejp6enqkfXToCwV1LiUlJSxZskTs2IULFzIEeTk5OcyZM4dYRuloa2tj3rx5xMLM4/HE3j8FJSgvW7YM586dg46ODtn6gg7dmGRnZwcTExNUVlbCyMgIqqqqePPNNxEfH4/Ozk50dnYyCo3RBQtbW1sUFBTAwMAA77//PsrKyqCtrc0wNKmqqpL3aGlpiTVr1iAhIQHy8vKYPn06mXfWrl0LOTk58g6dnZ2JoYMS7qlFkP6sx4wZgy1btuDhw4fo7Owk3jAej4d///vfDC/Mli1b8PPPP0NZWRlLlizBwoUL0dPTQ56bgYEBUYCp0DsAxFNBYWJiQoxtKioqYttVqKqqYuXKlRL3+3399dcB9M8n8+fPR1RUlMRtV6jz+/n54a+//gKHwyHKCh166CfFtGnTMGbMGFRWVsLU1JQo8AYGBiSiw9vbG9HR0SS/ODMzE4qKinB0dISmpiZcXFyIEMrhcIjHlcvlivU/IyMj0p8pT56cnBxWrFiB1tZWNDc3Q0VFBerq6uBwOCSlZeLEiSQvn8vlShxvS5cuFVM2ORwO5s+fj3HjxqGkpASGhoawtraGvLw8fH19yfxCCYzU+c3MzGBmZsY4FyUwUR65nJwc9PX1kfPRPfXJycnYsmULKisrSZoA9T3lLaVD73t0KC+s6HHU2jRt2jT09PRAU1OTnF9VVRXvvfcedu/eDRUVFYnjmg6Px2MIgQAYaxPQP5dt2rQJfD6fvL8PPviAKBeUYEhHU1NTTFaYPXs2+Hw+ysvLUVZWBmNjY7G1lFIKqPVZNBRdFKr/05kyZQrk5OSwZMkSXLlyhVEok4pQmDx5MvHg6uvrM7zuFIaGhmLpZaNHj8bmzZuRk5MDOTk5WFtbi71PChMTE5JqRaGtrc3ob8B/o1JcXFzIvEbNe+rq6mhvbyfHUGulsrIyqa5L4eXlJdHgQkH3FHM4HLFx9Morr5C/6elHZmZmYpXdqe3jKAwNDSXut62trc1Yr1paWpCYmChm1NLQ0CCfUcZ+anyOGTMG48aNA4fDIe9bTk6ORDhs3rwZurq65NlRXj5J27QNBKWs0bG1tWWsI+rq6mhuboaCgoKYswIANm3axFizqdxSX19f8Pl8xrm8vLxgaGhIUsJkZWWxZs0ashUdJa9SSiqXyyVzAofDgbu7OyNP1djYWGwtBEAKKFZXV8Pc3BwqKiqYMmUKfHx8SCXnTZs2ISYmBjU1NSTMnzKcUVEbVEqNKFS/oRsLqPv08fERO97HxwdqamqMPkAZNiiDDR1KUaaOp5R4UVatWgUulwtXV1dERkZCQUGBsR5PnjyZGH3o2NnZkbQkDocDNTU1sagfNTU1bN68mdRLofDy8iJh4pqamvD19WWMM0l8+umnuHPnDlmjqZQjoP8Z0p8jANLPqHnG29sb7e3tSE1NRWtrKxQVFeHn54cxY8YQmcrKygrh4eEkfeThw4fQ09ODl5cXMXbIy8uT9drFxUXi7hPPgpdGUf7ggw9gb2+PN954A319ffDy8sKdO3egpKSEq1evksXsadDT04N79+6RsFOKWbNmkX0YRenu7mZUvRMt2GRtbU1y3LS1tSVOaHSMjIxI6DVdwNfT0yNhNHScnZ2hr69PCvbMmTOHDHT6BCVJYAWA1atXQ1NTE9bW1sjJySGTnpubG4RCIZkYP/vsM8ZkYmhoSMJNbt++TbZL0dDQYFi4vLy8xLYxEW3blClTxErHU7i6uoqFs23atElsGyt6Zdu3336bVKAVxdPTE3p6eqioqMC4ceNI+K60bQkUFRUZWzrIyMgwtsPQ19fHtGnTyLORJBxQbaMLvFSu5pgxY5Camgpvb29s376dfP/6669DUVERycnJDM8dXaHz9/cnRXR8fHzQ0tIiZsW3tbWVuJes6N6X1DgaNWoUIiMjxZ4dpbgMhpOTE7y9vcUmdzMzM2J119XVha+vLx49ekSqmYsK4kC/IGBoaIjJkyeLGQXU1dWJcAyA5IAB/WHs9Gf5xhtvkL/Hjx9PDDvy8vJihpl169YB6H/P1LOztLQkhiUKU1NTYgihI004FH0eqqqqJIyWfk+iioqCggI2bNiAw4cPw9jYGGVlZYxzbdy4kVxzzpw5jH2gKaZNm8boF+vXrxcTwoB+heCDDz4gaRV5eXlwc3NjeBOpqIdTp06RfEsqTYNShCS9SzqSokGAfqWYLjDr6enB39+fcYy/vz8uXLhAxg8dUaPNtGnT0Nvbi9bWVjQ1NUFbWxu5ublQVVVlHCsqDFBVZSmocE+KTz/9FIcPH2Zsn0KFwX744YcSDVhAv+BlYWHBKFSyfPlyxr99fHwkVkSnoEemAP39lK5IACA5YjNnzsTDhw/R1tYm0aBKQW070tbWhoULF0o8RnTdUlRUhKenJwkhp/cR4L9znqamJr788kuEhIQwCqLRee2118S2BwP61wUqOsTZ2ZlEmnE4HDIGNm/ezJgHxowZI6b8SYJSwN944w3cuHFD4vFU/6LSlCTtvU6xefNm8m7efPNNHDt2DLa2tiT/1d7eHgYGBox8Sipyw8HBAXV1dTA1NRXbPoeCbuyllBmg//lScyjQryjk5eXB0dGRUcl7/fr1ZB1ds2YN8vPz4ejoSOaO2NhYqKioEGVCVlYWb7/9NpKSkkh1cGn3LSqwA5AYGSWKNM8vVVhREuPGjSP5sRMmTICnp6eYcXvx4sWIjo5GU1MT8vLyAPSnwYiOHSpMlTqG3i6g//1T6TZAf8jssmXLxOQR+lxBratLlixBXV0d8R6++uqrZL9iOurq6pg0aRK6uroY84CWlhb++c9/IiAggBjyRRW9CRMmiG1PRPHFF1+Q+xU1jMrJyYkZB6j1//XXXye1SWRkZCTKjJs3byZ/f/rpp2JRnVwul7HmiqKrq8sw+sycORMcDge+vr6Ii4uDmpoaKTBFQUVEUc/ex8eHKHRWVlbIzc2Fj48PUWzl5OQwd+5cCAQCjBkzBtevX0dxcTFGjx4NX19fVFVVoaOjQ6p338jIiGFsp6DetbQUOuC/hdyoZyHJ6EF3jgEgazzQP9/o6OgwIhOAfuOVlpYW5OXloauri6+++oqx88H06dOJkWjmzJnk/VOh2nRcXV0xY8YMcLlchmwgyflIyR30+1ZXVyfzrJ+fH9zd3dHa2gpDQ0PStyhlmm54kBQ1OWPGDAD9RmJqjfj444+lPd6nCkc40EajLxDGxsa4ePEinJyccPHiRbz77ru4efMmAgICcPPmTYlK2ONSUVEBIyMjxMXFMQSDH374AceOHSNhXXS+/vpr4mGg09zcDDU1NQiFQly9ehXt7e3IycmBo6MjmpqaSL7oK6+8Ima1qqqqQkBAADo7O2FtbQ0lJSUsWLCALGpUDtOCBQtIp0xKSkJNTQ3mzZtHJpPKykrcuHEDMjIy6OnpgYaGBjgcDgk/Wrp0KUPIEggE+O2334iyTy3IVJ7oQM/twIEDMDMzw2uvvSamLHR1deHgwYNEGTU2NoaDgwMRPru6uvDzzz9DQUEBqqqqqK2txbhx40heiKS8L6C/cFNkZCTc3d0lVj9vaWlBREQEpk2bhvr6euTk5Ih5RiXR3t6O0NBQRugvRWVlJcnLNTc3x9q1a8XuNz09nYR/r1mzZsgV/HJzc5GZmYl58+aJeVLoUAKbl5cXQkNDoaGhIRZ+RL+XX375BZqampgyZQoKCgogKysLDw8Pid4wiuzsbFJx2svLiyykLS0t2LNnD7q7u0mo0IMHD1BcXIwFCxYwhJFbt25BIBAQa3FISAgjfI6OUCjE/v37yaQ/f/58icIWtVcgHUdHR7H8sIKCAty7dw/z5s0T87K0trZi79696OjoIIYPHR0dbNq0iSFAUPtbZmRkQF9fn7EVz3vvvUcWgKamJrIvMdBvRFq+fDkiIiLg5OREBG76/qw8Hg8WFhYoKSkhkRtUldeBuHnzJqKjo0k4vujC1tPTg2vXrkFVVZVUTZUUJZGZmUm2JHFychp2lcne3l6EhIRIjRSora3FyZMn0dzcjM2bN0NRURGhoaFwdHRkKLhZWVkkrJ3CxsYGampqUsd+Y2MjCV2nqnZLmkeHA1XzoaenB05OTmhra8PDhw+hoaGBlStXiinTAoEA165dg4GBwYBKQUFBAZKTk8Hn82FlZYVHjx6RauJqamr4xz/+ITZ/3L9/H9nZ2Zg9ezY0NDRw9epVkuvo7u4OAwMDlJeXE4GWYtasWRLngaSkJLKNipGREdkChe7hkERFRQXu3LkDHx8fqWHF8fHxYlvOfPzxx1I9mwkJCWQOou4F6N8WKiQkBOXl5Whuboavry/DQyUUCnHs2DFGiOu//vUvqfNkXl4e0tLSMGvWLERGRsLc3Bz3799HSUkJ1q5dy5jXqT3Qx4wZg/v376O6uhorVqxg9FOhUEg8Qx4eHigsLMTZs2ehr69PCuwMhc7OTly/fh0TJ06UOOaysrJw6dIl9Pb2YvTo0bC0tERjYyPmzp1LxkJFRQWCgoJIPjefz8eYMWPg4+NDwqKpZyppzD1tqDmZyid/5ZVXGO2QRlVVFWJiYqCpqYn29nYsXLhwQC/0s0QoFCI8PJyx7VJ9fT3+/PNPyMrKwsXFRaJHkuLmzZskJUUaWVlZKCwsxJw5cxAeHg5dXV0xY6kk4uLi0N7ejlmzZjE+b2lpwZ9//omenh5MnjwZs2fPxtWrV2Fra8tQxPLy8nDy5EnybxsbG2hoaEBZWRlNTU3Q1dUl2z4CEKvyD4AUiJ09e7ZY5ISooemTTz4RGw+RkZGIi4sDj8djbO3n4+PDUFYfPnwoFtVE3/mDDmUkGG79oKFAVYqm2uru7o7a2lrMmjWLzIXR0dEkLN3DwwPa2tooKioSk4OAfrmR6usdHR0S+zpVdExNTQ0rV66EpqYmrl27huTkZIwePRqvvfaaWDsbGxuJjDvQmKurq0NgYCAEAgFWrlwp1Zjd3d2Nn376CUC/AZnaReLq1aswNTUVS2uj1kHKaGxoaAhjY2Pk5uZiwYIFRNamrxM6Ojpobm5Gb28v3n33XYYT5tGjR0hPT8f8+fMHlIGfFi+NoqygoIC8vDwYGxvjzTffhJKSEnbt2oXCwkJMnDhx0C13hgOlKN+5c4chcGzduhXHjx+X6K2R5FE2MTEhijILCwsLCwsLCwsLCwvL34ORMcs9A/T09JCdnY2+vj6EhoYSN31HR4eY1eZJ0dHRAY/HY3iOgH5PkKQwSwCkGBT9PxYWFhYWFhYWFhYWFpa/Hy+Norx+/XqsWLGCbAFAVQFMTEwUi/N/UuTk5ODo6EiqPVNEREQMmltMoaqqiubmZolFRVhYWFhYWFhYWFhYWFhGjpemmNfXX38NOzs7lJaWYvny5aTAFVUh9mnz0UcfYe3atXBycoKrqyv279+PkpISvP3220P6PVWpjoWFhYWFhYWFhYWFheXvxQufo7x69WosXrwYc+bMee6K5549e7Bt2zZUVlbCzs4OO3fulLpXGQsLCwsLCwsLCwsLC8uLwQuvKH/zzTe4fPkysrKy4OnpCT8/PyxatEhsn0UWFhYWFhYWFhYWFhYWlqHwwivKFGVlZbh8+TIuXbqE27dvw9bWFosWLYKfn59YqXIWFhYWFhYWFhYWFhYWFmm8NIoyndbWVoSEhODSpUsICQmBqqoqFi5ciHfeeYexHzALCwsLCwsLCwsLCwsLiygvpaJMp6+vD7du3cLly5dhb2+PjRs3jnSTWFhYWFhYWFhYWFhYWP7GvDSKcmdnJ4RCIZSUlAAAxcXFuHDhAmxtbTFr1qwRbh0LCwsLCwsLCwsLCwvLi8JLs4+yn58fAgICAABNTU1wdnbGr7/+Cj8/P/z1118j3DoWFhYWFhYWFhYWFhaWF4WXRlFOSUmBh4cHAODcuXPQ19dHcXExAgICsHv37hFuHQsLCwsLCwsLCwsLC8uLwkujKHd0dEBVVRUAEB4ejiVLloDL5WLq1KkoLi4e4daJIxQK0dLSgpck8p2FhYWFhYWFhYWFheWl4aVRlC0sLHDx4kWUlpYiLCyM5CXX1NRATU1thFsnTmtrK9TV1dHa2jrSTWFhYWFhYWFhYWFhYWGh8dIoyl9++SU+/vhjmJubw9nZGa6urgD6vcvsPsosLCwsLCwsLCwsLCwvJt3d3SgpKXmu0bgvTdVrAKiqqkJlZSUmTpwILrffBnD37l2oqalh3LhxI9w6Ji0tLVBXV0dzc/Pf0uPNwsLCwsLCwsLCwsLyd+Cvv/5CTU0NFi1a9NycoC+NRxkA9PX1oaqqioiICHR2dgIApkyZ8rdTkllYWFhYWFhYWFhYWFiGRk1NDQAgIyPjuV3zpVGU6+vr4evrCysrK8ybNw+VlZUAgI0bN+Kf//znCLeOhYWFhYWFhYWFhYWF5UXhpVGUP/zwQ8jKyqKkpARKSkrk85UrVyI0NHQEW8bCwsLCwsLCwsLCwsLyIiEz0g14WoSHhyMsLAzGxsaMzy0tLf+W20OxsLCwsLCwsLCwsLCw/D15aTzK7e3tDE8yRV1dHeTl5UegRSwsLCwsLCwsLCwsLCwvIi+Nouzp6YmAgADybw6HA4FAgO3bt8Pb23sEW8bCwsLCwsLCwsLyYrBw4ULMmDFD4nfx8fHgcDi4ffs2Vq1aBRMTEygqKsLGxga//fbbc24py/8iHA7nuV3rpQm93r59O6ZPn47k5GT09PTg008/RVZWFhoaGhAXFzfSzWNhYWFhYWFhYWH52/PGG29gyZIlKC4uhpmZGeO7w4cPY9KkScjPz4euri5OnDgBExMT3LlzB2+++SZ4PB62bNkyQi1nedq0tbXh9u3bcHR0hL6+/kg357nz0niUbW1tkZ6eDmdnZ8ycORPt7e1YsmQJUlNTMXbs2JFuHgsLCwsLCwsLC8vfngULFmDUqFE4evQo4/OOjg4EBgbijTfewIYNG7B79254eXlhzJgxePXVV7F+/XqcP39+ZBrN8kwIDQ1FcnIy9u3bN9JNGRFeGo/yjRs34Ovri2+++Ubsuz/++IO1brGwsLCwsLCwsLAMgoyMDF577TUcPXoUX375JQl1DQoKQk9PD9asWSPxd83NzdDS0nqeTWV5xtTW1o50E0aUl8ajvHTpUiQlJYl9vmvXLvznP/8ZgRaxsLCwDE5XVxeioqJQV1f3zK9VVVWFmzdvoqen55lfi4WFhYXlxWXDhg0oKirCrVu3yGeHDx/GkiVLoKmpKXZ8fHw8zp49i7feeus5tpLlWfO/XhD5pVGUd+7ciXnz5iE7O5t89ssvv+Crr77CtWvXhnWuv/76CxMmTICamhrU1NTg6uqKkJAQ8r1QKMTXX38NQ0NDKCoqYvr06cjKynpq98LCwvK/Q0hICGJiYvDnn38+82vt27cP0dHRDMGHhYWFhYVFlHHjxsHNzQ2HDx8GAOTn5yMmJgYbNmwQOzYrKwt+fn748ssvMXPmzOfdVJZnCKsovySsX78e//rXvzBr1iwUFRXh559/xnfffYeQkBB4eHgM61zGxsb46aefkJycjOTkZPj4+MDPz48ow9u2bcOOHTvwxx9/ICkpCfr6+pg5cyZaW1ufxa2xsLC8xJSVlT33a1ZWVj73a7KwsLCwvFi88cYbCA4ORktLC44cOQIzMzP4+voyjsnOzoaPjw82bdqEL774YoRaysLybHhpFGUA+Pjjj7F27Vo4OTnhp59+Qnh4ONzc3IZ9noULF2LevHmwsrKClZUVtm7dChUVFSQkJEAoFGLXrl34/PPPsWTJEtjZ2eHYsWPo6OjAqVOnnsFdsbCwsDxdhELhSDeBhYWFhWUEKS0tRXJy8oDrwYoVK8Dj8XDq1CkcO3YM69evZ2zNk5WVBW9vb7z++uvYunXr82g2y3NGUv+oqKjA3bt3R0yWYLeHGiK7d+8W+8zAwABKSkrw9PREYmIiEhMTAQDvv//+Y12jr68PQUFBaG9vh6urKwoLC1FVVYVZs2aRY+Tl5eHl5YU7d+5Izc3o7u5Gd3c3+XdLS8tjtYeFheXl4nlO+BSsovziIxQKR6TvsDxd2PfIMlJQIdWamppSd4dRUVHBypUr8Z///AfNzc1Yt24d+Y5SkmfNmoWPPvoIVVVVAAAejwddXd1n3v6R4HmPV2qtHsk5QpK8cODAAQD9/cPW1vZ5N+m58kIryjt37pT4OY/HQ1xcHNk/mcPhDFtRzsjIgKurK7q6uqCiooILFy7A1tYWd+7cAQDo6ekxjtfT00NxcbHU8/34448SK3KzsLCwsLAMh6amJhw6dAjOzs7DTi1i+fuQlJSEW7du4dVXX4WBgcFIN4flf5S6uroBt1F94403cOjQIcyaNQumpqbk86CgINTW1uLkyZM4efIk+dzMzAxFRUXPsskjQkhICHJycvD2229DQUHhuVwzKCgI9fX12LRpE2RkRkZlG8iw/r9QEfuFVpQLCwuf2bmtra2RlpaGpqYmBAcH4/XXX8ft27fJ96LWncGsTJ999hk++ugj8u+WlhaYmJg8/YazsPzNqaioQHNzM2xsbEa6Kf+zsB7lF5uoqCi0tbUhKiqKVZRfYK5fvw4AuHr1KjZt2jTCrWH5O1BbW4uqqirY2dk9Ny/iYOuBq6urxGO+/vprfP3118+oVX8/7t69CwBISUl5rLTOx+HBgwcAgJycHIwfP/65XFMUgUAg9Tsu96XK4JXIC60oP0vk5ORgYWEBAHByckJSUhJ+++03/Otf/wLQv80K3QJcU1Mj5mWmIy8v/z9fOY6FBfhvyM5bb70FfX39EW7NyMOGXrMMl4EEF5YXj97e3pFuAsvfhD179gDol0Gtra2fyzXZ9WB4jMT829TU9NyvSTFQ/+DxeM+xJSPDC60of/TRR/juu++grKzM8NZKYseOHU90LaFQiO7ubowePRr6+vqIiIiAg4MDAKCnpwe3b9/Gzz///ETXYGH5X6Kuro5VlF8yqqurcfbsWXh7e8POzu6JzjF9+nTY29s/5Ray/C9w/fp1VFZWYt26df8TgtzzoKqqCkFBQfDx8Rkxz9bTpqurC0eOHIGtrS28vLxGujkMKisrWUX5b8pIPK++vr7nfk2Kge53pDzKbDGvIZKamkossampqVKPG+4D/c9//oO5c+fCxMQEra2tOHPmDG7duoXQ0FBwOBx88MEH+OGHH2BpaQlLS0v88MMPUFJSwurVq5/oflhY/pdgF+eR41k9+0uXLqGhoQHBwcGPrShfvHgRDQ0NOH/+PKsoS4Et/jQwSUlJAIC8vDypygafz0dubi5Gjx4NRUXF59k8MV6E9xkUFISGhgacO3duSIpyRUUFBAIBjI2Nh3WdmpoadHR0wNzc/DFbOnQSEhJQU1ODmpqaISnKXV1dKCgogJWV1Yjliz4Oz/OZ/i/wvGSXv4uMJNoO+r/Z0Ou/OTdv3pT495NSXV2NtWvXorKyEurq6pgwYQJCQ0PJJuqffvopOjs7sXnzZjQ2NsLFxQXh4eFQVVV9am1gYWFheVY8qwWYz+c/8Tl6enqeQktYWAb2wty4cQMJCQkwMjLCxo0bn2OrXkw6OjqGfGxfXx9Jsfnss88gJyc35N/+9ddfAID33nsPWlpaw2vkMBnufBUYGIiioiI4OTlh/vz5z6hVTx9Jz5S+BvxdFLIXhef1vOgh3iP5jkSvTW/X81SUR+oZvJSmgNLSUpSVlT327w8dOoSioiJ0d3ejpqYGkZGRREkG+q2/X3/9NSorK9HV1YXbt28/tveEheV/CXZxFmckvEkVFRVP9Pu0tDQcOnQIbW1tjM+fxqL5InjXnpSWlhYcOnQI9+/ff6zf/y88o6fBQHMM9ezLy8ufV3OkMpT3KW3MPS+GE/pJz7mmb4s5HKithv5OUJWcH3fcDodnMcbpFYrZtfjxGQmP8tO8plAoxNmzZxESEvJY7aAbmFhF+QWCz+fj//7v/6Curg5zc3OYmZlBXV0dX3zxxf9soQw+n4+7d++iurp60GNbW1ufyLjwMtLS0vK3EKJeJv4uFlKWJ+PSpUsoKytDZGQk4/O/Qz5oVVUVGhsbR7oZA3Ljxg2UlZXh4sWLI92UYVFRUYGWlpaRbsaQGajozt9p/hnKGk2NuRs3bjyHFokzHEX5cZ8tXakeroItFApRWFiIrq6ux7r2cHhWhqpn0Sfp5+zs7CR/09/n32ksvAhIel61tbWoq6t7qtd5VkXDqqqq8ODBA9y9e3dI715UUab3nedptB2pIpYvjaK8ZcsW7N+/H9u2bUNqaipSU1Oxbds2HDp0CO+9995IN29EuHTpEkJCQrB3795BF7kdO3bg0KFDT+xpepnYuXMnDh48+D+xT9zzgl2cXy7a29sZ/x7pfKWWlhbs27cPu3fvHtF2DMaTGm9HwqNcW1uLAwcOYOfOnc/92sOBPq/8nRVl0es3NzcP6XfPQxGUxHCE1McVaI8fP07+Hq6ifO/ePQQEBODMmTND/s3j9oFnNc/l5OSQv5/WGKe/i0uXLkn8fCQLRb2IiPabnp4e7NmzB3/++edTfZbPyrFAH1uPoyiPlMLKKspPyOnTp3H06FG89dZbmDBhAiZMmIC33noLhw8fxunTp0e6eSNCZmYm+XugwUvPPXoRNokvKirC8ePH0dDQ8Fyu93cMAXtRYT3K4tAFosd9JnFxcQgODn7uC4novDLSoddP06IfGxuLc+fOPZNn+iIVAqJ4UaJrhjrHDPRdfHz8U333NTU1OH78OEpLS6Vef6h990WYNx93nn+SPhYXFwcAKC4ufuxzUAgEAgQFBeHOnTsSv39SJZaSYerr6xmfU3vmPk2kyX70z1+kKJG/A6J9mu6pfxp1OqRd52lBFTsEhmYkGUhRfp4yB/1az9NY/NIoygoKChIr+pmbmw+rkMTLimhHr6ysJAPk1q1bI9Sqx+PYsWMoKCjAuXPnnug8DQ0NYh4xCrrHh93/emCoXP6hwHqUxaE/k8c1ykRGRiIzMxOPHj16Ws0aEqKL7EiHXj8NowPQvyDfuHEDWVlZDOXmafE0FeXnNY5elBSmoc4xA30XHh6OrKwshofvSTh16hQKCgpw+PBh8pmogEnvu01NTWhtbX0q1x4JnoZBdLhGN2lr+eOQnZ2N7OxsRERESPz+SQ2CQ5FhnpYiIE1xo7+jkcp7f1EZqE8/TcXxWTkWsrOzyd/DVZQFAgGjT42Uovw8eWkU5XfffRffffedWI7L1q1bsWXLlhFs2d8DekePi4vD/v37SRgO3Rr2IjHUUDVJtLW14ffff8cvv/wi8Xv6ovsien+eJ3v37sVff/01JIWCPimz4V790BWQJxXAnqawOBT+bh5lOk+yqNI9LM9i/D/pOenP6O7du0/anCFx/fr153KdJ+VpejueVgV2SWuVNEW5u7sbv/32G3bs2CFROH4RDIxP4x0M9z4f57lI+81gRoqnFXot2i+ehSJA9x7a2NiQv9m1+PEZaLukZxV6/ayUxKG0l37tzMxMRhGwkVKUn+c8+NIoyqmpqbh69SqMjY0xY8YMzJgxA8bGxrhy5Qru37+PJUuWkP/+F6F3sJiYGABARkYGgKfrBUpJScHly5dHzPIzVOieu+TkZLHv6WHdf/d7GWmampoAAFlZWeSz/Px8nDt3TmxLEfqk/CI+11u3bj31CAxTU1Py95M+k5H2+g1nLqmvr0dQUBAqKyuf2vXpCuSTCCx0g+uzECKfZo4jFXLK0s/TCL1+2kgy/oj2K+oYupFG0nzwd1KUMzMzcfr0abEQYnqE0ePOacP93bPK4ZRkfJT0PrOzs3HhwoVhzcEDbbvztKCHj0vLS34R1+KRRPR5STI6CAQCXL58GaGhoY/dNx9HUa6qqkJQUJDYmJTGcD3K9+7dQ15e3rDb9TQYqUrtL42rTENDA0uXLmV8ZmJiMkKt+fvxvASGK1euAOh/9g4ODlKPEwgEaGlpgYaGxmNfa7jt7uvrQ1tbG9TV1RmC6rVr1+Dk5MQ4lm7pfRGsrb29vejq6hrRvbzpz+nEiRPk72XLlpG/pU38HR0daG5uhr6+vlj4bFNTEzQ0NEZ8S5yOjg7cvn0bADB16lQoKCg89X78OH2N/nvRMLvm5maoqKg8s5BoUYVvOApgYGAgamtr8eDBA3z55Zfk8+HmeHV1dUEgEEBJSYnx+ZOM22dd6IbelwUCwbAVZ/rv1dXVn1q7XgaG+u6Gsn48rTmHw+EMqhRRfYDeF/h8/rDGbktLC5SUlJ44YqGzsxPNzc3Q1dUd8PrBwcEAAFlZWcY8Ty+o9TSUhGdxPCC9bfQ5KDw8HP7+/ozvJY3XoKAgAICuri7c3d2HdH3RwmzPopqwjIwMiYygPyP6Pb4IMs5IQ+8rooXmJCnKVVVVSE1NBdAvLzyOjDDUwoR0jhw5gp6eHlRWVuL9998f9PihnJfeDtG+P1Ie5ed53ZdGUT5y5MhIN+FvzUCdir4QPi2lubKyckBF+cKFC8jMzMTy5ctha2s75POWlJQ8dptOnjyJwsJCbNy4cVDBdKRyMB6X3bt3o62tDR9++CHU1NRGpA2SFBzR4nCSrNh8Ph/bt28HAPj6+jKEjISEBISHh8PV1RWzZs16Bq0eOvT7o8YJ1Y+XLFkCe3v7xzrvQIruUKAX7aN7MwoLCxEQEABzc3O8/vrrz8QC+ySKMlW8SLRdw9naSSgU4ueffwYA/Oc//2F89yTj9lmHJdKF4KSkJLi4uAzr9/RnNhKKslAoHHHDlTTo72ug8TTSHmVpodeiivJQa2TU1tZiz5490NbWfqJ0M4FAgG3btgEA9PT08Pbbbw/6m4FqVLyIHmU6koqGDtT3h5vv29bWBhUVFQDP5h4UFBRIZBerKD8+9HcjukZJUuDoaRuPu5f44xhsqesOdR0dbuj1SCrKlOHheV/3pQm97uzsZIR5FhcXY9euXQgPDx/BVv19GGgC1tHRIX8PJqhXVFTgypUrg+ZC0s/T0NCAK1euMBYcSrinwsCHCr2i5XAHSmFhIYB+y+9gVvrnuYhUVFTg6tWrT5RfSi3O1D0+Kc3Nzbhy5cqwtsZKS0sT+0z0niQpyvRQQ9E9QqnxGx8fP+R2PCsk9bfh9OOioiJcu3ZNLO+R/m/q+cTHxyMxMXFI7aKHgtMVZSqlgDJWPM1qnBSii+ZQvV8lJSVPRSjMz88nf7e0tDw1BVeaQPm0oAva4eHhSE1NxY4dO4Y8H9K38RuJAmp/p/BfUYYiXA60xcmT3NudO3ckjtvhKMr0zyWFT0oq2FdaWoo9e/ZI/c1woKdCUPs705+JpP420JZVwykwqKenR/4eSQO1pBQO+jOgFFsKulIy3JoB9OetrKwssQ1DpbGxEd988w2uXbtGPrO2tiZ/058pfQ6hPpe2RqWnp+Obb75hGGWfhMLCQonXoejr60NoaChyc3OfyvUGasf58+eHVHGe/v5F2y1p3aGvxY+bEkV/X8+qUOdQFOqBqk0/z3FKRfQBbI7yY+Hn54eAgAAA/TmTzs7O+PXXX+Hn54e//vprhFv37BmsINdAeVvDsVodOXKE5CEPlRMnTiAlJQUnT54U++5JhNnHFWCHUgRMmqLc1dU17AHa3d094H0eOHAA9+7dYyxuI01gYCBSUlLEIjX6+voGtI4O9mwkWV4HejYDKQGDtQXof49DKcgjmkstiYHCfiTdd09PD6MfHTt2DMnJyQgNDWUcJ5oP29HRgfDwcISGhpIFdqB7pV+bviCLtmmw8dLX1zekSrsDzRd0xXmgBfRpRQCJzilPK2R6IIW7ubn5iZVn0ZC6y5cvo7W1FVFRUUMyTtGPGYm89KdtPOzs7Hxqgs9QjBwDPeOhtqOvr4+hIHZ2diIiIgKhoaFiY3UoOcrUdenXl1YVWVQxpVfTprfncZ6ppH2I6YoEXZmjGMjIGxkZOew2AM9GABcIBIxnJ+35iKZGAMx7FI3aunnzJuOcw2k7fVcW+lh+nPun+kFycjK5T2nhu3R5g+qL1BoVHR3NOO+FCxcA/DfU/kkJCAhAcnIyYmNjJX6flpaGxMREnD59ekhrsyhCoXBIRWqvXLmCjIwMkjI4EAPJ0E9LURYdswOFXj9JEV5FRUXyN70fdHR0SNwqjH5/osbxZ+FIGsr7Yz3Kj0FKSgo8PDwA9C8u+vr6KC4uRkBAAHbv3j3CrXu23L59G9u2bUN6errUYwbqVMPxwlCChyTrlrQ9mCmLlaQQpicJrxrOAB1MsRlIqaCuU1dXh59//hmnTp0a8nU7Ozvx008/Ye/evRK/p3uAKev9cHkWljXKyi06We3duxc//fST1MVrsAVBkkd5oN8MFMpLtWUgb8aRI0fw888/D3hMWloatm/fPqgHd6DiJ6LvoKurCz///DMOHTokdp7U1FRGMTl62/r6+hjFmajr7NmzBz/99JPExUNa7pRoqNhg7yYgIAA7duwYdC91+tgoKSmRuogOR5l8Gl5boVD4TDzKUVFR5O/bt29j165d2Lp162OfW/T8ogx3W6DnoSiLKn7SBNzHobKyEtu2bSPC+JMyFEV5oGdGj1IYyKt38OBB7Ny5k4xf+rXolYalnUfaHEL/XFpfGGy8lJeXY9u2bY+l2EgKHabPO6K1AID+Nj+NdehZ5yAeOnQIP//887D2DabmkYGeuagXfzhtp5+X3i8fZ/6ivzt6atNg7RK9liRZjeJpFrOU5s2kOzO2b98+oGwricuXL2Pbtm2DrmXU9YeS0ldWVkb+Hkoxr+EqytXV1di2bRvOnj0r9ToUN2/exLZt20hB3uFCPy9VjDU9PR3bt2/Hzp07xQrc0o8XrX/wLNaf4OBgbNu2jRH1IAqrKD8GHR0dpJBReHg4lixZAi6Xi6lTpz6VDeifFfTB97hQE9eFCxckWqVF/z2QR1l0Ur1586bEyUbSovg4E+hwO/tQF4/u7m5ERkYS5VN0kRvMOidpcbl37x4AMCr+UbS3tyMiIkJswaQUYWmhPXRL9OMynAW1qqoKkZGRCA8PR0FBAYB+z+eNGzfIpDSQwEPdB9UnRI99HEV5oPw2aecTCoWkLQP1u4qKCggEAonvjILaJo3u6a2rq0NkZCTDIDDQ/qyi/87Pz4dAIJC6LzI9lFzUo0yvUkpdkxJcJM1l9L4szaOckZEhNgbo31dWVhJhgT7eU1JSxELqJRUMo6ArysPpl5SHb7DnOhjD9ShnZWUhISFB7HP6b+lCI72vPa0caFGGm8/2PPILRSuTi3qcngRqLDyu0CfKUNJm6PejoKDA+I6e/iFtburt7UVVVRV6enpQXl4udi3RFBJJUS2ikU2SFGVp9zHYO6fmEPpOBENlwoQJYp9JM8DRvaGD5eYKhULExcUNuDf1s1aUqTVusP2xJeW5DzT/i0Y+UW0XCoW4ffs2Dh06RNZbaW0CmPP34+a1irZxKNWtpVVglwQV/lpUVISbN28O6z11dHTg+PHjgx4n+nyHE8EI/DcNbKB5aihrS2ZmJjF60Y2Dz0JRpgz1Dx8+lHgd+rxG3ddgW/YNJb2EGu9Xr14VawsF/f6MjIwY34nOba2trYiIiCAK+ONAzVuS1mYKNvT6MbCwsMDFixdRWlqKsLAwUvinpqZmxIobDYWhTBrDgVLMRCe+gazs0oqf3L9/H9HR0Th27JjYdSSFxD5Oxx2ukDdU61VYWBji4uKIJ5d+/6qqqmITSEREBOPfkoStgdp65coV3Llzh+FBFAqFg4b9ii5IkqzWQqFwQGv2cCx6+/btQ1xcHOLj40nfi46ORmxsLA4cOAAAePDgwaDnod6/6HMcrC2SBCFK0BRloP5EfxfSPMH0Y4ZaYIUSXqnnRA/JGs52GnSPhaT7oP9e1KNMZyjjQ1tbe9DjJfUhehvoirusrCyAfqHmypUruHTp0oCeDnofpv8tSTGX1o+pRVX0uUryikhD1KM8lHFx7tw5hIWFobS0dNgVRp9WaLcoQ0kVoIe/Pg9Fma4QifKk0QBPkmMtEAgGNHpKaxs93FB0pwD6+aR5zukGUco4RL/WUAqsiQqS1HXp16fOI9qXh/POh/J+6MdIetd0pY1+LH28D5bnWVZWhsjISJw5c0bqOkd/d8NRwIZrYKP6nLTjJL2DgeZ/aQWOCgsLcevWLZSVlUmV9egRK/SxLy1qa6jjTZLcIu2ZDvSspX137NgxREdHE29vX1/foM/9ypUrUg0GA0GvowP0P4PhVq3v6+uDQCAgz28ww5xQKERwcDCuX7+OpqYmieH49PbQrwMw35+0tUhSgVA6T1or49GjR+Dz+WJGF0nvlO4pHk4esui9BQYG4s6dO09FtxFdG+iFDVmP8mPw5Zdf4uOPP4a5uTlcXFzg6uoKoN+7PFD15b8DdAvSk0ItNNK8R5JCN+kdLiUlhfw9UJK/JOHmcTrus1KURb3govklom0VVdZEFQOhUMgIpxOdBChvHP35XrhwgXgrAcn7ndInpIaGBmzdulUsbC8wMBDbt2+XmrPxJIXH6urqxLye0iyBdG8m9f5FrzeYB4N+PN1zKomB3jVduJDGUJ6LqDBCLSjUb+kRH3SL62Ch1/QigpLGBd17JKmY12DtpkPfdmKghVf0edK9ZZKeFb1d9O+HWklY9LigoCD88ssvEgVAKv9P9H57e3vR2NiIbdu2DZrDTwlCFIPlONHbevjwYUY+KN1wIM3Q+iQK6kDK8FAEwOddlV/aO79//z5++OEHZGdnP/a5H3fXBaFQiMOHD+OPP/4g7evt7WXMzUN5R7W1tYz7G0qOOF0pDAgIQFlZGeMcY8eOZbRT0m/p8wn9OPr7pLa4HKh4kCTo1/z5558HzPOMj4/Hjz/+KNXIDjAV5fr6enKv9LYGBAQQT5eZmZnYOejjcevWrWLhnTt27GC0czj9WnSsDyYnDFadn/4MKEPKQGNOWpSepHEuur7Tobdb0jtLT0/H1q1bJSp50togTVGm99GBjJ+Sxj79s5aWFnR1dWHnzp04ffq0+E3ReNxdS0xNTcnfHR0d2LZtG9mOayjw+Xzs2rUL3333HVmDBgovB5jvgs/nM1IyRJ+1pDWcHi0oaUwVFhZi69atxBgnqRiqqIFqsPlRVGZvb2/H1q1b8dNPPzEKRdL7AXUNykAOiBvLBkppEu3jlCw92PMdCqLj1MDAgPzNKsqPwbJly1BSUiJWLMfX1xc7d+4cwZYNTmBgIPlbKBQiMTERpaWl5LPe3l7ExsYOqTIfFUYmzaMsqSKmtEWXbmFqa2tjHCcpT+lxBMf29nb09PQgPj6ehCA1NjYiNjZWYugRPVyNPmiA/hCm+Ph4lJSUDFi+X/ReJEH3CErKvxK1ikoyHIguZpKKmkgKcRINp8nJyUFPT4+YElpeXo74+HipCs1QkBT6LS3s6ujRo+TvkJAQ9Pb2ivXJyMjIAa37kp67tDYPFHomWgVbUoE2+kJH31aAjiShWFooMd2gMJRiXtKOBf4bbie6yEiK9pAkbGVnZxPlRJq3VzTdQvTc0hZySiCQtjgO1Mfo40J0kX/w4AG6u7slKlWUUCjan3p7e5GSkoLe3l4kJycThbqrq0usQnRTUxMuXrxI/j1YhVZRQZTeLrpAJy2/fSjzXXd3N2JjY8WEBvpYNjY2ZnwnKkx2d3cjJiaGnKOtrU0sXJ9Oe3s7YmJihp3rPBDS7vXixYsQCoUICgpi9Lfq6mpERUWJ5YIWFhaSFBaKgcJ3B7oXoVCI8vJyNDY24siRI0hISBBb3+hjo7y8HAkJCRLHqrQUCeo6ly5dwjfffIOwsDAIBALcv3+fcUxERARjzU5JSSFzi+j4lxYOKsmjnJmZCaFQKJarN1jfo7eFz+cPOBbCw8MhEAjI+jSUOZpqj+ix1JwiKQeYLogDEDN8tbW1QSAQoLm5WWKkwECIzgWSlEx6WyUpJdIiSiSFXou2TTR8n/pe0n7WA4XL0ud6SfM+lcd//vx5AP3rWn5+PpKSksTSiyTlVksLbe/r62P8PisrS2IIMQVdaZSXl0dmZiba29sHrcwsKltkZmYiODh40Pos9Gefnp6O3t5ePHjwYNDCrNT1bty4QeaW7u5uZGVlDZiCSB1HMVgBK0nzMf3dSxpTVLSaaJoGHXofGEqROFFnDL0AXVRUlMTILap/0I1N9P4sFAoZz0q0cN9QIqASExMREBAwYEV+SWtDTU0NY86mP8fh7MjypLw0ijIA6Ovrw8HBgdGpnZ2dMW7cuBFs1fDIzMxEaGgoo4rl7du3cePGDfz555+D/l5SGBjw30VAkpAr2tGpY+kL2927dxmTEr1qHsXjelj27NmD8PBwEvp74MAB3LhxQ6w6MMC0UolOXgcOHEB4eLjEirqibRss7IauaPf19Q14b0KhUEwIGKpnRJpSOlgYjlAoxMGDBxEeHs64l+EWVpDUHyS1SdTw0NDQgJiYGIaRR1obBssbfRxFWRRJ6QH089bX10sMv5b0vE6cOEH+pvrYYKF9QwkTpy+c1FgSvUdJBq6QkBDGZ93d3QgKCkJQUJBYZe3hKMrSCm9RipqoRV1aG0WLhlF0dHSQRZZu2JDkzaEEW9FIjc7OTkaYMeX1DQ0NFYsqEPUwSBKG6Ay1yrzoM6YYiiAfERGBGzduYP/+/eQzUSFetI2iRp2wsDBERUWRfik65kTfx4ULFxAVFYXTp08PaR6i51NS/xcVykSvoaKiInZuesrG1atXERMTI9Z3AwICcPXqVYbiJzpO6QQFBSEqKopR4EaS0FRRUYGwsDAxLyW9Dx88eBBhYWESDTUD5WRmZmYSxSohIQHFxcUSFWtRBYjarklSlIQkpNUXKSgoGPSdiyI610k7N90AQXlOJZ1b9DNqLpMWLSMpKmmw8dLR0YEDBw5g586dOHLkyJCrHXd1dYnlMkr6Lf25FxcXo7S0VOq7kJTCMZCxUFpay1AN19R4kDbnSqK6uhqXL1/GiRMncP36dbEio4N5lEUVaNEdBCilRVI76JXR5eTkGOuY6DMVVbREyczMFCt2OpASS/9bkoxIh8PhoK2tTax/SOrjovMu/Z4GykkWPVY0xFva9YYyN4vKB4PV2hF12Ij+/sSJE1IrdtMjpwaqFTBQup2ke6qurkZoaCgKCwtx8OBBse+p31FrAz26s6ysDGFhYYzwfjpPUvl7OLzQivLbb7/NsJwORGBgoMTtif5uSNoHd6BwFWnVFqV5lCXlOkk7h2gY40AhovX19YxQTmrASCqiJCrM0BXw3Nxc0vklPYuB8jkHQnRwD+adF72OtEX+4sWL+P333xkKQm1tLb799tshtUuagPbrr7+KeaDpAi09F5p+L8P1KOfm5g46YUdEREhUWsvLyyV6DqRZtgGIVbYVCoVSvR1DsVRSNDY2ignAotZVSeeTtKjTn2dTUxN6enoG3IYIGHjLMUmKskAgQGtrK7q6uog1XzQElPqtqPdDtG9KE64GC70erPAW/Xi6EiRtsRZ9Ju3t7Th27BgOHz7MWPwoS3pnZycaGhoYufyi3tv6+nrGc6NSKiTNK5KEmT179kgdE8PZo3MwD5U0qPZ2d3cT5Ur0PQxkEKqsrCQCHDXHiBaAFDWgUd4eqpr0QDmB6enp+OGHH/DNN99g9+7d6O7uxvfff49vv/0W3333HZmD+Hw+urq6kJycjAcPHqC1tVVsjgsKCiLpGVQb6WlFdOWYPm/Qn+2xY8cYfYB+Psqz+9tvv0ndcm+gFBoKSZ4I6riBoj8ouru7h2WQFJ2HHj58iJaWFvT09ODatWs4fvw4KisrpRbzkpQCNVyjtFAoRHFxMbZt28bwhtO9Q1paWhKvD4jX8BhoTZSWqzrQ2sTn8xEeHk6KrJWWlkrcpkoSkt7FgQMHGNElgPiuEtXV1QzliP6cJRVIpLe/qKiIIZc9qaJMOQCGoygPVixJkkdZWpSQpP5EzVeDtePy5csMOYbepwQCAb777jt8++23uHPnzmPtDU1vX1JSEqMvPnz4cMC0Dw6HIzEaRVKUoOhOFHTH1HAV5cFyglNSUoZU7GowRbmnp4fRD0UjGER/X19fL/Ve6OkSon2mvb0d58+fx+nTp8UiG6m1OygoiBgH6dCfv6TorNraWmzfvp38W9SrTB1Db6votZ814nEhLxC6urqws7ODm5sbFi1aBCcnJxgaGkJBQYEIzrGxsThz5gyMjIwYVv2/K5LylUUnF6FQiKioKPT29optfC9NUa6rq4ORkZGYUlxVVSUmBPL5fPB4PLGQ3oEK+tA3Agf6rYR+fn5iixXADNsRhZ7j0tzcjKSkJIwbNw6qqqoQCoWMgTZQuBwFpQyI3qOkkCg6otZEaYKJaAgeIC5USKO9vV2qENve3o64uDjG4k1N7NXV1QyBkL4wJSYmQkZGBmPHjoW+vj75/MGDB1IXPFHBW7S/3blzB7a2tmK/k5WVhbGxMZKTk5GSkgItLS1MmTJFTBkeKGRNdOKkh6FKUj7b2tqkFhsLCgrCV199Rf4tapBpamoiwiCFqNAs6T1nZ2eL9VlJilNra6tYYSDgv/csau29c+cOLCwsEBAQgOLiYnA4HMjLyzMsu6LtaW1tZRQ2uXXrFsN79DQ8yhT0yrDh4eGk7oO0iAHRd1ldXU0UHUNDQ8Z36enpuHz5Mvh8PiwtLWFpaUm+oxRoPT09tLe3SxSEB9q3lVK+tbW1UVdXh/z8fFhZWSEtLQ0mJibQ0NDA/fv3pXrOqPfU3NyM6upqmJmZoaurSyxXeSjKCn0sXbhwAS4uLiTfrqurC1wud0BFWXQuoYQOyksyatQoeHp6ku9F32NXVxdOnz6Nzz//XOL5b968Se6jqakJ2dnZjDEaFxeHGTNmoLW1FYcPHybGUCcnJ8yfP19srggODsZHH30k8Vp07w+974mOpfv378PFxUXs952dncRolJWVBWtra7FjREPcJfUdqs3d3d3o7u6GmpoaeQeSBC/R9yypOM5ASAq1vn37NkJCQoiiVl1djY0bNwIQ9wZLUi4qKyvR0NCAiRMnDln5OHv2LLq6unDx4kUIBAIYGxtL9ARK6tcdHR0IDQ1FY2MjPDw80NvbS/pJc3Mzenp6oKOjAw6HQ5SQ9vZ2KCkpgcvlSi3kJxAIEB4ezvDau7u7IzY2FtevX0djYyPU1dWRlpYGMzMzyMrKIjMzE+PHj0dfXx+Sk5OJ4SI2NhY1NTVwcHCAlZUV7t+/T97t7NmzxQwOogL/zZs3sXTpUgDioeuSnktYWBg2bdqEhoYGMWfGYIpyfX09oqOjoaCgAC8vL2JcGE4a1UBb59DbIM0T3tfXh5qaGtTW1sLCwoJRKAn473pFPTeqXoSWlpaY/ERvd1NTE6mb0dTURNahiIiIQeWunp4epKeniym31L1IClun1v2+vj6kpqYy+jSHw5E4pmNjY+Ho6Ci1HaLKGnVOeq2f4uJi5ObmQl1dXczIIjo/iL6rwfZtFgqF4HA4YudpbW0V28c8Pj6erCmic4Eko6C0Oij0uj6i1dfPnz9PZKAvvvgClpaWaGlpgZKSElatWgUAUg0W0uT0jo4OZGVl4d69ewzPsLQ0OaqtRUVF6O7uhpWV1XPLU36hFeXvvvsO7733Hg4dOoS9e/eKeaZUVVUxY8YMHDx4kFTB/jsjWvWRGiz0zl9ZWYmWlhZSAEBUeJM2QV+8eBETJ05EWFgY4/Ompib09fWhqakJcnJyUFJSkljMp7e3d8iVb6nrV1dXQ15engi1VHjycKzx169fx/3797Fx40bw+XzU1dXh1q1b4HA4mD59OsrLy8XK1dOhJv8LFy6gvb0dOTk5aG5uhpycHKqrq8HhcODk5CRW2ELU2jqcATlUa/9Q9mOmTz5UG0SVc/oE19nZicjISERGRhKlsa2tjYQutre3Izo6Gvn5+ZCTk8OECRPg5OQ0YMVDQPI7k5OTQ2FhIY4cOUIm9Ly8PGzatElsb0hJofqAuJBMz30XFXoFAgGOHTs2pFx9SZw4cQJffvkl4zPRHO3BCtlQnD9/Hv/85z8ZnwUFBWHDhg1ix1LnFO1DHA4Hu3fvJsqkUCjEH3/8gTfffJMow6LtuX79OjZt2kT+fffuXTQ0NCArKwtaWlpwd3cn34lazJubm4nXz9HREVOmTJF633w+X2LxOUD8eVD3ReX+5+XlQVZWlsxfAPO9ZmVlMbaye/ToEX7//XesXr0ahYWFOHPmDLq7u6Gjo4PJkyczqnoDzK192tvbUVlZCR6Ph46ODiQnJ5NIlKlTp2L27Nno7u7G/fv3yRYj06dPl7qlWE9PDxQVFdHS0oI//vgDvb290NDQwIIFC8Qqrw5XUa6pqcGVK1fg5OSEqKgoxMTEgMfjwdPTE25ubhKFSNGxGBAQgN7eXhw7dowIQRwOB//4xz+G3CY6oqFr0kLZ9u3bh5qaGnA4HAiFQiQnJ0NTUxPTpk1jHEcJuHJycowoAQUFBYZRlz4/iM4B0tYH0XBASffa09ODjIwMREdHQ1NTU+J45HK5yM/Px5kzZ9Db24spU6Zg8eLFjPvv7OxEd3c31NXVhxTuJxQKoaGhMeQtUVJSUhgCYVtbG44cOQInJyeSf0pvr1AoxK1btxAfHw8tLS3U1NRg1KhRkJeXh42NDYD+tTw6OhpVVVVQVVXF+PHjYWdnJzF9hBoLlJALSFcI29racPr0aaI8nj59GrNmzcKqVasQFxdHjDnjx4+Hn58fqqqqcPz4cRQUFEBbWxuvvvoq+vr6JCp+aWlpiI+PJyGZEydOhK+vL3Jzc1FTU4N9+/bBx8eHhPBbW1sjJycHhYWFJKpEIBAgODiYOBkePnyIZcuWYfz48SR3edSoUWLXFk2XorevsbGRhAxT/VFU4aL68++//07CvzkcDlxcXCRG8FHju7OzE8eOHSNRFZWVlViyZAn6+vrQ2tqK5ORkKCkpwdvbW6zNdAbboo2eY5yWloaenh44OzuT79PS0rB//34IhULo6Ohgw4YNjHmaUpRPnjyJ8vJynDp1Cu3t7VBRUYGnpyccHR3JMXQjaUNDA8zNzSW2SVZWFu3t7UhMTERzczMmTJjA8GSGh4dL9CgOZV6Ljo4WeyYcDkfieO3s7BSLMKAbskWj+To6OlBYWIhLly6hvb0dbm5ujPVNtK09PT0oLS1FeXk5LCwsBi12KLpW8/l8yMrKoqurC48ePUJDQwMmTJiAhoYGhgMEYEbniM6dkraTpAwRYWFhUFRUxMqVKwEw5S36WDh48CBRkkePHo3CwkJGNNaePXvw6aefSr03aTnYV65cGXIhY+o5U45PoN+g9t577w3p90/KC60oA/0T4GeffYbPPvsMTU1NKC4uRmdnJ3R0dDB27NjHDvUYCUQn4qysLNjZ2TE+F/WKi4a+UhNKfn4+4uLicOfOHWhpaRFBQJTGxkYEBAQgJSUFPB4PixYtIoNkIEW5qakJqamppKI4PTeaytltbm6GqakpGYAcDgfh4eF49OgRCgsLUV1djTFjxogNfFEo72lCQgICAgKI9a64uBhLliyBkZERYyLt6OjAw4cPIRQKMXr0aPzwww+kyJukSTMjIwNjxoxh/Lu3txdtbW3Q0NCQmqMsbTN7eghdTk4O2tvbYW1tLeZtrKioQF9fH2JjY5Gfnw8DAwN4eXlJLJRGnQ8YPORKFEp4pcLZ6N64iooK3L17F/7+/jAxMUF3d7dURbmmpgYxMTHo7u6GhYUFSktLERQUhO7ubhgZGaGmpgZ5eXnYvXs3pk6dCgMDA+jo6KCzs5Nh0GlsbIRAIIC2trbY+5CUG0ZBGUqAfmUtPj4ebW1tsLe3J4utUChEfX09MUJQngxKcROFCm2ura3F2LFjJQpzlGJIGZRUVVXR1tYmti0VJUiKesJ/++03kiYSFhYGPp+PqVOnwszMjORm+fv7Iy0tDYWFhQgMDMTGjRshLy8vsd9RufxAf+QGffum4uJivPvuu+DxeGIe5e+++454UW7fvo1p06Zh3rx55N6o4yVZsoH+aAUXFxd0d3ejqKgIOTk5MDc3x759+yAnJwdtbW0cPXqUPAcbGxssXboUMjIyRKjNyspCcHAwhEIhHBwcYG9vjxMnTiAxMRHz589HeHg4uee6ujq8//77eOWVVxhK1v79+yEQCBAXFzfgPp4JCQlQV1fHggULGBb9W7duQSAQIDk5GXfv3kV3dzcmTZoELy8v8Pl8tLa24tixY+SZNjU1YdGiRdiwYYPYtkwVFRU4e/YsfH19YWdnh1OnTqGpqWlAY87Ro0eJQMfn8xEVFYXs7Gz4+/tDT08PQP9Y37Vrl5hnpa6uDgkJCQxPwfXr19HS0gI1NTWp2+58++235P2amJjg9ddfR15enth7lvTe7927R+o+rF69Gg0NDQgJCUFERAQaGxuhqKgILS0tjB8/HnJycvjmm28Yv6cUZX19fRINQuWTr1ixYsDtCqW17dq1a2JGYj6fj7CwMFJVuLa2Fnv37sVHH33EyHGurKzEuXPnyPtNSkrChQsXMHHiRNTX1yM5ORkhISHo6+uDgYEBbGxsoKSkBHl5eZiZmaGjowMtLS0oLy+Hrq4uMaBQBevq6+tha2sLLS0tco3u7m4UFhZCQUEBBgYGJN/cyckJo0ePRlBQEI4fP46tW7eSZ9De3g5VVVVwuVwkJCSQqK2qqiqcPHkSmzZtQklJCWxsbFBXV4fDhw8zjA45OTlISEjAihUrpAr1dA9dWloafHx8kJSUhLCwMDQ0NMDCwgJxcXEoLS2FvLw8dHV1UVZWhg8//BBpaWmMiIesrCzU1tbi6NGjZLzV19fjzJkz+Pbbb0lUGrWn+7hx43D//n2kpKSgoqICcnJymDFjBjgcDtzc3EhaE73iMRXlQk+9uHXrFh4+fAgejwdTU1MUFhbiwoUL0NTUJJEsZWVlYnKGaIQPJTN0dHSgvLwc586dQ0tLC5ycnNDR0YHi4mLExcWBw+HA3d0d+vr6JAXg5MmTZN579OgR3n33XfT29jKeLzVPhYaGoqWlBQoKCujt7UVJSQmOHTsGExMTHD58mMhLTU1N+PjjjwH0p99Jqr0iSkdHB+Tk5CAjI0Oud/LkSWIwePDgAb744gv09PQgMDCQzAl1dXUIDAzEq6++SgwI1HddXV0IDAwkckNbWxuuX7+OuLg4ODs7w8HBgbEWXrlyBWZmZmhsbBRLWaqvr0dAQADxMt67dw/+/v6YOHEigP/WjqGK2qakpEBDQwOzZ8+WGGVCcePGDalbudENQHV1dRAKheju7kZ0dDSSkpIgFArh6emJqVOnAmDu/EIRFxeHU6dOkfF8+/ZtdHR0YO7cuWhtbUVWVhYqKiogKyuLmzdvorKykiiTPB4Pq1atQl5eHq5cuSIxXe2XX35h/LuzsxOysrIICgoizzA5ORmLFi2S+gyKioqQmJiIjIwMJCYmor29HQoKClBWVsaYMWPg7OwMCwsLlJSU4OzZs6S/NjY24oMPPmCciy57UXPn+PHjsXz5cjQ1NSEtLQ3q6uq4desWGhsb8X//939i0XrS2L17N0aPHj2s3X44HA4aGhoYu8jcuXMHRUVFYob0Z8ELryjT0dDQYGyV8qIhOoBiY2NhZ2cHLS0thhdFFCqPUldXF4mJibC2tsbu3bvJItbe3o6AgAB8+OGHqKysRFhYGMrKyqCmpoY//viDCHV9fX24fPkyHj58CGdnZ/T29kIoFKKhoQGxsbEoLCxEXV0d5OTkoKamhsuXLxNFWVVVFenp6bh69Sr4fD7c3NywZs0a8Pl8lJeX4/79+2htbcWRI0dQVVXFEACdnZ3h7e0NRUVFtLW1oaCgADU1NdDU1ISdnR3xCn/88cdEMONyuWhsbMSvv/4KDw8P8uwoRYNu4ZSXlydClo6ODszNzaGgoAAFBQUUFxfj0aNH+P7776Gnp4cZM2Zg+/btOH/+PLq6umBkZAQjIyN0d3ejo6MDGRkZkJeXh52dndhWCAKBAFwuFw0NDWhubsb58+eJRS8sLAzLli1DTk4OdHR00N7eDqFQiKtXrxLPQklJCbKysuDv70883J2dnWhtbYW2tjYKCgqgqqqKhw8for6+HlFRUSgsLER3dzdUVFRgbW0NT09PhlLR1dWF4OBgFBYWkoleV1cXPj4+aG1tRXR0NBoaGnD48GFMmzYN3t7eKCoqQkpKCh48eABFRUWMHj0a6enpuHTpEhFi6RbFUaNG4fLly9i3bx+OHTuG8vJyBAcHA+ifXFeuXEkUgKioKKIkTJgwAf7+/qivr8f9+/ehqKjICNEVFZipd9re3o4TJ06QMZGcnIz58+djypQpaGpqIiGC1EJdV1eHcePGwd/fn5yruroa169fx+nTp4nQlZCQgPT0dEybNo0hVKWlpaGgoACXL19GU1MT5OXl4e7uDj6fL+YFFAgEEiuJf/LJJ8SDRfXToKAg8Pl8jB07FhMmTMCYMWOwb98+ImwuW7ZMaohnZ2cnbt++TYqU6OjooK6uDnfv3sWhQ4ewYsUKhiEnPDwcYWFh4HA4GD16NAoKCrB79268//77UFVVRXBwMOLi4iAjIwNXV1e8+eab6OvrI/3XzMwMoaGhcHFxweXLl0kF9Pj4eEybNg2+vr7YvXs3SktLiZL+4MEDBAYGYuXKlRAIBIiNjUVMTAyEQiHs7e2xcOFCcLlczJs3D1evXiVeo3HjxmHFihX47bffUFZWhgMHDsDExIR47XR0dJCVlUXem5aWFrhcLjgcDiwtLeHs7IyHDx8iNDQUERERmD59OmNMNDQ04OLFi4xwyZiYGBQUFGDlypX4/PPPUV9fDzU1NaxZswYnT55EfX099u7dC3V1dQiFQlhZWWHt2rW4ePEiWltbcf78eRgbG0vNnaaUxZycHDI2fH19oampiWvXrqGqqgp79+6Fg4MD5syZg4qKCrS2tqKqqgpxcXHo6+uDg4MDRo0aRcbP4sWLERMTg/r6euzbtw+ffPLJkHKpS0tLcfLkSYk1IChFhMpJFggE8PPzg0AggKWlJSwsLAD0C9ZJSUmM9Ia4uDi88sorYp53qg9Lqmx75swZ5OTkIDs7G8rKynB1dSUCvuh6KHpvp0+fRldXF+7evYuqqiqUlpaSdWX8+PF49OgRioqK8O2335Jxyufz8fnnn6OzsxMGBgawsrLC7du3sWPHDmzevBnnzp1jbNtUWVkptvYeOHCAsX5NnToVr7zyCo4cOUIMUbdu3cKyZctw+fJlVFVV4dSpU2L3o6ioCB8fHygoKEBXVxe1tbX47bffUFxcjODgYLS0tEBHRwfp6ekkEszV1RW5ubmor69HcHAwNDU1IS8vj+PHj6OjowN6enrw8PBAbW0tEhISUFFRgUOHDsHc3FxiET1Ro97evXtx5MgRcn+UQYbL5WLlypUwNjbG4cOHUVVVhV27dgHo9+xYWlrizJkzJDRfTU0Nfn5+pKLx559/Dnt7exw5coQo0aGhoTA1NSUC+/Tp06Gqqgo5OTnY2dkhMjISFRUVCAwMxOTJk8XaDvQbOajxsGDBAkycOBGnT5/Go0ePcPr0aaxbtw7a2tpob28Xi866efMmoqKi0NjYiPHjx8PT0xOtra2IiorCmTNnyDOgFDb69jy5ublwcXFBWloakpKSUFpaSuagsrIyfP311/jkk08A9M83DQ0N0NXVRUBAAO7fvw8Oh4PVq1ejrq4Oly9fxoEDBxAZGcnw6sXHxyMlJQWTJ08etL5OfX09QkJCkJeXBzk5Ofj6+uLVV1/FjRs3GBXBCwsLsWfPHrS0tKCpqQlqampYuXIlSf85dOgQ3NzciHEI6F87WlpaoKGhgX//+9+Ijo7G7du30dzcjIiICNy8eRO2trawtrbGmDFjoKioiD/++EOsjR0dHTh+/DiqqqqgrKwMIyMj5Obm4tKlS1BXVyd5+0C/d5haR2tqalBRUQEVFRWx8HAKSkkWCASor68nESwcDgcFBQVIS0tDZGSkxIKeQL/BSFNTE7NnzybK7J07d1BbWwsej4fCwkL09vbCysoK5ubmCA8PR1JSErKysqQWneNwONDU1ERDQwNZH0Sro9OfjVAoRFtbG5SVldHc3IxHjx4xivpScoGbmxvjt9R4OnbsGO7cuSMx9S8/Px8ZGRn49NNPcfnyZUZqQV5eHrZt28Y4vrm5GWVlZVBXVyeGAycnJwCAubk50bNUVVVx4sQJ/P7771i/fj3DqKWhoSHRiE3JZtIQCoWorKxEX18fDA0NwePxUFlZicjISHR2dmLUqFFQVFREcXExAgMDBwyhf1pwhEMtz8vyVGlpaYG6ujr+/e9/Q0FBAV999RViYmLEKrn++9//xpUrV5CVlYXOzk4IBAIoKSmBw+GgsrISt2/fJpYZIyMj+Pv7Y9q0aVi/fj26urpgb2+P8vJyNDQ0QFFREV1dXWKeNXV1dfj7+yM2NhZ5eXlwdXVFbGwsfvvtN/zyyy8Sc2Gsra2xePFi/PTTTwD6wy/ee+89xsDw9PQEj8eTqDgoKipCX1+fCGtycnJQVVUVy6FWVlbGzJkz8cYbb2DhwoUAgLVr10JGRoZYWK9evYpx48bh22+/xalTp8Dn86GjowNlZWWUlpZCIBBAVlYWHh4emDZtGsOSLC8vj71796K4uBja2tqws7NDdHQ04xmpqqrC3d0d0dHRxKpqaGiIV155BWpqaigoKEBoaChqamqgq6sLIyMjPHz4EF1dXZCVlYWGhgZqa2vB5XKxatUqko+ZkJCA0NBQcDgceHl5ITMzkxgt9PX1iecC6A/zcnFxgYODA+7fv4+bN29K9B6pqqpixYoVMDExwVdffYVDhw6RqrF8Ph9jxozBK6+8QrZk6ezsREhICKkqqKysDIFAIDUE08LCAubm5sjKykJlZSVMTEywYsUK/OMf/8Dp06dRVlaGu3fvoqysjEQCzJo1C9evX8fBgwfx9ttvM86noaGB5uZm8rzHjh2L9PR0KCkpISAgAF9//TVKS0thYmKC3377DTdu3MCJEydQX18PJSUlmJiYEOF+8eLFxOL64MEDHDp0iCF4WFpaIjs7GzIyMvjss89w6tQplJSUQEZGBra2tsjOzibPVElJCerq6tDR0UFvb69E66euri7c3d2hrKxMFsEFCxYgLy8P58+fx+3bt9HW1gZFRUXyXkePHo1Ro0bh7t27EAqF0NXVxZo1a8jCU15ejpMnT6KjowM8Hg8bN24kBcaovEQq3JhSgFxdXTFz5kzcvHkTMTExUFdXx4YNG6CgoICioiI8evQI9+/fR29vL7y9veHu7o6DBw+isrISCxYsQGNjo1iYtaGhIVpaWohgYWhoiBUrVmDLli2ws7NDV1cXUc6B/u0kqJzb1157DQKBgIxFZWVl9PX1EUOHo6Mj5s+fzxDcMzMzUVNTAzk5Obi6uoLH46G+vh5HjhyRKtzIyMhg3rx5cHBwkFjH4dy5c8jKyoKamhrWrVsHGRkZ3Lt3D3fu3EFvby/k5OTg4+MDJSUlXL9+nWFc43A4WLduHcaNG4fi4mIEBASItcPR0ZEI90C/t/XQoUMoKSlBdXU1amtrUVtbi7q6OvD5fBK2DACTJk0iUT6tra24du0a6WP6+vpkz+lr164xxjmPx0NfXx9MTEywYcMGpKWl4dKlS2QuPXPmDFJTU5GQkIC2tjYYGBjAwsICWlpaqK2tRUtLC+Tl5aGiogKBQIDGxkZ0dXVBXV0d2traaGhowL179/DgwQPGXC4vL4/NmzfDzc0NWVlZEAgEyMrKQllZGfr6+pCfn4/GxkbIy8sTY52MjAzGjBmDd999FyYmJvjmm2/w8OFDxMbGor29naTl0JVOBQUFfPfdd/j4449x8uRJhuFh5cqVpPqzUChERkYGwsPDGe9FRUUFixYtgpWVFdLT03H+/HnIyMhg3bp10NfXx8WLF5GZmQkFBQW89dZbUFNTw4EDB1BVVQU7Ozvk5uaip6cH3t7ecHZ2RkZGBoqLi8Hn89HS0kKUZg6HAw0NDTGBj8vlQltbG7W1teBwOJg4cSKys7PR09NDnnlHRwcUFBSwYsUKEsmUmZnJ2MdbEpMnT8bChQtRW1uLAwcOoLe3F+PHjyfzgra2NiPqobm5GSdOnEBtbS0UFRXx1ltvMRwJnZ2diI+Px/3794mhva6uDh0dHdDV1cW0adOQm5tLImCotjY1NeHUqVOor6+Hm5sbfHx8wOFwUFdXh9u3b0NWVhaenp7Q0NDAo0ePiJInIyND5gN1dXWGXEEZx7hcLmxtbfHw4UPExMQgIiICSkpK2LBhA8NzL7olkru7O2bMmAGg36B68OBB1NXVgcvlYuzYsTA0NIRAIEBTUxOamprIPErH2toaP/74Iz777DNi0Pb19UV4eDh5zxYWFmhubkZtbS2srKzw/fffY+3ateju7saCBQugrKxM+uiuXbtw7NgxiTmXHh4e8PX1hbe3N9avX09qlcjJyWHDhg2Ii4tDRkYGvL29cePGDXz77bdoa2tDfHw8qquroaSkBB0dHairq6O8vBz37t0TM4hNnz4d2dnZqKmpgZOTE3R0dMSqRC9ZsgQTJkwgldUpo5aioiK2bNkCFxcXLFu2DADw+uuvY/To0QBAIgMSExMZBjAOhwMjIyNMmjQJmpqaqKmpIf2zpqYGPT09UFJSwnvvvQd5eXkEBwcjKysLSkpKeP/996GgoID79++TOifu7u4kDF9DQwPz5s1DfX09Hj16RJQmfX199Pb2orS0FCUlJeQeVFVVYW1tjdLSUtJGOTk5yMrKgsfjwdDQEJMmTUJ1dTWRUf/66y9ERUXhypUrYjU3rKys8NZbb6G1tRWZmZm4fPkyUexNTU1haWmJvr4+NDc3g8fjwdnZGVpaWjhw4ACqq6thYWGB1atXk3WvubkZNTU1aGhoQHl5OfLz89He3g5lZWX4+vri3r17KC8vh42NDcaPH49z585BXl4eeXl5jGKuAPDOO+9g8+bNxAhLGTs6OzvR2NiI+Ph4NDU1MdagTZs2kcrpPB4PlpaWxCvu6+sLW1tbaGtr47333oO2tja2bNnCWGeVlJTQ0dGBCxcu4P79+5CTk8P48eOJg8vJyQnW1tZiOx9IQiAQoK2tDXl5eYztFLW0tLBw4UKMGjUKe/bsQXt7O1555RV0d3fjwoULGDNmzIA1j54WrKI8Qogqys7OzlBUVMSxY8eQlZUFGRkZWFlZwdTUlIRRU94dWVlZKCgoMAQMLpcLgUBA8oybmppgZGSEDRs2oLW1FQEBAaTz2draYtmyZSQpfsyYMZCXl0djYyP27NmD3t5eTJw4EQ8ePEBPTw+4XC4JA6WHZerp6WH//v2YPn06bGxsUFFRAXd3d+JhpAt4dnZ2MDMzA4/Hg4qKCsaMGQMzMzPcvn0bYWFhjFBCfX19GBkZoaCgQEwQmTJlChGyr1+/joSEBKiqqmLu3Lk4f/48+Hw+rKyssHz5csjKyqKzsxN1dXXQ0dGRmCerra2N4uJi7Nu3j/E8J02aBE9PT5w7d46xoGtqaqKzs5MU9zEwMGAUPaJjZGSEJUuWQENDA8HBwURJe+WVV9DT00P2Hp01axbc3NzQ09OD8PBwsSJUlHAsyujRozF9+nSoq6ujpqYG4eHhRDjw9vaGk5MTsrOzce3aNQgEAlhbW2PZsmViuVlAv2J57do1InSqq6vDwcGBCMFCoRBTp07FhAkTyGTZ29sLGRkZcDgcvPPOO/jrr78Y58zPz8fJkychEAjg5eWFmJgYCAQC+Pj4wMzMDEFBQeR6ZmZmqKqqQnd3N3x9fWFjY4OjR49KLGwjFAqhpqaG1157Ddra2ggLCyP5YStWrICrqyu2b9+O8vJyqKurY+bMmbh48SL4fD5Wr14NVVVVXLhwATU1NZCXl8eaNWtgamqKpqYmREREiBV5oXBycsKMGTOQk5ODsLAwhiVZVlYWrq6uWLt2LYKDgyVuW+Hi4oJZs2YRJbC6uhqjR48W65dNTU24cuXKoAuAnp4efH19YWVlRZ7Nvn37SBgjn89nKDs2NjZYvnw5uFwuKioqcPDgQfI9h8PB7NmzIS8vj8jISCJEqqiooKenh+Tujho1CsXFxTAxMcG6detIUS5qGaEEL6B/W5vg4GByLk1NTcyYMQPjx49n3IesrKzUvNSOjg7k5OQQoYV6bqqqqvD09BwwbaOrqwv79+8Xy3UH+gUbf39/aGpqkvOeOXOGzENz587F1KlTsX79ehw+fBjd3d0oLi5GX18fWlpaEBUVhe7ubqiqqsLFxYXksA0U+UPh5OSEuXPnioV+UlEGHR0dDIFm7Nix0NbWRnJyMjGUUooDn8/H77//jubmZuzduxfx8fFiETVPiqamJvz9/WFqaor58+cjJCREzFOwaNEi+Pn5ie1CISsrCxcXF7i5uZFoJVEUFBQwadIklJSUoKKiAlwuFwsWLACPx0NtbS2ampqgqakJXV1dyMvLo6GhARkZGWRe1tLSgqOjI0aNGgUzMzNiBBQKhTh79iwePHgAHo8HeXl58mxXr14NS0tLWFlZ4datWzh06BCZYy0tLfH111+L7Qk7fvx4JCUlobm5GRoaGlBUVERubi4uX76MtrY2qKmpYenSpTA2NmZECgH9XpiVK1dCXl4e9fX1UFdXJ+00MDBAeXk5rly5Qn5jb2+PWbNmkWgWc3NzuLu7Y9q0aUhISEBGRgYRioF+g+O6devEIuo6OjpIjqmMjAxcXFxgbGyMyspK3L17V2I/MTIywurVq2FlZSVWRZyCnqYxELKysrh8+TIJzR01ahTOnj2LW7duoaqqCpmZmVBXV8fkyZPB4/Hg6uoKd3d3HD58GNXV1Th48CCqqqrA5XKhq6sLgUCAhoYG8q64XC48PT3h5eUFDocDGxsbPHjwAC0tLbh06dKAc6i8vDwmTZoEbW1thIeHEyW+vb2dGCkNDAzQ09ODvLw8aGhokIinn3/+mWFMNjY2xoYNG8DlcnHlyhWxPFstLS0iyzg6OmLevHnES3/06FFERERAVVUVY8eOhbW1NSorK/H777+jr68Ply5dQnBwMM6dOzfgllljxozBvHnz0NLSguPHj5N3pK2tjTfffBOysrI4evQoiaQxNzfH66+/Tt5hW1sbkpOTkZqaKhZp4OrqitmzZ4tdUygUoqysDJmZmSgoKBh0b1ttbW2sXLkSEydORGVlJXp6enDkyBFUVlZCV1cXEydORFRUFAQCAdzc3DBr1iy0tLTgyJEjA3oh6cjIyIhVXpeTkyPh1ZJqQdAj3SgMDAzg5OQEgUAADQ0NjB07Fubm5uT5dXV1oaqqatBI1pqaGuzfvx98Ph9TpkyBiYkJ7t+/PyQFT0dHB2+88QbGjRuHr776CiUlJXB2dsa8efPQ3t6OqqoqCIVCjB07Ft9//z36+vrg4uKCuXPnMs7j5eWF5cuXE8P27NmzsXTpUpSXl+Py5csSjTlz5szBw4cPUVRUhLlz54qFvlPrdldXF3E6UFBz+MKFC5Gbm4uHDx+SnQvk5ORINfKWlha0tLSgtbWV8b5kZWUZhS4VFRVJFNCbb74JoVCIH374gRHl8SxhFeURglKUraysoKenB319feTm5kqsoiwNDodDQoYUFBRw7tw50lmVlZWxadMmTJgwASUlJejp6UF+fj7U1dVhaGgIJycnMYVMXl4e8fHxpNAH0C9QLlu2jJEPVllZiZMnT6KtrQ06OjqwtbVFdHQ01NXVcebMGZSXlyMxMRFxcXEQCoVwcXGRWNzB3t4eGRkZEAgEREnS1tYm1+Lz+SQ3q7e3F9bW1li+fDkJVT1//jz27t3L8EJbWlpi5cqVkJGRYYRcS0NfXx9VVVWoq6tDWFgYWltb4eTkBEdHR3A4HFIIIy0tDePGjYOrqytaWlpIOCb1HpycnLBixQokJiaivLwcBgYGjEIqfX19CAwMFNuSxsHBAYsWLWIIHJT1VUlJCaNGjSKVPmNjY1FbWwtVVVV4e3uLedK6u7tx+fJliYqevb09Fi9eLCacA/2LeGdnJ5qbm1FaWgoZGRkYGxtLPFYaH3zwAQnFoyMq0FHh1ioqKmhoaEBbWxuEQiHs7Oxw9+5dBAQEMAwsenp6mDNnDtLT08lkbmJigmXLlkFdXR1A/2JNTfZcLhdqampoamqCoqIiNmzYAF1dXTx48ABnz55lTKoqKipYs2YNDAwMGG3u7Owknofa2lr09fXB2tqaERbe0dHx/+29d3hTV7b//VWxLffee6+4AzY2vffeQyCUQCCUZEIyk9wJM7k35ObOLzNpkwQmvdEhdELH9GJjwAUw7sa99yJL7x9+955zpCNZbhiY/XkePyDp6Jytc3ZZa+1VqMtnSUmJ4CIeGxuLkJAQNDU1wcrKClZWVvDz89OpLBEpm3X37l0UFhbSeDtbW1uYmJjAxsYGtra2vO+Ym5sjOzsb+/fvp5nMLS0t4e3tjYiICDg6OvJ2cR88eIBDhw5BT08PkyZNogp3U1MT0tPTYWxsjPj4eNTX1+Pjjz+mSqCJiQlWrVpF739+fj4ePHgAX19fuLu78+aW1tZWFBQUQF9fH46OjrRPEcOei4sL7OzseHFh/v7+8Pb2FsxwqitxcXE0a/xvv/1GjYyurq6IjY1FQECAmisqEYitrKyoAr5lyxa1mFugQ7HesWOHYCyytbU1nJ2dYWtrS//Mzc3R0NAAPT09Xg4CrkIMdPSrn3/+GYWFhZBIJBg+fDjWrFmDtLQ0VFdXo6ioCO7u7rxzEM8UroDo7OyMwMBA5OXlUbdBY2NjWFpaoqWlBXV1dRCLxbC0tIRMJqO7bIaGhggKCkJUVBTs7e2hUCggkUjoPPOHP/wBKSkpvKSQ06ZNg5eXF/7f//t/uHXrFjIzM+nOiqqHkFgsRkxMDPz9/Wk+BA8PDyp0HTx4UGO5OFWkUqnWRGiAsMfM9OnT4efnB19fX3h7e+PEiRMoLCyku1FxcXEYP368WhKaqKgowURDbW1tdEdXKpXC3d2dxgs+fPgQHh4eap5MBBsbG1hYWODRo0cYMmQIrl69iuzsbLi7uyMoKEgtw//s2bPpfJqRkYHk5GSYmpoiLi5OMOM+8O+660JhAba2thg+fDj1ODAzM6O7Y0qlUtA9vyvIZDI0NjYiMzMTLS0tCAgIwObNm/GPf/xD7dhp06bRUK4ffvgBOTk5qKurw759+9TygRgbGyMkJASDBg3ixSgOHz6cV4GjpKQEmZmZqKiogFgshrm5OSwtLWFhYQFbW1tqrMjMzMSOHTvo2jN16lSNLp2hoaE4cOAANQLLZDKsWLGCzsetra3YuXMnsrKyYGdnhxUrVsDAwACtra1ob2/nGUZXr16Nbdu28c5vbW2N2tpaHDlyBFevXoWenh5VCOzt7REdHY3m5maUl5ejqqoKFhYWCAsLg5eXF/T19RETE0PzIDg5OSEyMpK2jVQUqKiogK+vr+DmQXt7O65evYrz589DLpcjNDQU06dPh0QiocnUNFFTU4PU1FSkpaWhubkZ1tbWcHJyorvfZA1wcXGha1RNTQ22b9/O2+EPCQnBrFmz6BxdX1+PEydOIC8vD9bW1vDz84OFhQWKiopQVlYGqVQKR0dHeHh4wMHBAXK5HIWFhSgoKIBMJkNgYKBatmjCjBkzcODAAZw6dQpXr16lBpsRI0aojdnOfr8qlpaWqKqqQlJSEk+uJtjZ2cHS0hJ2dnbw9PSkG0QpKSnUC8DU1BTR0dE4dOgQzVFEdnNV4RrDuSxZsgTffPMNHj16hKFDh6KiooIm5mpvb4etrS327t0LNzc3pKen8+Y5U1NTrF+/no4VLu7u7tSAnJGRgeLiYuTm5vI8RUkIZ2cQV/Xo6GhER0dj/PjxeP3112lbpFIpXnrpJTg7O8PMzAzffPMNUlNTmaL8PEMUZVVEIhHdtSPuuzKZDBEREYiJiaHxC83NzbC0tOQJTO3t7bh37x4aGhoQGhoKU1NTLF++nBfnQJg0aZKaIEpcKVNSUnD//n24uLhg4MCBggt8eXk5fvjhB7oLS9zbNm/erBa7q4nIyEjBxAkAsH79enz22WcAOix3DQ0NsLKygkgkwp/+9CfqKlRZWYnff/8dVVVVCAoKQnx8PKRSKd555x188MEHnWarNjc311oDF+hwC+PuhEyfPh07d+7ErVu30NTUhAEDBsDR0RGxsbG4evWqxvO0tbXxSoIMHDgQEyZMwOzZs9VKKglBsqLLZDKIxWKeUODh4YGcnBwolUokJyfjwoULqK6uhkwmQ3x8PIYMGSIYowZ0KMrEytld3nzzTbU4F8LDhw+RkpICR0dHDBo0CBKJhC4gBG9vb5SVleHOnTs4ePAgzYg5adIkGpdE6g6TMiRcFAoF9u7dS+PQjIyMsHjxYl5G9NTUVBw/fhwNDQ3w8/PDpEmT6BjUlgmZMGbMGLVsmABoPC5JbmRmZoZJkyYhICBA7dgFCxYI1gclMYoEokgOGjQIN27c0NougrOzMx4/fgy5XI6ioiKYmJjQHVNdUVXcPDw8sHjxYmzZsgW3bt2Cra0tnJycNAodgLDwpwrJsmpgYECT2RBcXFywePFifPjhh11qO2HRokVoa2ujCaMAUFd2bozbK6+8Amtra7S0tPDqOBKCgoIwd+5cfPLJJ7wEejExMbh27Rqam5up66GhoSHc3d3h4eGhlmRKG6oCj4mJCerq6lBRUQFjY2MYGhoiNDSUKnpC36+ursb+/fvpHBUSEoLp06dTzxG5XE5dHrWhKeETwcbGBuvWrUNiYiKN43VycsKqVavQ1taGrVu38o4fNmwYvv76ayQkJKCwsBDe3t4YM2YMzVcghEKhQGJiIjX2EUWyqqqKGq1MTEzg5uaGsLAwtfKIQEcffuONN3D06FFa7ookTnR2dqZK9UsvvQQHBwd88MEHaueYPXs2Ll++zCttQp47YdGiRYKVC1asWKHmGqkNMzMzGmJD1uABAwZAJBKpPXcSM6+JP/7xj7hx44ZaCJdSqcT9+/dx79491NbWwtTUFEFBQQgODhZcF4jRTBej3pQpU3hx3VxMTEzUvILefPNNbNu2jbfuRkVFYcqUKfT1jz/+yFPSKyoqUFlZCbFYDAsLCyoLqDJx4kSdXD2FKC8vR0ZGBpydnXmxlqoQuaWwsBCPHz+Gr6+v4I5iS0sL9PX1BQ0ehA0bNuDTTz9Ve9/CwoLm0SDrclhYGKZMmYIxY8aoleMkGBkZYfz48Thw4ADc3d3R1NRE48YJpqamCAwM7HRdaW1tpQY2wrvvvkvrpxNFqzuEh4fTcmBAx+YAN148JiZGo7zS22zatAn//Oc/0dbWhtbWVohEIkGvOwDUY0FX3n33XXz88ceora1Famoqrly5QksiRkZG6pwAa9iwYUhISMDVq1dx8uRJukZbWVlRQ8qAAQMwdOhQNfnKwMAAixYtUksGR8LNAPDkDKVSiQsXLiAhIQFmZmbUECpkKCRyJ5d58+Zhy5YtOHr0KF3bHBwc4OvrS6shKBQKmJqawszMjP6ZmJjwnjkJtcnOzkZubi6CgoJ42esfPHiAHTt2PBFF+blK5iWXy3H+/HlkZmZSF8vCwkL6EJ5G4uPjUVNTQ92DuYmESAZWU1NTnsVcU5Y3iUSC8PBw3nuayvJERkaqKcpmZmYoLy9HSEgIQkJCtLbbxsYGL730Es6ePQu5XI64uDi4uLioJXIhTJ06Va12nLaU/5aWlpg2bRoOHTpEE28RiHs50DFRcEtcELhZH7kMHDiQZkXtjLCwMBq/xcXKygqGhoYYOnQofY/sZGqCGBumTZtGS5WR36RUKjF69GiNafQBYO7cudizZw9P2OXuKNrZ2SEnJwcikQgREREIDw9Hc3MzDAwMeJPPkCFDcOXKFd65idutqqIs5HUwffp0XuZBgqYkG0CH0EUEL4JQaQ4bGxt4enpi48aNdCeLi6mpKW/XhGuYEIvFmDNnDh4+fIjGxkb4+/vTBZ4Il8HBwQgKCkJ7eztvPA0ePBjx8fGdKsrm5ub0OXARiUQICgpCQEAAjTHStMhruk+zZ8+mGbAB0F1xXZVkoKM/EBdLV1dXjccR90JV4uPjce3aNd6OvoGBAaRSKfT19dWSiGhCl7lWJBLRuUn1npBSdZ1hbGwMPz8/1NbW8tzYrK2t1QwEqkqijY0NXXQ1KZCkj6q2xdfXF9euXaM1ULvLkiVLcPbsWSpMhIeH03ra3HmUuFoLGTxtbW3R2NiImTNnIj09HSYmJrTag6+vLzIyMiCVSjutXwp07kZL7hP3fpA5SEiwtLS0pGO/MyWcIBaLMXDgQF7pMrJroStKpRJGRka0nWKxmFefneDq6gqRSMRTVAnES4pLVFQUT1HWpPBrMyIJwb02N5eBkJeKtnmWfB4TE4Pa2lr4+/ujoKAAFy5coG7JpJSUKiNHjuTlEmlublbboSbrYVfaJGRkJxUxuKiOQdW+Ym1t3Wl224ULF2qtr66JlStX4uuvv4aNjY1G+YULMZo5OTnxvIyI+zdZR8h90eSWu2zZMo33ztLSEtXV1Xjrrbdw7NgxGBsbw9HRESNHjhTsywQ9PT36GzSNmbq6Oq3rCjHe6evr88b68uXLec/F2NgY8+bN42WU15XBgwdDT08PPj4+2LFjB6ysrGgsNJehQ4fS8od9wfDhw2Fubo6wsDDcunWr03VHW0hLSEgIpFIpNQCQXEIkUVlwcLBa2BEXqVSKuXPnYvfu3WqyMelDsbGxCAoKQl1dHWxsbDQmB+PO9xKJRPB32dnZUUWZ2x9I6dUhQ4YgNDSUGmCDgoIEPWqErh0cHAw/Pz+UlZXBxMSkS8ZjAplfPT09aWw88G8Z1NvbW2eZpKc8GZPNEyA3NxcDBgzA9OnTsW7dOro783//9380xX5v88UXX8DT0xMymQxRUVG87IK6Eh8fj9mzZ2P16tWYPXs2HBwc6EIrlUphaWlJO/2IESM0nkfT5Glubs6rU0eQSCRq1ixNCzy3Niv3WmRyW7BgARXMLSws1JR1oCPeQ9VVVCgZFYEofKqCKFnoO9sd0QRJ+EGYPn264HFbtmyhO4Ik0QbQcY+EJicDAwOtbeIKVaqKv1wuR3x8PK2Fqkp8fDyCgoLU3uc+P9VYTaKIcBW2GTNmYOzYsYLXEDKojBw5ksabEnx9fQUXNLFYrKYMq9ZY5aIquOfm5tIFXiQSder2bWFhgXHjxvG8MsRiMQICAhAZGUn78h/+8Aee0igSiXjXJjFuEomEd01SW5CLnp4egoKCNNbtFovFtJwLQbV+p4GBgdo4NjMzUxPQVO+PsbExzTisic7KrBGEPFmADuFFdUxqU7C4ixfBzMysU2EegFo8EpcxY8YIGhpiY2N5r9944w1MmzYNo0eP5r1vYWEBkUiktZSGkHFNFeJqzo2fDggI4AnHqqiOFwCCwtGSJUvg5eXFmxciIiIEFc7IyEi4urqqzZ9OTk70XpN4Sx8fHyrMaht/BE3jTEiwIcdyhS5tz5qrIHAFbO7OIcHY2BiTJ08WPI8m5Y4QExNDS7twz6+t75IMxQDUFEJPT0+IxWK1saA6RjW5Omu6J9bW1rQMDhduNn6Cq6ur4DjVNHa56OnpYfLkyfDx8dEqM3BRnafy8vLU+uKMGTOokZeLppq51tbWgt5aQn1OVTFQHUea6rSuXLkSQEeSLT8/P7VzkwSgmggPD4ezs7OgEu7v76/23qhRozTuNpJQG1WEDIcjRozgxdOrQvraw4cP4ePjA0dHR1rVQpucwVWUuXRFXnrxxRfV3vP09KTrKJn3o6KiEBgYyJvDRo0apdM1ZDIZDffRtHsfHx+PUaNG6dyHgY64Wl2ZNWsWPfeAAQPUPh8wYACtPkJQlcO4MphUKuXJkySml4QTdMaMGTPg5+cnuIHEfabm5uZaM2gD/PEzZswYnQzPqujr6/M8KVXlCysrK7U1Gfj3/KenpwcnJ6duKcmA5vmV6BdSqVRwPuoLnhtFeePGjYiOjqblgwgzZ87UulPXXXbt2oVNmzbhnXfewe3btzF06FBMnDiRF9DeXXx9fQUFuWHDhmncIRaa3ICOzqpp8uAujm+++aZGwUJ18nvppZcEjyPuvUKLk0QiwapVq3jKuOrkPWDAALz44otai5fPmjVL8LtcyAATWvz09fV5io6npyc2bNggeB4hgWfTpk2C1+YaOICOSZJbm05bsgcikGk6RmihDQkJ4U0klpaW9N6o4uPjg1dffZVOnm+99RbPeETuE1fxmTx5suDvNDQ0RHBwMNauXav2Gff64eHhagoMYfTo0YK1oHWx5gMdE//q1asBdLjoL1u2TPC4sWPH0uy7Qrz22mu850kWPZlMJug2TZ7v0qVLsXLlSmzYsAEvvfSSxj7x1ltvqb0nkUgwbNgw3nuvvPIKLw4UUFdUXnnlFTXlnVv7G4CaIgV0KJMrVqzgvaepn+np6amNGSIUqhrirKyssHjxYt7OrUwmwyuvvKJ2v0NCQrB69WreOOO2QVXwJP2U25Z33nmHZ+Th9hVujPnAgQOpkh0REcFrS0BAAN5++21s2rRJzUg4b948qEKeAVc5sbCwoNnNheA+tw0bNmDdunWCihBpPzfpilgs5sU8h4eHY8OGDfS5qs79y5cvFyybM2fOHGzcuFHQQLp+/XpaOxvoeDZCO6OvvvoqLW9DIM+aOy9yE7yoGjeExnNsbCwiIyOxfv16vPPOO3jxxRexfPlyrFu3TlCY09fX1+pa5+XlhbFjx2LcuHF46aWXsGLFCnpPVPshd87iCn2qBmLyvITcIkmJFKBD+VetPwpoXptIlm0uo0aNEhTSSTy5Kqampti8ebPas9HG3Llz6f+FjNiaXE2F5k2uQYJgYmKiJq8sWLAAa9asEZRXRCKR2jyj+gy4gj5JnCY0jpydnbFx40Y6N6qulREREXjllVd4Hgrc/5OxLfSs582bx4tTdnJyQnx8vEZPOAMDA8E+bGVlpZYIi/QjoXtsbGwsOHbIuOPeqwULFvDGI/H+UWXq1KmC90+ojwnNB9zjFi9ejI0bN1IDCXfdUd1UASC4AcD9DS+88IKgEXjkyJEA1OUwfX193lri7u6OF198EWvXrsWgQYPUzqPK1KlTsX79et64U73Gq6++ihkzZqitC6px61xZV9WDkfQtoTEnBDleUy4DIYT0hLfffhtxcXF4+eWXsXbtWoSHhwvKsiR2WxVN91C1r86fPx9+fn5q8oyQ3D137ly88847vPc2b96M1157jTc/cfuSLl5QT4rnRlG+dOkS/uu//kttknB3d9eYubEn/P3vf8eKFSuwcuVKBAYG4uOPP4arq6ta5l9CS0sLzfBG/gAIWtHHjBmjlmBo0aJFEIlEWLVqFQIDA7Fy5UpaamfAgAE8hTgmJgYBAQHU2qo68RFBadSoUfDx8cGcOXNgaGiocXeBK8CTbHQLFixQO47s/orFYrWdS7IYcwVkVWvU5MmTBbMAcyGDR+gYe3t7BAYGYsmSJQA6dha8vb2xZMkShIaG0nIsEydOhLe3NxYtWgSgYxF49dVX1c6nOrmEhoZCKpUKKq4zZszgCaYKhQLm5uaYOnUqwsPDMXPmTI0TJnfngkx8Xl5emDx5MkJDQwWTikycOBEmJiaIjY3FgAED4OrqyhN2Xn75ZQAdgtXYsWNhbW1NnyMpQj9v3jz4+PhQhZa7kAp5F4wePZoKwyRBERfu2LOzs4NIJFLbqSCJMlQTUaxatUrQguju7o6NGzfSklpAR/8i1lSJRAJ3d3dBRYcI8RKJhC66bm5usLCwwOjRo2FmZsa75uzZsxEYGEgNQaoKODGw6OnpwdnZGZaWlnBzc4O5ubmaMrpmzRrIZDKekB8UFARbW1s1t0LyW7h9WlXYNjY2hlQq5RkfTExM6HUHDRqkphjNmzePlq7iopoRk0CSQREcHR3pPVRVggwMDCCRSHgLuEQigUwmg0gk4hnXJk+eDAcHB1haWmLZsmUICgriCRjm5uZU6V+4cCG9P9xEfCS7+vLlyxEYGIjFixfz2jNnzhyEhISozTvcMTxjxgzo6ekJ7sr5+PggODgYQ4cOxYoVKxAYGEjnySlTptDEV2SO4/abpUuXIjAwECtWrEB8fDxCQkIwf/58WFpawsbGBhKJBIsXL0ZwcDAGDhyIuLg4qjBJpVJMmDABUVFRcHZ25glbEydO5Amoqv2GVBBQxdzcnM6z5H5IJBK8+OKLsLKy4s1DEokEkydP5u2cjBw5kiYdI8YvLy8vKgS7urpiwIABiI2N5bVPVVA0MTFR8zLx8/ODSCSClZUVpFIp3akyNDRUU9aMjY2xZMkS3q6k6u7SzJkz6e6wm5sbXFxc6H3iuknGxMTA1taWPluuVwx3rMXExNBnO3XqVDg6OvLG2ahRoxAUFETXP9U5iwh93P4tk8nw0ksvQU9PD3Fxcbx7TdrONWaT2HQhjw2RSAQjIyMYGRnxdq+cnZ01GgwDAwMRGRmJSZMm0etzBWSxWAxPT0/eWJ48ebJGJVdoHfP19UVUVBRNxuPn50fLt3HnDjKHcgX8kJAQnvJKrrNu3ToEBgbSuX3AgAGIjo7G2LFjER4eTu+xhYUFlQtU7xlZg7jzkUwmw4QJE+Dn50fXVlWjLkl8GBsbC29vb3h5eWHq1Kk0wacqRNYSWsP8/f0RFRVFd6iHDRvGW1+FEi8JGTO5tWvJuu/t7Y1XXnmFHkPGkKqnnJ+fn+DzJDIQgazhqrIgVwGWSCS89k2YMAFBQUFYsmQJRCIRXn31VZpbYM2aNbCwsKDrr2o7yf9V2zt16lR6X1TvqZ6eHm/esbCwgKenJ11biVGCe48DAwMRFxeHsLAwhIWFqRlGuO2ZNGkSrK2tIRaL1fQJ1TmYu+aStX7atGkIDw+nirjQei+VSrF+/Xq67jk7O9OxMXXqVLW13NDQUO352dvbqxkYZs6cCT09PYhEIurFKRKJBBXlyMhINVfy0aNHC25wLFq0SE1xJa+5yu2yZctgbGys1n+9vLwglUqxYcMGulYaGRnBzMwMgYGBGDRoEMaNG4dFixYhMDAQy5cvV2sD0GFU6Q+eHpW9hygUCkFLX0FBgcYt/O7S2tqKxMRE/PGPf+S9P27cOLX4T8IHH3wgmD01NDQU8fHx+L//+z80NTVh/fr1MDY2hlwup4Hva9asocqupaUlTynYsmUL/f/gwYPVUrgDHQOVxKaGh4fTRYnUcCV4eXnh1q1btJRSfn4+tdSS+CQSl6vqlqTq3jFkyBDExsbSxA9EMBw4cCAeP34MT09PWFpa8tovREBAAE1coWrNJ5CEXGPGjOFNHB4eHtTqyd19c3Z2Vhtw1tbWWLZsGb7//ns6iaoK1Fw3jxdeeAE///wzgI5JmPw+kkWbuFtGRkbSHY7p06ejurpaLfkBV3Dy8/Pj3RPubyaxejNmzKDCHbdNpI9IJBI4Ojp2em9VY9a444RM2iSRkJ2dnZq1ePbs2fj222/p/RKJRDR5CxGQp02bhq+//pp+55133oFIJOIlcrOxsYGTk5Pazh3XEr1o0SL8/e9/R11dnaAAGRgYiC1bttDs1+PHj+ct9sOGDVOzfKpib2/PG1vu7u4YN24cTp48ifDwcK0xllZWVjTWzcHBgT6LQYMG4ejRo/Dx8eFZTgncMbNkyRJs27YNNjY2CAsLo9l/uYtmfHw87ty5QxP+uLi48J7z2LFjcerUKQD8fkXikl999VWYmJjQxF9cJBIJ4uLicPToUZqdnBAdHc3zliHzzKBBg2gZHW680NChQ3kx/Nx7KrTTSYxbXOLi4vD777/z3FVdXV0F4681xX/Fx8fj999/12hVJ+jp6fGUJ24/sLa2xp///Gfe8VxDJneeATrGhSo+Pj4aXee5czZJKhcfH68mpE2YMIEmSSP32tLSUi0BG1cIHDJkiFocl56eHuzs7FBaWkqNbJoEkAEDBqjteEokEkHvlcGDB9MyQETIXbhwIVpaWvC///u/ACD47AlcTx9unybVD0iGZhIDam9vrzUe3t3dHcnJyXBycqLCs4uLi5pRLSIiAsnJyXBwcODt/Jmbm1ODI8HQ0JA3jlWVHDLmuPM+FwMDA7zwwgv48MMP0dzcTPvEwIEDcfHiRTQ0NNDzi0QiXk4N1VCC8PBwnXarRCIRT3Enz5rMlcOGDYNYLMbatWvpeh0cHIzi4mIaTsZVdKZPn46IiAh89913vLlfyMuC5Dv54IMP0NraSvuNtbV1p+uTjY0N71mJRCKN7vncY0hCL66MIpPJYGpqirq6Oho+wR13qpsJZAxbW1urjY3IyEhe/K+joyOv73JlgylTptBNAqHNBaDDSEzG9YIFCzT2a64swF33SXhdbm4ule3Cw8ORmJiIgoICqnSqKod+fn6wsbHhVWIgc/6iRYvw008/wcHBgXpvacLY2Jg3JqytrbFu3TreMcOGDYOVlRX27dunZjwHOoxqJFHW9OnT1fr1nDlzaJ1xsq6QBJiq8z4JxXj8+DG+/vprmJqaChrSVa9PUN2YUJULSeZrYjghcylxu4+IiFBzt3Zzc0NeXh4WL17MWweE1j2izCclJeHw4cN0k8DNzY2XcXvatGk0Nw7ZeBMK/QHUDR/Lly+Hnp4eIiMjkZ2dDW9vb61rAHejgkDuGXc9JvP73Llz8a9//Yu+T9ZeVf0F+PeYJXA/58qJzs7OdH51cnJCYWFhp8+1t3husl7Pnz8f5ubm2L59O0xNTXH37l3Y2tpi+vTpcHNzU8v41hMKCwvh7OyMy5cv84SQrVu34ocffhBMH9/S0sLbIamtrYWrqytqampgZmaGhoYGNDY28qwz1dXVaG5u1jn2UBtyuRwFBQVwdnbWGGNDauKRTHoVFRVwcHCASCRCe3s7SkpK4OjoSBWGuro6NDQ0oLm5Ga6uroI70rW1tWhvb6cWQKVSieLiYtjY2GhshyrFxcVoaGiAh4cH7xrk2qTUEGlrTygpKYGFhQUd2OXl5cjNzYWbmxvv2SiVSjx+/BiNjY3w9PSkv6WlpQVVVVUan1lraysqKipoDHFLS4vgwiFEW1sbysvLtf7OsrIyGBsbdzuGu6GhAU1NTbzdheLiYlhaWgoqGiUlJTA3N6e7okL9mGSOJRZE8ltIne7g4GBqLa2oqEBpaSlcXV3VhIWmpibU1tZqzZorl8tpP+2NrJlKpRKFhYWwt7fXyRWI1FXkJmorKiqCnZ0d7/vNzc24f/8+goKCeApRSUkJzMzMIJPJUFJSgpaWFjg6OvKOaW1tpf1dFYVCgQcPHsDW1pb3DBsbG9HQ0ECfS0tLC7KysuDo6AilUgmpVApTU1ONv5eMW5KBmDsPFBQUoK2tDR4eHj0ef1y6eu/76hyaqKiogIGBQa8miiQZmrmltLgUFRWhoaEBnp6e9PPy8nI8fvyYuut2lvQI6Hye6g5kjTEwMIC5uTlvDqqsrIRUKu00Xk3TPeXOQQ0NDcjKykJgYKDWZ6pUKpGfnw8bG5tO50PVcdsVSEZbX19fncNHmpqaUFdXx5v7ST1RrtIll8uRmZkJiURCk7T1Fu3t7SguLubNlXV1dWhtbaV9KC8vD42NjfDz81ObT1XXSm2ozj99ibY5t7a2VuN629zcjPT0dDg5OWldY4icRLJ5q5ZrUyqVyM3NRUtLC/Wg6IyCggK0trbyDPolJSV49OgRvLy8NMYeE4Rkg8bGRpSVlcHV1ZU+u5KSEuTn58PU1BTu7u6QyWSQy+XIzs6GTCbjeWRoW/e7A7lv1tbWguOxra0NZWVlvLWF+93Hjx+jvb0dbm5uEIlEdB20t7fXeI9V5RNtVFVVQSKRCM5R3L4ul8tRWlpK26lLO1paWlBZWanmKaoN1X7c0tKC3NxcWm6SKKhtbW1IS0uDr6+v1nmOVFMgHnHca9ja2vLk8ebmZqSlpcHY2Bienp5U/qirq0NlZSXPawnoWIMMDQ15u/iFhYVobW2FlZVVt+OUSelYpVLJK+dG5OjekPl14blRlAsLCzFy5EhIJBJkZGQgOjoaGRkZsLGxQUJCgs7KiK7XcnZ2xpUrV3juw++//z5++uknXgC8Jkh5KKIoMxgMBoPBYDAYDAbj6eC5cb12cnJCcnIydu7cicTERCgUCqxYsQKLFy/WGvPaHUjcGbfGIgCUlpZqtUQyGAwGg8FgMBgMBuPp57nZUU5ISMCQIUPUXLHkcjmuXLnSaXxiVxk8eDCioqLwxRdf0PeCgoIwffp0fPDBB51+X6lU0hrJT8J1gMFgMBgMBoPBYDAYuvHcKMoSiYT683OpqKiAnZ2dxpT+3WXXrl1YsmQJvvrqK8TGxmL79u3417/+hdTUVK0JSxgMBoPBYDAYDAaD8XTz3LheK5VKwZ3ZiooKwVI3PWX+/PmoqKjAe++9h6KiIoSEhODYsWNMSWYwGAwGg8FgMBiMZ5xnfkeZlBs4ePAgJkyYwMvQ197ejrt378Lf3x8nTpzoryYyGAwGg8FgMBgMBuMZ4pnfUSa1V5VKJUxNTXmJu/T19RETE4NVq1b1V/MYDAaDwWAwGAwGg/GM8czvKBP++te/4o033ugTN2sGg8FgMBgMBoPBYPzn8NwoygwGg8FgMBgMBoPBYPQGz7zrNZe9e/di9+7dyMvLQ2trK++zpKSkfmoVg8FgMBgMBoPBYDCeJcT93YDe4tNPP8VLL70EOzs73L59G4MGDYK1tTWysrIwceLE/m6eGkqlErW1tWAb+gwGg8FgMBgMBoPxdPHcuF4HBARgy5YtWLhwIUxNTXHnzh14eXnh3XffRWVlJT7//PP+biKP2tpamJubo6amBmZmZv3dHAaDwWAwGAwGg8Fg/P88NzvKeXl5GDJkCADA0NAQdXV1AIAlS5Zgx44d/dk0BoPRQ1paWrBnzx6kp6f3d1MYDAaDwWAwGP8BPDeKsoODAyoqKgAA7u7uuHbtGgAgOzubuTczGM84CQkJSEtLw+7du/u7KQwGg8FgMBiM/wCeG0V51KhROHz4MABgxYoVeO211zB27FjMnz8fM2fO7OfWMRiMnlBfX9/fTWAwGAwGg8Fg/Afx3GS93r59OxQKBQBgzZo1sLKywqVLlzB16lSsWbOmn1vHYDAYDAaDwWAwGIxnhedGURaLxRCL/71BPm/ePMybNw8A8PjxYzg7O/dX0xgMBoPBYDAYDAaD8Qzx3LheC1FcXIz169fDx8env5vCYDAYDAaDwWAwGIxnhGdeUa6ursbixYtha2sLJycnfPrpp1AoFHj33Xfh5eWFa9eu4dtvv+3vZjIYjB7AEvIxGAwGg/HkWLZsGUQikdrfo0ePNH42YcIE+n0PDw+1z11cXPrxFzEYXeeZd71+++23kZCQgKVLl+LEiRN47bXXcOLECTQ3N+P48eMYPnx4fzeRwWAwGAwGg8F4ppgwYQK+++473nu2trYaPzMwMOC9fu+997Bq1Sr6WiKR9FFLGYy+4ZlXlI8ePYrvvvsOY8aMwdq1a+Hj4wM/Pz98/PHH/d00BoPBYDAYDAbjmcTAwAAODg5d/oxgamra6TEMxtPMM+96XVhYiKCgIACAl5cXZDIZVq5c2c+tYjAYvQlzvWYwGAwGg8FgPEmeeUVZoVBAT0+PvpZIJDA2Nu7HFjEYDAaDwWAwGM82R44cgYmJCf2bO3euxs9MTEzw3//937zvv/XWW7zPP/300yf9ExiMHvHMu14rlUosW7aMxkU0NzdjzZo1asry/v37+6N5DAaDwWAwGP/xtLS0IDExEUFBQbCwsOjv5jB0YOTIkfjyyy/pa65srfoZAFhZWfFeb968GcuWLaOvbWxs+qahDEYf8cwrykuXLuW9fuGFF/qpJQwGg8FgdNDS0gJ9fX2IRKL+bgqD8VRw4sQJJCcn4/Lly9i8eXN/N4ehA8bGxhpLrGr7jGBjY8NKtDJ6jdbWVkilUojFT84h+plXlFUz7jEYDAaD0Z/k5ubi+++/R2RkJKZOndrfzWEwngqys7MBAI2Njf3cEgaD8axRX1+Pjz76CK6urli+fPkTu+4zH6PMYDCef1gyr+cLhUKBI0eO4N69e/3dlD7h3LlzAICkpKR+bgmD8fTAvCueL1paWlBcXMz7Ky8v7+9mMTjU1tbiwIEDePz4cX83pcfcv38fAJCfn/9Er8sUZQaDwWA8Ue7du4fExESWO4LB+A+CKcrPFydOnICjoyPvLz4+vkvnkMvlyM3NhUKh6KNW/mfz22+/4e7du/j666/7uyk9pr/6yDPves1gMJ5/2I7y80V9fX1/N4HBYDxhmKL8bPH9999r/Uzb5wCQk5PT6TUOHDiAtLQ0xMfHY/To0V1rIKNTnqcd/v6SA9mOMoPBYDAYHCoqKvDll18+Na7hxcXF+OKLL6jrGePZRKlUYufOnThw4EB/N0UjBw8exI4dO/pEKGWKMkOVtLQ0AMDVq1f7uSWMpx2mKDMYDMZ/MNnZ2VRoYPQvhw8fRmlp6VPjGr57926UlZVh165d/d0URg+orq7GgwcPcPfuXbS3t/d3c9RQKpVITk7Gw4cP+2Qn6klmqmU8WxAlSKlU4vbt2ygsLOzzazY1NeH69etoaGjo82v1F8+TNx5TlBm9ikKhgFwu7+9m6ERbW9tzNZgZjO7w448/Ys+ePaiqqurvpvzH09ra2t9N4NHc3NzfTeg32tra+rsJvQY3xu5pXPO4beoLRZ7tKDM0Qfreo0ePcOjQIfzrX//q82v+9ttvOHHiBH799dc+vxaBybv/pqv3ginKjF5DqVTi888/xyeffPJUWq25VFdXY+vWrdizZ09/N4XBeCpg8bsMVf5TBavk5GRs3boViYmJ/d2UXudpfKZcRb4vEucwRZmhCTIeSktLn9g1Hz58CABPZPcaAIqKirB161YcPXr0iVzvaaa0tBRbt27FoUOHdP4OU5QZvYZcLkdVVRXq6+tRXV0teExVVRUOHjz4RCclIYgAlJ6e/kSu19raisOHDyMzM/OJXI/ROzyNQmVv8rz/vv802PPsHQ4ePAgAOHLkSD+3pHfgKopPYx/htokpyj1DqVTi999/x927d/u7KT2moKAABw8e7DcX5aamJhw6dAi5ubn9cv3e4sKFCwDwRA1/T+M8AwCXL18G0GEM1RWmKDN6jZaWFvp/qfTfic2VSiUeP36MtrY27Ny5E8nJyfj222/7o4m8NvUFcrkcBQUFauc/f/48kpKS8PPPP/fJdRmM7sBKYzy7KBQKFBQU9Gmoy9Mm7NTU1KCysrK/m/FM87Q9U4DfJpbMq2c8evQI165de6oTt+nKN998g+TkZBw7dqzPryXU706fPo3bt293mmWb0X1qa2tRUVHR383QSl/PT5pg5aGeQ7jxbNzOdOvWLRw7dgyenp50J5mrVPcHfaUg7NmzBw8fPsS4ceMQGxtL33/aJwLGfyZMUX52uXz5Ms6ePYvg4GDMmTOnT67xNClVSqUSH3/8MQDgj3/8IwwMDPq3Qc8oT+OYZ67XvUdjY2N/N6HX6a9SQ30lt4lEoic6t/bHPK7rNf/xj38AADZv3gwjI6O+bBKA7t0LVY8XiUTSm03SCNtRfg7hKr/cxe7WrVsAOrLr9hUKhQI//fQTTp06pdPxqoNFoVDgl19+wYkTJzR+5/79+/jqq69QUlJC3zt48CC2bdtGXYNI7Mm1a9d43+2txDCXLl3Ct99+qzXpj0KhwK+//qr1tzyrHDt2rNslRNrb2/HDDz/g7NmzfdCyp4NHjx5h27ZtKCoq0un4p1Fo1gWlUok9e/ZQF9nepqCgANu2bevTOaunEBey1NTUXj3vxYsX8d133z11yay4fbW2tpb3mVwux/fff4/z588/4Vb1HKVSid27d+Pw4cNP7HpPG8z1uvfQ5beeOnUKP/300zM7/3dGVlYWvvrqKzx+/Li/myLIk87C/jSOeYCfuK+mpuaJXLM3FOUnBVOUn3EaGhpw69Yt3i4yV3njdqYnMSlkZmYiKysLV65c0el41cGSn5+PR48e4fr16xq/s2vXLpSUlOD3338H0GEYSE5ORnFxsZpArXp+XdwjS0pKkJycrHUgnzlzBvn5+VpjTfLz85GRkaH1t/QXzc3NuHXrVret3jdv3sTDhw91VgS5pKWlIScnBxcvXtT5O0/rAqOJX375BcXFxdixY4dOxz8rglJqaipP6KmqqkJaWhqSk5P7JHHgTz/9hOLiYvz444+9fu7eoq+E/7NnzyIvLw9JSUk6938yrvsylpD7nFXXlJSUFOTm5tJYvL4kNzcXN2/e7LV+V15ejvT09C7d767SX66DuvI0u17L5XIkJiZqzLvyJCksLERKSorWY3T5rVeuXEFWVlav5UwhpZXKysp65Xw95aeffkJJSclTG+r2n2S40QZ3c01PT6/XzltSUoI7d+5AqVSipqYGt27d6lGIUn8pysz1+hnn119/RWFhIbKzszF37lwAfEGmO4qyXC7nxTZ3BSGhRaFQQKlUCrpJqHb27gwirlCourjroigrlUq0tbVBX18fAPDVV18BAAwNDeHv76/12tp2e/piIMvlcohEoh67nBw9ehQpKSm4e/culi9f3qVn3tMSJ0/TDpkuv7sn40FXQ4TqPVUqlWhvb+/2dbnn7C0DWVFREfbu3QsA2LJlCwD+eO8LwVqTx0ZPnklv09fCVldKQx06dAjp6elITk7GypUre70t7e3tvDlU9bdrml819eWePEcSr2hkZITg4OBunUO1LQSuW19f9TVSwrGr55bL5ZBIJH3S77jzUF8YvnoyF12+fBnnz5+HVCrFO++804ut6jqkdJGlpSWcnZ0Fj9H0fNrb2yESiXj3ordkhXv37tEswmSO7k26O8frOof1dA0RurfaeJp3lMnc0NP5R5dr9jQEU1MbiSxtYmKCXbt2oa2tDa2trRgyZEiPd5SfpKGR7Sg/45C09mlpafQ9TXFGukwKFy9exP/+7/8iPz+/W+1RXRwUCgW2bduGbdu2CS4G2hTbzgYCUWy5irKqoKaLovzjjz/ib3/7G4qLi3nvq77uKr2d4bSpqQl///vf8fnnn/c4cRDpL/n5+bh16xbef/99PHjwQKfvcq/dnYWmKzvJfUlCQgLef/99rZk0s7Ky8P777+vsIaGKrs9dVVE+ePAgtm7d2m03KIVCgc8++wxffPFFry0oQvFp/WHhvXTpEt5//33k5OQ8ket1Rl8ryu3t7To/Q1I9oC9cHZubm/F///d/+OmnnzQeI9TOAwcO4MMPP0RdXR3v/bS0NLz//vu4fft2l9vCnYN6q5ya0Npz/vx5vP/++71WPoY7RvLy8vD+++93yU29qqoKW7du7TP38KfZ9ZqM975MmtdVtO3ccn8ruZft7e345JNPsH379j5pz5Mqc9RXKJVKnDlzRvB9QlNTk+B3W1pa8Mknn+CXX37R+XpP647yzZs3sXXrVpw6dapH8oeucA0ZXR33V65cwfvvv4+srCyNx1RUVNANErI2dSdUibleM3qNnuwonz17Fu3t7d2Oq1VdHCorK1FaWoqysjJBqyK341+7do33+vTp01rdm8jv0UVRrq6uxuHDh9UWNqVSiZycHMjlcmRkZPA+6+quLblvJD6aey/a29uRlJSEhIQEZGZm4vjx411e8MvLy9HU1ITq6uouC4dFRUU4cuQIDh48iJSUFF4CHlLTT9da1tpcL3WhO65z3Gdz/vx5nDx5sksKYEZGBv7617/i/v379L1z584BAHbu3IlDhw4Jlkojsbe6xtxrQqFQ4Pfff9dYBk3VuEXclW7cuNGt69XV1aG6uhoVFRVobW3FuXPnulSGQVe4z6CqqkrwmPLychw4cKDX4oyJINXftShTUlJw+vTpPhe25HJ5j40djx8/xuHDhwVdsi9cuKBTuZL09HS0trbyDIhlZWU4fPiw4Ji+ceMGrly5gnv37kEulyMpKYn3OZlvulJHk6DJVTAtLU3nuaGurg5Hjhyhv0dICCMu5GQHsadwr0H6b2du6gUFBTh69CiamproGqlqXFAqlTh58iTPYK56jiNHjnTq4cJtX1d2lBsbG3H06NFODTQ9GSuq63FOTg6OHTsm6HWSn5+PI0eOaFSqngRCinJZWRnq6upQUlLCu7+9NYd05zxEOT179myn40aX8ysUCp4c1BV06XOa1tDU1FTU1dWpKWxtbW04evSooCL3pBVlXefxY8eOQalUUgX51KlTyMrKwtGjR/vEI48ri1ZUVODw4cOdVjVoaWnB0aNHqWykmqeE+ywNDQ3p/42NjTttT3t7O/75z3/i008/VfP0Efp/X8MU5eeQnrpeA92PU1BdHLiKqVDH5r73+++/8xbyK1euYN++fbzjuRONkKKsOtGS4/ft26cmqFVWVvIEPNWFWCwWo7GxUWvGRe7vvXPnDq5fv07jUlUV5cOHD+PcuXP4+eefcePGjS7HLqtOGKWlpWhtbYVcLkdRUZHWSXj79u1ITExEcnIy9u3bp/H5NjY2djpB9rZFv7a2Vi0pEKGtrQ3FxcW853rhwgVcvXq1S/HRv/76K4CO+HZVmpubcfv2bezcuVOncymVSpSUlNAFq6KiQqMASp5JWloarl27ht27dwsep2kB6O5Czj1HUVEREhISejXhFjk/9zqa7h+pJaqrIUZXuus2p1QqUVxc3ON+vG/fPly+fFlQ+dRFIGpubtYpi2x7e3u33GC5/fTrr79GUlKSmlJWUFCA8+fP61SnWOg37dy5E0lJSXRccY85fvw4z8DUmwKeJlfOPXv24OrVqxqFaS6//fYbEhMTsW3bNrS2tvKSQwqtVao74qoUFBSgoKCAvq6qquL1jcLCQuTl5dHXugrN33zzDW7dukVzcgiRnp6Oq1evYs+ePWhvb6drA/cciYmJOHnyJH2vpKQEra2tvPHQFUW5rKyMGix+//133Lp1C19//TXvmJaWFp4BsieKiapr5w8//ICbN28iISEBNTU1vOfz7bffIjExscveS+3t7Z2upVy0Hae6/gP8tZM7HnpLYevOnFhRUYFLly7h4sWLvLVfoVDofC/kcjmysrLw+PFj3L59mycHdYWuKD/19fU8jytN4/PcuXO4deuWVk8YIeRyOYqLi3vVxbcn5/rpp59w69YtXLp0iZ5Ll3VM2zWbmppQUVHBG+u7d+/mzemauHLlCk0QLHQd7hxNvD8B7X1UqVSiqKgIN2/eRHl5OaqqqnD16lX6uSbdpq95OoK8GL1KbyjKvVHyQy6X8wRBoYVXdXB1loSGu7h0ZUdZaLfws88+471WXawkEgn+8Y9/QC6XY8OGDbC0tBRsM0F1ohayKHPRtAOnCe79y87OxpEjR2BtbQ0nJyfcu3cPU6dORWRkpE7n0jTJ/O1vfwMAvPbaazAzMxM8RpOFrzsoFApaluCdd95RE4Z2796NR48eCX63M8G1qwg9DyEB5uHDh9i5cyccHR2xYMECfP755xCLxfjzn/+sdizpK5316962lHL7qGqiP+6i1V3kcjn09fV5bdXkKUAMGpp2d5RKZbcExe4qyvfu3cOBAwfg7u6OZcuWCR7TXcG1ubkZMplMp2M/+ugjyOVyrF27Fra2thqP626sKOmnTk5O9D1VTxSuctjd5wDoFqZy+fJljBkzplvnBzruAzFmaqrsQNBkeOPCNbRt27ZNTUlQpampCaampoLnys/Px7fffgsAWLp0KWxsbPDpp58C6IgVLSoqUtuV7uo4Ly8vh4uLi+Bn3Lnws88+Q01NDaysrLB+/XrecWQdzMzMxM8//wx7e3sMHjwYhw4dgpeXF6ZMmUKP1dbv8vLy8N1338HCwgIbN24UXF+BjrCmwsJCLFu2DO7u7r2qKHN/EylX9u677/Ku0dVa30ePHsXt27cxevRoxMfHd3q8rooPuZfHjx+n7z0tijK3Hdy14siRI7h9+zZGjBjR6TlIOU4AsLOz63IbCLqMCVLS6aOPPgLw7xJ1qqET5J5qcwnWxk8//YS8vDzMnj0bISEh3TpHX0Dm7OTkZBw6dAje3t544YUXNB6vbRx/9NFHaG9vx6RJk9Q+0zSmCarrvepY0KSHaOvr169fVzMIctvBFOX/ULKysnDw4EHo6enh5Zdfho2NTY/P2ZMYZUJX3Y6VSiX27t3LE7y4Fmego5NXV1dj3759iImJQXBwsE6KMnfS41rJhd7TpCgbGhpqLeUEdMSFcF3XJBIJPV92djZVlDVNPNz7++2338La2pq+1pa1t729HTt37oRIJMKCBQs0PifudckOUEVFBd3xvnr1ao8VZUJxcTFPUa6pqcHevXsxaNAgODo6ajzPgwcPcP78eTQ1NSEyMhLDhg3Teh3uM2lsbIRCoeD1D01KMtC58llWVoaDBw922gYC6U9XrlxBRkYGFi5cKDip37lzB0CHoE08JhQKBVpaWjQamLhCHnH3379/P1VcRo4cST/v6gLw8OFDJCQkYMaMGXT+0BTr39DQQBXlxsZG7Ny5E2FhYYiKiur0Oqo12dPT03k1yrkUFxfjwIEDCAsL61SY1FVBy8/Ph6urK31N5qiCggKcOHEC48aNg5ubW6fnIW7GJDb9+PHjqK+vx5w5c3ossLa0tKgpylwFjwuZW7KysniKsurOf3d3IYh7LjdukesCR9rGbY9SqcSOHTvg7e1NFYWMjAycPHkSJiYmnV5Tk+svoSfKeEtLC1paWrB//36ewih0fzS9t3fvXjQ2NmLRokW8z1QVKqExqC3hDZkTgA4X0ICAAN7nqmE9mq6hDZFIxLt3ly9fxqNHj7Bo0SLe+2SXTUhJJMfdvXsXQIfQffPmTQAd/VDXHWUSXyhkHDt+/Djq6uowd+5c2vdu3LihpigfPnwYbW1tmDlzpk59QpNMwjXAcZNyAh19f/v27Rg7diySkpIgk8kwefJkjdcgY+bs2bN9oihzx2JXPFpaW1uxY8cO+Pr6YsiQIQA6+s+uXbtga2tLDVBc2eGbb76hHg5z585FUFCQ4Lm5/ZCrNJN7wfVC0fR7uW7WnSlYqtja2tJ1VFOf415XJBLx2lxTUwM7Ozu1vkvWXG39WNvzI94fiYmJT5WiTGQmUvq0s4zpQvNMdnY2Tp8+Te+N0Dk68ypVlXVU48i/+eYb+po7d2rTQ0ipRS7cPtlfijJzve5niHtDW1sbDhw40OnxaWlpnVrvuZ2ptLQUd+/ehVKpFOygmhao9PR0nXYycnNzkZmZiZKSEqSlpfHclI8ePco7R3t7O06ePImCggKaPVf1GkKxtzdv3kR+fj7u3r3LGzRkoHAXHNXzkQGqyy5PVVUVz3WOe7+4A111gbt//z6Kiop4x+fn5/NiQrU9s7KyMjx69AgZGRmoqKhAbm4usrKy0NjYiKSkJHrtzp5HV6znQkYD7vlVhZLff/8dBQUF2L9/v9adl507d6K4uBg1NTU0Blgb3Gs2Njbik08+4fUPbXQWf7Zv3z48fvxYZxcwiUSC1NRUnDp1Cjk5ORpdtbj3hhtaoGkX6/bt2zzXbLlcjh9//JHX17n3SpP1taamRq0MU2lpKXbs2IHHjx/jt99+o+9zj+HuEnD/f/HiRRrLpwluH+Se89SpU9RtV4iLFy+itLQUp06dEnRL58Yy6ipsqiZpIc/hhx9+wOPHj/Hdd98B6JhDrl+/rvF5cMcpiQNPS0tDSUkJsrKyepQkrKSkhM63BF2UR/JsU1JSkJyc3KV48qKiIsFrCN1XIjxWVFTg7t27vP4ll8tx7do15OTk8BLqHDhwAOXl5TrdF22J8TS1SVeUSiWOHDmCgoICKiQCwgKT0HXq6upoabrCwkKtbemqosydT8ViMW+OaG9vFxQ6udfXZUe+oKCAN+edPn0aOTk5WuPLMzIyeGsauaYmQ5quirLq+sD93o0bN5Cens7bsSdGTe7YS0pKwr1799Q8g2pqanD79m2163Ovyf0O9/3W1lbes6urq0NRURF+/PFHpKSk4NatW1AqlUhPT0dhYSFSU1MFFTvu7yEyjhDkuMrKSty5c4eGRKWmpnbqJSQky2jixo0byMnJ4YUyZGdn4+HDhzzlgnt/uc9dW9gL99pCckFPMkNznw03X8z169dpn+Aa71TvQ1NTE27fvs1bt0QiEa9vHDp0SC3/haa+W19fj9u3b3cpDETXOUvb2kH6B3d3u66uDrdv34ZcLkdVVRXtP51B5E9dDRJC94J4emg7hmwMaUJ1TuPep4SEBN76qzo/qlJcXIy0tDTBzzQpx2xH+T+UzlLo5+bm0glvy5YtGjsKt2NxXX2EOqHqgs7l8uXLWnfjFAoFLdGxYMECtc9bWlrUrEGqNZ5VJ2Yh4Zb7G7jtIRMG9xpCE6BCoehWzLUmRZn7/+LiYpw9exYAMH78+C5fA1DfESf31N7engrvc+bM6VRRJmW4NBlFuHRmzVb9PrdvchVPhUIBhUKh8XraPlNtR1drLTY3N6OtrQ1SqVQtw7hCoehyxmi5XM5T0LmCBhfumOG6CWnyWFBNVtRZKQZN4/qrr75Cc3Mz6urqMHToUADAl19+ST/nPiNNijL3ean2AYVCQXetyO74kSNHkJ6ejvT0dPj5+am1SdNv1rTbT/onN4aUlPQAtAtlqvdNLBbTEjvc33DmzBkkJyfj/v37WLp0qVqZLE1zXlVVFY0h53pNdAUhowyJA9W2a/bll19q7BdCghr3WZEMuq+88kqn3yOK8ueffw4AvB16uVyuluywra1N54RIugiUpO91R2Fub2/vNCGktve4z7oz7yLyfUdHR6rwdVdRVt3lJHDH+bZt23Qq58PduSbU19drDJMhuRlU0ZQ9Vqg8lFKphFwu562huihPQmux0BhQXdd+/vlnGp84atQo+j7XK4eskULX7GxtKyoqUssVoUmeUiqV9Fqvv/46jI2NBatZkDAuqVRK15CIiAiNv5G0lfs5d61UXTeF1jKh8ANdngs5N/dfgtC4kEgkvL7QFa8Q7ncLCgrg7OyMAwcOIC8vD8XFxZg+fbpW48yePXvUlGCRSMS7d48fP8aPP/7I827SlCjt66+/Rk1NDcrLyzF27FidfoPQXNLW1kbHg0KhQFtbGzWsC4WQqYb5AR0JAuvq6lBZWUnjjltbWxEdHa21PT0tDSqEUP/kekQC/DWnra1NrQ9oCvcC+P2KHMftG9u2bdPYNm6fVi1H2Zl82VswRfkporMHzi3ZdP/+fbVEVwShTp+amioY48O9purC9ujRI62KMvc6Qol85HI5z9qtWktz69atam3tLLaMu2MhlCDj+vXragrrp59+qlGQ0IaQAKFQKGg8FMDfCejugOVOIlzFi7ixp6am6qQoAx27bhUVFVi7dm2PCser/hZNvy0lJQU///wzZs6cKeja9be//Q3BwcG82DcjIyO6y8jtc525Uqvy4MEDXL16FcHBwZg5cyZ9/8CBA8jMzOxS/dmuoOledCZ8Ezor7SK0o9zU1ER/T1paGoYOHaqm1HDHFrevcAWqc+fOIS8vDytWrOAd39rain/+85+wt7eHs7Mzzp8/j/DwcKrQPnr0SDBrtSZjhCZlf+/evbyERgDwwQcf0P8PHTqUJxxzEYvFvOQhOTk52Lp1K++Y//3f/6V9KicnB+fOnUNCQgIAYODAgZg0aRLv+b3//vv0/9z5tbOx1hVF78iRI8jKyqJ17oXQpoRxMxwbGxtDoVBg+/btkEgkPJdA1Z17Xdx9ub9ZLpfz5tKjR49MOEVhAABQN0lEQVTqlA2boEuyHCEvIF3R9B2hXVKh/qcpkZK2dnanrrBYLOYJka2trZ3uKPeE5uZmndc30i7utbk7U0JKy2+//YbU1FQsXrwYnp6eAHQT1oWUWSEFS/VZkLwmiYmJGhVlrlcTt82tra2d5lcR8rw6fvy4oBGCGMHJ93788UfeDihRHAlcAyBXNuhMUT579iwOHDiAVatWobCwEIcPH8a8efOocVLIWMU953//938DAAYMGKB2HJczZ87g+vXrcHFxQVFREdauXctLliQ0LrjzJalgMGvWLK3XIXCf96lTp1BcXEyvkZ6ejunTp2vdJRRac3JzcwW9L7leBpoUZbJePXr0CGPHjtVpHlIdpzdv3sTx48cxZswYtLa24sqVK5g3bx79XNe6x6S9XLf1Y8eOdepN1BeKodB9UFV8P//8c7i7u8PCwgJXr16Fubk573huH1V9jlzZiDwbXY0tmubgtLQ0XLp06YnUVGeK8lNEZwOAK0wJZaSrq6uDqampoJDw8OFDuLu7a71mV7OSdiY4qLpRt7e3a7QOETpTlLmDVy6X4+zZs2olpBobG2mhdqBjcuyO0sS9H+S6qm5i3Amgu5Y+7nU0uS4eO3ZMpxhB4iKWk5MDa2trXLx4EWFhYV1uk2of0tQ3ieKyZ88ewR2R5uZmJCYm8hRlAwMDQUW5qxBF8e7du3B1dYVCocCgQYNw7949rd+7fPkyjIyMun1dTc+5s51iQmdlM7jjIi8vD42NjTTJGvDvBUm1hJsmRZlrgCD946uvvkJMTAx9v7CwkGYfJ30wOTkZenp69Bl1JamUJkW5MzfkixcvYsSIEYL9TSwWq5WEUm2Tan8iSjLQIeBYWloKKpAAeG5znQlQXa2xru13d0VhMjAwwJ07d6gRraul2rQ9Q7lczntuXKOELuhS/kvIuAl0KPW5ubkYNWqU1hwNQsIVaTNXUOvpjnJPFOUrV67wQn0OHToEZ2dnnb7LpaSkRKdn0NbWpnP9XCGjgtDnQEfOi4aGBhrPfOPGDXh6eiIpKYnn+q7tfKoIPb+LFy+itbUVtra2PMVY1fCjy/qqy44yd04gaCrDR3b6AGHFPyEhgbdzzK0NK5T1mgs3eSQxDnzxxRf0vR07dtA1lTuvHTt2DLGxsYJlxTpb+8jvIWP18OHDvPnw8OHDaGpqonHQgPq8cu/ePZ0VZTMzM7pOc41y3PN2tSSZavUSAld27Ow8paWlOHHihOBxxcXFPOMk8ag4ffo0AgICaPk5rhs8dy1OSEiAnZ0dwsPDO/0tgPr97WwsSySSXsnKzkXoPpC5T6lU4ocffkBDQwNvHRPKT3DmzBm4uLiorf/c7PPkMz09PZ0MFVzDFLedXak/31OYovwUoWkhUCgUtIauNg4fPoxFixZpVDaFlDBtinJjYyPKy8thYGAAkUikpqh1FiOg6tajUCg6raHWlVT32dnZgsKZqjsm0LGLqasiQ1AVvCorK9XuEfe1tsRTQpB7o8tOJEm4oit1dXU4c+YMSkpK8ODBgy59F+h4DqWlpbCxsVHbIekOpA/b2trynmFvlYwhClRgYGCnx54+fbpb16itrYVYLNY4Dslz7OlOkarhRFUhJv1YtR3GxsZobGxEW1sb7xzc2tFcuMKupnii7j53XXfXhbh7967OQkZX4ZbHUYUbU9lZ+7taagToeK61tbUwNTXtduZxkUjEc+XnJk/UZSxpm1/b2tp45+sLyJyn2lbiImxnZwcHBwdYW1urrYctLS2C/ZGMN67g1N7eDrlcjurqahgaGqKxsZEnZOm6o6y6S93a2or6+npYWVmhuroaBgYGMDQ0VBvz3J3IzMzMThPuCPHrr7/qlL27uLi4SwmUKisrNfZv7nrd2NjImyMaGxuhVCrVPGKUSqXORgSh50cM3Q8fPtSqDOui3KvOfUKoeuL0BFXlQRNCspIufaK5uRnNzc28+3vz5s0uywOaUDUaEgWQa1wX2mQg81hpaanWjP3a5lHSF7heST3JD8EdK9x5TlPuFk3lOVXdgJVKJS5cuIDr169r/A7X6EF26PtqDdPX19dZltVW2pSL0LpA+lxubq7OhmFiiNGWlJicV9ed8ZqaGpSUlMDU1LTbFSB6ClOUnyI0dZyDBw9Sqy5BX19fbRIik0xXJlHVWCouFRUV+Oc//0lf/9d//ZfWmGZVVBeH9vZ2NWVbqVQiIyMDDx48gEwmw4ABA+Dg4KDzOYUQKhukra0kdlo1IyzXYltUVCQYZ6KLQqIJ8vz6ooA8V5jRNcaQy4ULF/D48WMMGjQIEydO7LG7z/Hjx3Hr1i2MHTuW9wy1Ce7dEWi6WnKrK5AyVpogz7OnLt+q90R1kSKCoep1TE1N6c4z12AglCBPFU2JBLur8HY1PpxLQUEBwsPDe7V+ZVfp7Hd3Z0w9fPgQe/fuhY2NDdatW0ff10UZImgTfDqrewlonz+vXbvW6XNrb29HXV0dpFKpTh4umq6vadwnJCSgoqICkZGRGDRoEO+zb775hhdTrXpObinC5uZm/PrrrzxD6rhx4+j/W1padErmpbqjvH37dlRUVGDx4sX45ZdfIBKJ8O6772o8T1dQjf3UtV90RUnWtI5x26CJpqYmwXHR1tbWawKs0G4vQVPfVd2R7Gl99K7CTaKoCXJ/uGFH3N1nTfzjH/9Aa2srrKysetTGrqKaS0aVzz//HIMGDcLly5e1VtrQFk4lFovR3NzMO4ZrrOwq3PUwIyMDNjY2ePz4cY/7g1Kp7FZmaV1jubtqjJZIJDorytznqM0dXGj8kve6U4aTOxerIjS3aiMvLw9fffUVLCwsOk0w1lcwRfkpoqmpCadOncKVK1cwYMAAWjZBVUkGOtwWVBet9vb2LguXYrEYOTk5OHv2LEJDQ7Uee+fOHRw+fBiWlpZYt25dlxfHn3/+GRYWFvR1a2srjhw5wvt9ly9fhoODAxwcHGBmZgZbW1v4+/vTHRilUomWlhbU1tbCwsICenp6NPNnXV0dvLy8eC6lhObmZpqZOzc3l8YW1dXVobq6GkqlEu7u7pgwYYJgIh9Ntfh6knmPCNs92X3TFWNjY2RkZODevXvQ19dHSEiIVkswyUp848YNTJw4UScjwF//+leNnxEXwvPnz/NiyLRlye3MRVmIrigdXJRKJR4/fozExESUlpbCwsICAwcOhIeHh87nIIuXrs9ToVCgqqoK5eXlaGhogEKhgLu7u5qyomowaGlpwc6dO9WMAtzrcmPlniQ7d+6EUqnsUZ9OTEyEt7e3YPKwJwW3/d9++y2GDRsGHx+fHp2TuAyWl5fzXMhV3Vi7iy4Gtzt37mg0Jmlz2ywpKcGVK1eQnp5O742pqSmCg4MRGRmpVju1paUFeXl5qK+vh5OTE+zt7QH8u8wNN2bXwMCAjh1iCEhKSuKtFdogax5XELx586baWsh1aaysrNS6VhYVFSE9PV0twz9pH9m9ViqVgvk5hJDL5cjOzkZjYyNcXV3VlJ+mpibs3bsXAQEBGDhwoE7n7G20Kaqtra2CRsDKyspOlZHc3Fx8++23ghnwtbFjxw40Nzdj/vz5vFhabkgIdz2Ry+W9ZnjWZadYG9z+dunSJZiZmXX595Ox1tV60EJ0xVukM+Wora2NZtvW5AoNdO4hSBRjuVxOM0OXl5fD0tJSq3dBc3Mzbty4gaysLFhaWmLgwIG8evEnT56EjY1Nl3eohQyFuoY1qPLee+8B0L67CnRdURbymPz+++8xc+ZMtbhh1YzRx44dE9xIE5Llc3Jy8Ouvv/bIeCFEcnIyKioqumxsrq6u7lauod6AKcpPEU5OTrhy5QqADqHFyclJY0ImoUnEz8+vy7uaQEd5FaAjhkSpVKKiogJGRkZqcZxkl7KqqgoXL17sdJc2Pz8f+fn5MDMzQ1BQEPT09GhcQ1lZGXbv3o2ysjKIRCJERUWhsbER9+/fR3FxMW8XzcDAABEREXBycsK+ffuQnp4OuVwOiUQCMzMznuCXk5ODhIQEWFtbo62tDa2trZBKpVAoFDolCvvXv/6FkSNHIi4urse7qBUVFcjIyEBNTQ309fVhYmICExMTWFlZwc7OjtbQ7qusfUqlEtXV1cjNzUVqairPzerChQsYMGAAhg8f3ulE3tVYRW2ousZpE8y4lJSUIDc3F4aGhvDx8VHb/Sd0tYYj0PHcSbkjwuPHj5GamgovLy/Ex8fD09NTbUEjWcbJWCQLqtAOrlKpRHl5OTIzM1FcXIySkhKUlZUJChJXr17FhAkTtLrnCrnTC1nvm5qaUFRUBIVCAVNTU1haWmo9L4kD5caPFRcXIzc3Fy0tLTAxMYG9vT2cnJwE+y1pV3FxMY4cOYLi4mK4ublh9OjRanGaSqWSti8rKwu1tbVwd3dHeHg4du/ejTlz5mhs55MkPz8fv/zyC959912kpKTwhBGlUons7GxkZGSgvb0dLi4u8PLygrGxMVpaWqCnp0f7B9fYJjSmWlpakJSUhOzsbNTV1dHkhwYGBjAxMYGxsTHMzc3h5uYGR0dHiEQiNDY2orm5GRYWFhoFS7lcjrq6OpiYmEBPT08tmZo2qqur8fvvv/MMLyRbaV1dHa5du4Zr167B19cXgwcPhlQqRXJyMlJTU3njfPDgwRg/fjzu3LmjZgDT09MT3CERKumnKUa5srKSt4shpARzDU6lpaVa1y/VWtYAX5jknuvBgwca5yOgQ6i/ffs2Ll26xBujwcHBGDFiBDVY3rx5k4YTaduR6Uvu37+PiooKFBYWwsrKCs7OzvSet7W1CT4nTbGeqqjGqOoC6Suk2geZMwwMDGh/5875RUVFVLkkpZpaW1thb2/faZIvVbSVVOoq3TH69jZfffWV4PtETqirq4OjoyP09PQE45+1oVQqUVJSguLiYkilUlhYWMDOzk7rWqNQKNDQ0IBHjx7ht99+462bBgYGCAkJoXJhWloaKisrIZPJIJPJ8ODBA6po5eTk4Pbt2/D390dMTAzc3d0hFovx66+/dkkJJbWFe5vOxnJXN7cUCoXaeMvNzcXHH3+MzZs3w8jICAqFQs1jQaFQaPQ2FYo3BoQTQhLy8vJw+vRpFBUVwdraGoMGDUJoaCjddMjLy0NZWRnMzMwQEBAAFxcXiEQiKJVKugZVVFSgoKAA5ubmcHFxgVQqRXl5Oe7du4eqqiq4uLggMjKSGkG7snb1JiJlf/q3/QdTW1sLc3Nz/PGPf6QCQUREBC+JgDbMzc1RU1MDuVyOmpoaWFhYwN3dHQUFBVAoFLh8+TJu376N1tZWODk5wd/fHwEBAWoxwoaGhnTCaWxsxL59+5CZmQmJRIIRI0YgPj5e58mmpqYGubm5tCYw12JkYmKCsWPHIjg4GDdu3MC5c+fQ1tYGExMTzJkzh+7cNTQ0IDMzE1VVVaitrUVWVpbgDgg3tbxYLEZERATs7OyQlJSk0XIqkUjg7e0Nf39/GndtbGwMKysrKJVKnDhxggqE7u7umDlzptquhkKhwO3bt5GTkwMHBwcMHDiQtxjU1tbi3r17SElJ0WqJs7a2RlxcHMLCwiCRSFBTU4O8vDw0NTXB2toabm5uPCNJW1sbcnJy8PDhQ5SUlEBfXx/GxsYwNjamhgDyp1QqUV9fj7y8PJ5lWCwWIzY2FmVlZXThFolECAgIgLe3Nzw9PWFlZSWoEObk5KCgoAD19fWQy+Wws7NDWFiYVgFRE42NjUhMTERlZSX1GpDJZLTck7OzM+zs7DB69GgcPXoUJ0+e5FmtJRIJQkNDMXjwYK1u+lyIMNDS0gJTU1MYGRmhrKwM586do8+cZBH28/NDVlYWbt++TT0GbGxsMGjQIAQFBaGsrAy3b99GWloa2tvb4eXlhfHjx8POzg5btmzBRx99hNraWhQWFqKgoICW+BKyVkskEtjY2MDMzIzuOAEdsZqzZ8+mO3ENDQ3IycmBUqmEq6srzM3N6fEFBQWQyWSIioqCVCpFe3s7srKycOfOHTx48EBtUTUzM4OlpSVaW1vR1NREd2Ha2tqgUCggkUhgZ2cHS0tLFBcXC+5myGQy+Pv7IzAwEN7e3rSvKpVKJCUl4fjx4zwjgEgkwqBBgxAeHo7c3FykpaWhqKhIcPfH3t4es2bNor+dQHaRCgsLce/ePZSWlkIsFsPExATm5uawsLCAmZkZZDIZjI2NYWpqKqjMNzY24ubNmzTuycPDAx4eHjTWNC8vj+68Ojg4YMiQITA1NcWyZct4CX1yc3Nx8uRJXk1oVfT19REdHY2RI0dqzUJfUVGBnTt36hxuQAQHco/19PTg5+eHgIAAmJmZobm5GTU1NcjOzkZmZibNvDxgwAAMGTKkU+NYe3s7rl27hvPnz9NSIIGBgYiNjYWzszPte7dv39ZonCXPgwg3sbGx2LRpk5q3A3d3kMvs2bPVKju4u7ureaEMHTqUlyxGF7i72EDHjt2ZM2eQkZEBa2trREVFISwsDC0tLairq4ONjQ3GjRunVhteqVQiPz8fd+7cwePHjyESiWBpaQlbW1soFArk5uZSAzTQsQ5aWFhQo5xIJEJoaCiGDx8u6F6rUCiQnZ2N0tJSSKVSyGQytLa2oqqqCjU1NdDT04OlpSWsrKyoh0plZSWampro3GpnZwdDQ0O0t7fTms5ESSF/jY2NqKurQ15eHk9otrW1RVRUFEJDQ2FmZoYlS5bQeuXcOUPTn0gkgpGREQwNDamhMDs7G+3t7TA3N4e1tTXMzc2hp6dHf5+VlRWMjIzUkmElJSXh8uXLqK6uhkQigZ+fH6KiouDl5cUb5wqFAnfv3sXZs2epcVwkEsHT0xPBwcGCchD3uxUVFby5ur6+HtXV1aipqYFYLIZMJoORkRFMTEzoPeaWjSIyWUVFBRobG2FpaQlHR0eIxWKUlJSgqKgI7e3tsLKygqurq6BBqDPkcjkyMzORlZWF+vp6akyTyWT0mba2tsLY2BguLi4ICAighgKlUonS0lKkp6ejoKAAhYWFdKdbJpMhMjISEydOpP2lrq4ONTU1KCsrQ21tLQwNDeHm5gYHBwdIJBLk5ubizJkzgkqMlZUV7O3t6Z+joyPMzc0hEokglUqRnZ2Nb775BgCoUbC1tVUnrwBra2sMHDgQjx8/RkpKCh1j5ubmiIyMxODBgyGTyVBWVoY7d+6gpqYGMpkMFhYWMDc3h5mZGfT19WFjY6NTlmoCUfZU/99drK2tce7cOWRlZUFfXx/u7u7w9PSEkZER2traUFZWhpKSEohEIvj5+SEyMhLDhg2jZQG5eHp6YsmSJbh27ZrGfBzt7e20fwAdciF5r7GxEYaGhrCzs9M4Rtra2nD+/Hle/W4CVxZVxcfHBxMnToS1tTXVUc6dO8dL7mVsbKymtLu4uGDBggUaQ310KavXU5ii3E8IKcqBgYFdcpl88OABDh48iMbGRpiYmGD48OHw8/PDb7/9JpjkSiQS0Ym5srISzc3NcHV1RXBwMIyMjHDo0CG1ThocHIwZM2aoCXmtra2oqalBQUEBcnJykJubq/ZdQ0NDeHh4oLCwUFBJ8PLywqxZs7TGuikUCmRmZiIpKQn19fVwdHREaGgonJ2dUVlZicrKSjg4OMDU1BTAvy2b9fX10NPTg76+PuRyOdrb2+Ho6KjVqqxUKnHnzh0cO3aMlpkYO3YsQkJCIJPJUF9fj7179/LceSwtLTFp0iRIJBLcuHEDDx484E2inp6esLe3p0lg6urqUFZWRhcCY2NjSCQStd1uqVRK3fOqqqqQl5fXrVgbsVgMJycneHp6Ijo6GqtXr8bOnTtRVFSEc+fOqVm6zc3NMWDAAERERMDc3BwpKSm4dOmSoFXU0NAQEydOxIABAyASiaBQKJCSkoKbN2+ioqICFhYWGDBgACIjI+l9Lyoqws6dOzuNhXR1dYWHhweSk5Opsu/l5UXvH8Hd3R2RkZHw8/ODoaEhWlpaUFpaipKSElRXV6O2tpYu8ly3N65wLhKJEBkZiZEjR/L6YlVVFa5cuYLk5OROF26pVIpJkybht99+w8svv4xDhw6p7W5LJBK4u7vD1dUV9vb2sLOzg5WVFU/Iy87Oxt69e9HQ0ACxWAwPDw+0tbWhoKCAtyBbWFigqalJbYdHaKGytLSEnp4eamtruxU/raenB09PTxgbG6Ourg4FBQW88+jp6cHGxgaWlpaoqamhiqOPjw+GDx+OGzduaHXrJUY+MzMzJCYmorGxERKJBAEBAaivr6dKgq2tLeRyuc5WZT09Pdja2tI/a2trFBYW4vr162qu4SKRiI5TVcOAvr4+Ro8ejffeew9Hjx5FaWkpzpw5Q3fPiQKqr6+PnJwcwcQnjo6OmDdvnmCM1YMHD7B//366Yz9kyBBYW1tTo0dTUxMaGhpQX1+P8vJyurtP4BoNNaGaWNHf3x9eXl4AQL1zrK2tYWpqisLCQly9epWOM1dXV0yZMkXNcEGoqKjA1atXcffuXfrcwsPD4ebmBpFIhOTkZBrHuWzZMnh4eKC5uZnuGri6usLPz09tR1xIUSa0t7dT4XHGjBm4fv06KioqkJycjKqqKtja2lLDH/mN3D8SP9jS0oL79+8jKSlJ6z00MDDAtGnTEBgYCLFYjLa2NqSkpODGjRs6uSba2toiNjYWoaGhkEqlKC4uxrlz52gfIsbeYcOGwdzcHAqFAvfv38e5c+d6NfmULojFYjg4OPDWKZFIBCcnJ1hZWaGurg7l5eU65T7oLjKZDGZmZlTJLi4u1hgyYGNjg4EDB8LNzQ21tbW4ePEiNUTo6+tDJpPx1leRSAQLCwv6Z25ujtbWVhQVFaGwsLDLST8BUMN7e3u71vrRquK2SCSCi4sLgoODERQUpNW1tKWlBTk5OUhPT8f9+/e7NJdLpVIEBATAwsICDx8+VFubxGIx9PX16TmJgYMkcBOCeMmR+VIikdDqExUVFRrjk01MTGBnZ4eqqir6TKOjozF+/HhqxMnNzaXylEwmQ3BwMFxdXdHU1ETDObhzRnl5Oa5cuYLU1FT6/AwMDGBqatrpjq5MJsPQoUOpR4xCoUBRUREyMzNRXV0NkUgEc3Nz2NjYwMnJiSr6XSUvLw+JiYloaGiAg4MDvL29IZfLce7cOUH3blNTU9TX1/Puv4GBAaZPn46ZM2dqTNJqb2/P2ywqLS3FxYsXUVxcjPr6ep1dns3MzGBvb4/29nZUVVWhvr5ebTc7IiICgwcPRlZWFq5du0bHmYmJCTWmlJeXIyUlhRrho6KiqIcgaS9Z34COvuft7Q1HR0fcvHmTekzNnTtXsHoAU5SfY7iKsq2tLerq6uDh4aFTTEVbWxsSEhK0WtH19PQwfvx42NvbIzs7G+np6Tot6JaWlliwYAEKCgpw9OhRKBQK2NrawtvbG/X19VQ5FZqkRSIRHB0d4eHhAX9/f7i4uEAikUAul+Pq1atISEigu8ijRo1CREREj7Mp9wWVlZXYt28fFfilUikd8M3NzdDX10dUVBTS0tIEFT43NzeEhoYiMDBQ0CrX0tKCW7du4fLly1R5E4lENC67sLBQMEbIzMwMvr6+cHd3h1wuR2NjIxoaGmjZLeIySxY9FxcXODs783a8V6xYQS24QIe78IMHD5CTk4P8/Hy1Gr5kepDJZPD19YWFhQXEYjFSU1PpAuTt7Q03NzfcuXNH4+7joEGDYGBggHPnzkEul8PS0hKhoaGora1FWVkZWltbIZPJIBKJ1NphZWWFadOmwcPDg+7gXL9+HWlpaTyjhIGBgVbhQSKR8EpTAR3GqZEjR6rFWHJpbm5GcnIykpKSUFpaCplMhqCgIEREREAmk+HEiRM02ceAAQOoUqivrw8PDw84ODjAxcUFHh4eOmU7rqurw5EjR9QWQnt7e0gkEhQVFfF2qLy9vdHQ0IC8vDy1+NHw8HDerntDQwPdMSEZe6VSKfT09KhhqampCSUlJaiqqoK5uTmCgoIgkUh4STjy8vKQnp6OtLQ0tb4qkUgwatQoxMbGUiNAZmYmTpw4gcrKSjg5OSE4OBje3t4wNzfn3ZP6+nocOnRIq6uiWCymO9nkftXU1FD3waamJjQ2NmrNH2Bvb4/Q0FBUV1erubpKpVKEhITA1dUVSUlJdB4wMzODiYkJFWqIgWXEiBHUUAeA7tLLZDJkZmbi0KFD1FI/a9Ys+Pr6AuhQ9i5cuEDDD1xdXTFv3jzeuYQggotYLIapqSntE2lpaXT3mOwwEYHS0dER+fn5uHLlis5Z8A0NDTF27FiEh4frFB6iLXnNxYsXcebMGQAd80V+fj7PWGFmZoZBgwbB398fNjY2EIlECA4Oxv/8z//g0aNH0NPTg7e3N3x8fFBSUkJzUgAd48zS0rLHGbu9vLwwYcIEZGZm4urVq1To4ybOtLe3h62tLR49ekTnGtJfAgICIBKJUFFRgbKyMqpw+vj4aExCU1BQgHPnztH5QyKRwMXFhe5gAh3Csbe3NxQKBZqbmyGRSGBlZQVzc3O0tbXRXWSJREJ3aY2MjFBdXY2ysjLqfiyVSqmSLxaLYWxsDCMjI+qZZGRkBHt7e3h4eNC59O7du0hMTOz03nLXHvJHDDhEMNfX14ebmxu8vb1p+yoqKlBXV0cNGA0NDRpDpIyMjDB8+HCEh4ejqqoKt2/fpl5zqujr62PYsGEYPHgw9PT0UFFRgbS0NKSmpnaawVcqlfI8q4yMjKhSTVy/Gxsb6U6zkAJPdvqNjY1RVlZGlQBDQ0M4OTlBX18fJSUlauulmZkZDA0NqYuxXC5HU1MTamtr1QwTJiYmCAwMhJWVFVpaWtDQ0IDm5ma6202Mow8ePFBLAiiRSODj4wNvb284OTnBwcEBYrEYGRkZuHbtGm+jRSwWw8zMDNbW1rC0tKQlBIlCSubB4cOH8xT9+vp6lJSUqP1xVQ5DQ0NMnjyZVw+ei64JsQhtbW1IT09HQkICndPJTqybmxuam5tRXV1N1wqSVRzoMNg6ODjQkoyaMDIygpOTE0xNTWFgYEDllurqajQ2NkIkElGl2tHREc3NzUhISNC6CUY8j4g3GNc4ZmhoSJVJ7vv6+vrQ09ODoaEhgoODERUVxbv/crkcly5dQkJCgtpaKBKJ6LqrUCh480FDQ0OnSVHNzc0xYcIEXtJQsi7p6enBzMyM99zKy8tx/PhxXlI0PT09TJw4kZZXKykpQXNzM+zt7amnYnl5OX799Vc6TiwsLODr64vY2FhqBGWK8nMMUZTHjRuHhoYGmJqaYsqUKTyBTS6Xo7CwEPn5+dT1VTVZxcCBAzFmzBgkJyfj/PnzaGpqgouLC6ZNm6Ym/FdWVtI4ObLLRBI81dTUIDQ0FOPHj6exyTk5Odi1a5dGC5S+vj7s7e3h7u4ODw8PuLq6at2xbW5uRn19faeJGrrLwoULsWPHjl45V3t7O65fv46kpCTeM7G1tcW8efNga2uL5uZmnD59GikpKVR4Hzx4sFali0traysKCwshFot5MVRKpRJlZWXIzc1FQ0MDTExM4OLiAnt7+x4bFtasWaMxVqm1tRUZGRlISkqiE5qpqSkGDRqEgQMH8lzE7O3tsWfPHly4cIFnYTQ0NERMTAz8/PxQUFCAa9euqS3SPj4+mD17tka37bq6OiQlJVGlKjIyUtBttaamBklJSUhPT+dZyEkcrbW1NczMzOgib29vD6lUSr0hTExMuuw6zhU4CQqFApcuXcK5c+eoEBAWFoZx48Z1Wg5NG8TqShRuEgZA4nplMhkVcEg7qqqqqMDcW0Yocu+FdkpI2a/KykpUVVVBX18fvr6+PUq6oVQq8fDhQxQVFcHc3JxatcvLy6m1WVdlsrS0lCoLFRUVMDExQWRkJAICAnjPkAh/RJgn/UKhUCAxMRGnT5/m7TQFBgZi1KhRWhPiEaqrq7F7926qYLu4uMDKygq5ublUGRo4cCDGjx/fJRfA7lJWVoakpCR6balUira2NmpAsbS0REhICCIjI3tUb5yLUqnE0aNHebHZNjY2cHV1xcOHD3m7TzKZDAYGBp16nZBdPK5xzMfHB+7u7igsLEROTg5du6RSKe+PGAGlUins7e0RFRUFT09PrFixAt9++y11TZbJZNRb6OzZszylzNzcHAMHDuyV+5Sbm4uzZ8/y3MqJgTE2NrZbIS69SXV1NU3OZmRkBFtbW1haWsLAwKDT8oFEwZfJZDoZXIhreX19PTUGGxkZ0ZApLi0tLUhOTqbeCQYGBvD19UVcXJzGOai2thaVlZXUGEFc2O3s7ODs7AxbW9suySfEWCESiagxlus6rlQqUVtbC5FIBFNTU969qqmpQXp6OlJTU3WK4TY3N4efnx+Cg4Ph5uamswGrsLAQ9+/fR1NTExwcHBAcHKy1T5EwJZlMJhjCQuK/m5qatLrpqkJ27sla4eXl1S3X884gxtyWlha4uLhodbW/c+cOzpw5wzNEkLY5OjrSdbW0tBSlpaXdTuAqEokQHh4OJycn5OfnUxkrKCgIw4YN461ptbW1tAQXUTqJx96FCxcEqx+IRCJ4eXnByckJcrmct5Hj5+eHgQMHUmOvoaGh1r7T0tKCoqIilJaWQl9fn4bRkLGuKaxJG0qlEvfv38f9+/chk8kQExOjNYt1UFAQ0tLS0NDQgOPHjyM1NZXKV3p6epg/fz58fHyYovy08pe//EUtw6+9vb3OtcaAfyvKXJycnBAfH4+6ujo8evQIOTk5Gl0+zczMMG7cOJ4lTi6Xo7m5uctlO5RKJXWLAIBJkybh2LFjADri+VJSUlBdXU3jeYk1uy8muJ6watUq/Otf/+rxebix4kRpLSkpgbGxMTw8PPos+daT4O2338bWrVs7Pa6lpYW6ggr9XjKJlZWV4caNG2hqaoKbmxvCwsJ4woxCoUB6ejpu3bqF9vZ2hISEIDo6utfvIRGqTE1NeyxUzp8/H9nZ2bhx4wZ9b/Xq1Wr1FVUpKipCQUEBXFxcBDOn68KgQYN4130aUHXb7QucnJwQFBTUJ8lUeoO2tjbk5ubSnA+6ZmQmyOVy/P7777h16xZvR8XIyIiGL3QXbp6Jp40ZM2ZQt2ulUomcnBwUFhbCxcWFumbL5XLcu3cPd+7cQX5+Pi/3REBAAIYNG4a6ujqkp6cjPz8f5ubmCA0NRVBQEI37rK6uhr29vVqcL9fjRBfWrVvHK4nIpbGxEampqWhqaoKzszM8PT1paE9vQBSa8vJyGBsbw83Nrdv1thnPHvX19aipqUFzczOamprQ1NREdwyNjY1hbW3d7wYTbZiZmXW76gQXsoOtKcEUgcjLKSkpPc5Q3tLSgvT0dDQ1NcHR0RGurq6CxpK2tjaabLapqQnNzc1oaWmBQqGAubk5TExMaFjI48ePadiQt7c3Ro4cqTF8pSsolUqaxFEul6OkpAS3bt0SDEkyMTHBhAkTEBwc/MS8NydPnsyr6tBVIiIi4OXlBR8fH3z44Yf0/ebmZuTl5eHy5cvIzc2FVCrF0qVL8fXXX/dGs7XCsl53k+DgYJ5Q15Md0qlTp+L06dMoLCzE7t27eZ8ZGRnB1dWV7tpaWVmhtbWVKjDBwcF48OAB5HJ5t2tbEkso97cRRdnIyEitnqUmuhpjrQk3N7cuZbfz8/ODkZERHB0dYWxsrLV2ny5ER0dTRVkkEsHOzk7nXeKeMnjwYLi5ufVqxk0u2hIKcTEwMNDqHeDg4IC0tDTY2tpi8uTJGo8jfTQ4OLjLbe0KJKO4NlxcXHiZrTUREBCgFtekS9IwR0dHjQqylZWVoFv6/Pnzaf3bMWPG6Px8niTdVZLDwsLw6NEjncajr68vr7yHKpru35NCT09PrTyUUC17TUilUkyePBnx8fHIyspCQ0MDLC0t4efnR5+5s7OzWmIwTYmuuMhksieqKM+dO5c3P40ePRoXLlygCiPxfImIiEBYWBjN+UByNnh6evLOJ5VKERERgYiICLo719zcDBsbG+oOXFJSQl3WVVEdd3FxcTTRTFeFQ23GXyMjI7WyTXK5XOeQqc4QiURwdnYWjMP7T6E31m+CLrH7TxO6rGFPM0OGDMGJEyd6fB6S8JFLUFAQrKyscOnSJfqesbFxr8mcBgYGCA8P7/Q4PT09uLq6CtZzF4K4NfcmJAkt2SUnYUTl5eXIyMhARUUFzU0TFBT0xI1tUVFRyM7OpsaL4cOHa82i7u/vzwsH8vHxQVBQkNpxMpkMfn5+8PLywq5du5CRkYFdu3Y9EUX52d0a62dI3Cr568wFj9T+5f4BwPLlyzF79mysW7cOkZGRNB547NixWLNmDTZv3oyFCxdiyJAhcHJyQlhYGHWBCA0NxZw5c/DCCy/06m8zMDDosmJoZGTUawt8V2tILly4ENOnT4dIJMLs2bO1Hrt06VLEx8drPaaru0W9xR/+8AdMmDABbm5uvPcnTJjQ7XM6OztjxIgRAKDTQqAr2u6RsbHxE3GH6Sqa2kxiXbkI7RKtWLGi29dev369msFpxIgRCAgIwJYtW7BlyxbExcVp3DFQ9T7pDpMmTVJTRrmLeG8u6C4uLpgxYwbeeOMNvPPOO50e35nrXl/UT9SmmOvC1KlTu/wdc3NzREREID4+HsHBwVRJDgsLo+fjZqTmumJHRUUJntPd3b3L7ehsntRGUFAQTwGNj4/HsmXL6OuQkBCsXr2a9veu1NQmLrBubm7UnbmrBpJRo0Z16Xgu3RkDYWFh3b4e0PGMu9OX+oqulGXTtEM2ZswYjd/RpAz6+fkJGioWLFigc3u4uLi4qK1D3JjK7jB8+PAefb+3UZUV+pOe1JnnKkaqxuKXX34Zc+fOxejRo3nvEwPuk3KK7Y58KzSfqBoKCW+99RZee+21Ll+DYGNjg9jYWEyZMgWTJk1CeHh4v3ikiEQiTJw4kb4mSSM1MWPGjC7dW6lUijlz5sDOzq5PEwpyYYpyN8nIyKDZhBcsWMCrkSnEBx98AHNzc/pHLFJbtmyBhYUFTExMMG3aNKxbtw5LlixBXFwcHBwc1CziXKGBDAJNgtKsWbO0tkmTQiqRSPDyyy/jxRdfxNq1a/HGG29oPQ8ArF27VlDYffPNN9VKkZByEKrExsbizTffVFMKoqOjdXbz5gqWQhN3Z67TnZVrkMlkePvttzF9+nSd2gMAf/7zn3U6juzqq05umpQkTUrVtGnT8Pbbb2Pjxo1YtmwZhg0bhtWrV2PKlCk6t5nLpk2bsGnTJvra3d1d6z0aO3YsgI6J/2nCwMBAUOGaN2+e2ntCMYcuLi7YuHEjNm3aRPuQjY0NXnnlFZ08SrgGmiVLlmDYsGFqx2hSGHUxhr3wwgtYvXo1772FCxfS/5uZmdGxKBaLsWHDBvzpT3/Chg0bsHHjRmzYsEHwvMOHD9dZGbC1tcUbb7zBa68ucbekTrAmVOcLrmLRVQFtxowZWLVqFSIjI+l7gwcPpv8PCgrCqlWrOj0PCUXpDWxsbGBvb49NmzbxniF3Lhg0aBBeffVVte92x4jQVQ8o1ftPBHRifOKOF9W5obthCISu7gr2xOCjyw709OnTqZFFX18fYWFhWLNmDTVIqmJnZ0fvj4mJCU/xe+2117Bp0yadYt07Q1VpXblyJf1/dHS0TuewsLDgeZD4+flpPZ479rjzm7GxsVqfGTlyJFatWiXoXWRiYoJ58+YJejGprnPca3JlGOKuSVC9H6S+uS68+uqr2LRpE1auXMnbNNCkKGsyGEydOrXPQtReffVVnZ7rK6+8Ivj+4MGD8dZbb+H111/HSy+9RN/vjveXlZUVrK2tBT/TRVnjGrdU1wtN80dnijJX+ebO9d1F1SgxevRorF27tsv1uTUZ8mQymcZ7tWbNmi7JnNrojtE9MDAQixYtoq+5z3r9+vVqx3PnUW1xyORY7jPUxavCwMAACxYseGKhCMz1uhsMHjwYP/74I5KSkvDNN99g9+7d2LdvHw4cOKBRGfnTn/6E119/nb6ura2l9VBHjx6N5ORk3vHjx49HU1MTrl69ynO942aY5Xb4V155BV9++SXvHJ0JKPX19Xj99ddx7do1mvyEIJFIeJavxYsXIzU1FSEhIbh48SLq6up4SruQ0PjKK6/A0NBQTelYuXIltm3bRn/X4sWLkZOTgxEjRtCySKNHj0Zrayva29sxbNgwxMXF4caNG7h69SqAjuzCEokE/v7+vHNzhaSZM2fi0qVLCAsLQ1paGp3ouBPxqFGjYGNjQ13ejY2NtQpaK1eupGVnOiMuLk4taRDQsTNESlFwIe3S19fnxXk0NzcjICBArV6pk5MTL4sggWS85O6g6uI6TAw+qjGyqokblEqlxglq+PDhCA0NBdAx8ZuYmAha/YyMjBAYGIjMzEwMHTqUZu11cHCgyap0wdHRkR4r5GonlUrp7rCbmxuGDBnCq1c7b948Xn8gu/dhYWE4fvy42vXIPX3llVeQlJSEuLg4GBsbq11XyIWQex2hetVAhyEnLi4OCoUCra2tSExMBNAhLM6ePRuHDx/G3Llz8csvv9DvGBoa4oUXXhDcIXVwcMCiRYtQWFgIPz8/ODs7w9jYGJGRkXQB4y5kL7/8Mu7du4eIiAj89ttvsLS0xNChQyGXy2FkZETHnya01ShVJT4+HlZWVigrK4Ovry+kUinGjh1LY6/ItWbOnMmLQYuKikJERARN+DR48GCcP38e5ubmOsVG+fv7QyaT8frYqFGjEBAQgMzMTIwYMUJNkbS2tsaCBQtw9uxZ6upnY2ODOXPmIDExEQMHDkRqaiosLCxoG1asWIHs7Gyd4q7JXK4qxBgaGtKELBYWFoKClFgs1imGfsSIETh//jz9jiZITXMuc+fORVpaGlWcZs2ahWvXrlFFxdLSEmPGjEFNTY2aoD1nzhx89tlnWtumDW7ZGl0h7S0vL4elpaXGWs++vr7IyMgA0GHkMTQ0xKJFi/Drr7/SY1STRBoaGuLFF1/E+fPnERoaSkuL2djY0Hhr8swiIyMxaNAgOnaio6N5SeGMjIwglUphaGiIoUOHwtjYuEvuqx4eHnBxcUFTUxOioqJ4tVW5yYFU12ZuHhIu+vr6vPl6zpw5OHfuHIKDg3H16lWkpqYC6JjL4uPjMXToUJiYmKCpqYmu301NTQgMDISFhQVSUlLoHEayBQvFk3p4eEAikcDCwkJtXVRVuGfOnIk9e/bQsm03b94E0LEexsXFYe/evVAqlWqGC0tLS8G1KDw8HJmZmbTmLvBvRcDc3ByLFy+mfV0kEiE6OpompSOVDEaPHk3lr2HDhtFM9vr6+lizZg0+/vhjtesKsXTpUlofWahk0KRJk3Du3DnMnz8f1tbWGtdJ0meXL18OOzs7Xt3w4OBgWFhYYOTIkZBIJHSdHjFiBPT09DB48GCIxWJUVFTw2iCVSjFo0CA0NjZSeXXQoEFITU2lirZqaSIAtDayNriySlNTk0aDFVee0JR/YO7cuaisrIS+vj7ta9zNmtjYWOTm5greX22MGjWKt/4ZGxvD1tYW+vr6GkuKqcoBU6ZMgYuLC8aOHYuamhq0tLSgvr4e48ePB6DZqGBvb69TbWldWLNmDc6ePYuSkhIMHToUWVlZqKmpgUQiESzjOHDgQAwfPpynzI4bNw55eXnw8/PTWP+dIJVKsWDBApSUlODKlStq90rV0KCrW7uVlZVO+XZ6A6Yod4OJEydi165d+Nvf/oYvvviC1j+cPXs2MjIyBN1hNMV8ikQiNQvK4MGDERMTA6DDCltSUoLvv/8eQ4cOhaOjI3788UcA4CmJdnZ22LJlC3JycrBjxw6MHz8eVlZWcHJygkQiEcyoqFQqYWpqirFjx6KkpATfffcd4uLiBH+zj48PtdYSV9X33nuPN3i4irmXlxe1xMbGxtKY47i4OJiYmPAmN+65Caru0QYGBhg3bhza2tpw//59TJgwQXDXz8HBAXZ2djAxMYGRkRHGjRsHgG/xDQgIwOXLl+Hm5oahQ4cK/l4uJElFeHg4XUC5So9YLMYLL7xAnwv5zVz3M1NTU2rkmDJlCiorK/H111/zYgu554yOjqYCd1NTE/z8/NSEPVLT0tDQkBfT4+Hh0elvEsLf3x/+/v5ITk7mLWxEqJ40aRJOnz6N0aNHC1rJRSKRmnCiKXZy1qxZai7PJNa5uLgYP/zwg07Csbm5ORUWgoODUVJSgrKyMjpRDx48GKWlpWhoaEBwcDD1lvjqq69gbW2NwMBAKJVKeHp6orGxkQr+BgYGsLCw0JhQxMbGhvYtIby8vNQWHa7ypckKLhaLab/JysqiQqZMJkNISIhgGY3NmzdrFCxI1kwS32liYqK13dx4T+6uqkQiwbhx4xAYGIhffvkFY8eOxZEjR+jnRkZGEIvFvJ3ZziDZV7kMGTKE/r+srAzV1dVUSCdMnjyZlg8ijB49GgqFQidFmZtdnkAyi2saO6tXr4aenh7mzJmDbdu2wdDQECYmJrRaAfDvOYa7e+Hk5ISrV692GnepqgwQAXTevHnYuXMnFchUMTExwcCBA2m9WTLeNmzYgO3bt/PG0PDhw1FQUICamhrBcANCQEAAz3Dr5uYGHx8fXowwSSbJRdPaYWVlhenTp+Pw4cMYOXIkPDw8aIk6rqFLE5MmTcL+/fvp64iICKSkpMDPz48qbkBHHyXrRlBQEG9HKTU1FYcOHcKsWbPw22+/0fsybdo0fPTRRwD+va75+vpi0qRJOHPmDF544QW4uLjw2mNsbAwDAwMq3HKvP3r0aIwYMQJfffUVLCwseJ4P5H5xBXQyJ4jFYrrTxFWULS0t0dLSgvb2dkFhfPz48dQIqlQq4e7ujtzcXDg4OMDU1BQRERF49OgRIiIicPLkSQAdrp8DBw4UVJSBDtf5S5cuISQkBHp6erTdc+bMoffbxcWF7q4SWQXg77iS8aRUKvHgwQPq9sz9HdHR0UhNTaVznpDQrWrUMTIywtKlS9WOa29vh0wmU/O+iYuLQ1JSEoYOHYqmpia6jnp4eKCurg6TJ0+GVCrFgQMHBGtWq/b18ePHIysrC3Z2dpg/fz4A/gaGp6cnqqqqkJOTAx8fHxgYGMDT0xPFxcVQKpVa1zVyz0JCQvDtt99i6NChtKwa0KG0aPIEJEpqdHQ0/Pz8eG7nCxYsoHKh0O6qSCTiPTvijZicnIyDBw8C6PCCcnNzQ11dHR4+fIgBAwZgwoQJPDfbF198EV9++SUcHR2pAUomk9H7Y2VlBaVSySs/FBcXx1sbKysrNcoN8+bNw7fffgvg30btkSNHIiUlBUCHMkvGfX19PS5cuICgoCD4+fnhwoULcHFxwbhx43DixIkuK8pSqRSenp60dBa5DldW0tfXR1BQEJ0///CHP+C9994D0LErS8JnuOscFyEDJjGeqm5OcA2f5PyZmZnw8vLiyYp6enpwcnJCUVERVqxYAZlMhkmTJtHPiez98OFDKrNwk4qSY7mKukwm48m3o0ePxpkzZ6hBgpQmlEqlkMlkVLY8d+4c716RXfIpU6bghx9+wIgRI3iyTExMDK5duwagY0Nt7969vPlDKJa5L2CKcjf5+9//jhUrVlD3piFDhuDWrVv48ssv8cEHH/To3KpuPPb29njzzTdpB/rzn/8MpVIp6D7n4eGBP/7xj/RY0j4yWEmHJsdyr/HWW291KflJWFgYkpOT6Xm4wh53MQgICKD/J9ai4OBgXLt2rcux0JMnT8akSZM0tlMikWDNmjVaz2Fra4vNmzfzJiWy86gqQA4ZMgRjx46lydK41yGsWLGCt5v3+uuvq5WvIb+XKCFWVlbYvHkz0tPTaWIcTb+JW1eOHKdUKuHm5kYXqS+++ALl5eWIi4vrNCEUEagnTJiABw8eIDs7m5d1NzQ0lFfGhTBw4EBER0dDJBIJWuaFlL+wsDAkJSVR4fOTTz4BIBwXTHBwcMBbb71FM8uT5G5OTk50cSOGB09PTzx8+BAKhQKenp6YMWMGlEol/va3v6G5uRlWVlZq8XJSqRTr1q2jr0UiEZYsWUL/TxgwYAAuXryoFjoghGqyKV9fXzVFmdt/dHHH47o3qY51Pz8/PHz4UDCbZUhICFJSUuDt7d3rmS5dXV3pPPHgwQMqDG3cuFGtbBYXIsBHRUVR5b+zsU9cvUgSqOLiYjg5OWn8TWKxGOvXr1fbvXRycsLQoUNp0jTyfV1dgomSTK5B5hdd7+28efPw3XffaT1GVUGYOHEiJkyYAJFIpNF1EuiYa0g7QkNDcf36dbi6usLS0hJvvvkmfv75Z15YEPeeTpkyBUeOHIFUKsWKFSvojjRXUZ41axZCQkJ63I/Cw8OpFxAAvPvuuwA6DGl/+9vfAPxb0I+JiYGpqSlOnToFoGMcJiYmUmNgREQEJk+eDIlEwlOU//SnP2l0KQ8ODqax1StWrKCZrblGam6cHHeuU6WzfiuRSLB27VqNn3Nd5bXd10WLFsHHx4fO9z/++CNycnJ4tdq5c5NIJOIpkCKRCNOmTaO1aI2MjNDY2EgNHj4+Pnj06BFCQ0ORl5eH6upqBAQEwNTUFG+88YZg28g5OnPJ5jJ16lRMmTKFno/MayYmJmrruZ+fHy9hE9Ax10+cOBHHjx/X6mqpaSdqzJgxGD16NEQiEczNzWnfI5Bru7u74+7du52GikilUrUQCG6/MzIywqxZs3g1gMn6AgBpaWnYu3cvxGIxYmJicOXKFbVr2NvbUznu1q1bqKmp4SmkQqxevRpKpVJwDlaVC3UlPDycht2Q73bWP8icRNZv7v1cuXIlZDIZDhw4gHv37sHLy4tnJKmsrIS3tzfs7e1x/fp1NcOlq6srfX7k+lZWVmrvAR39i9tOrszn7++P69evC/5mV1dXurEUFhaGO3fuUO9KroxDDK7Tp0/H7t27IZVK8cc//hGVlZV0/hSJRDQhY2exuqoMGTKE9lvyewg+Pj4YPnw4VZRXrlwJZ2dn2ueUSqXajju3so0Q3LEVHR2N8ePH8+4n9zmqulPHx8djyJAh9P6KRCKqe3DPQTwjQ0JCMGvWLN5aLKR/jB8/nhqpRCIR3nrrLRw/fpx6kXTV06i7MEW5GxCXyD/+8Y8A/p1a3t/fX3DSI8dwLSGqafS5rrXEdZULtwN1FoPFPZb8f+3ataisrKRuh7W1tWrxLV2dRCdOnAhPT0/BbKSqux/r169HcXExXWBHjx4NJyenLk8eurRTl9+hOmG8+uqryM/PV7NQEWue6uLJvQYRVlauXInW1lbBGq+jRo2Co6Mjb+dcJBJpVZheffVVlJaWwtPTEyKRCAsXLqTulwUFBbykOsuWLUNWVpZOyUrWrFmDvLw8BAUFISwsDA8fPuQZM8aNGwdXV1fI5XK1+HdyPSGBRSi2ZNy4cXBzc6P97oUXXtC55ujLL7+MxsZGuLi44MGDB/Dz80NhYSEMDAwglUpRWFiI0NBQWrOZ3A+RSIRly5ahsLBQY9kd1T4i1GeGDx8OW1tbjck3uCxduhS5ublwdnZGUVERgoKCYGdnh0uXLtGJXiwWY8WKFZDL5TrF1pibm2PJkiWCfWTmzJl4+PChWugB0CGY+vr6dkmY7QrkXs2ePRunT5+Gn59fp3Fo8+fPR0ZGBgIDAxEdHY36+vpOwxe4z2TYsGGwtrbWamABOoQm0seIG6qpqSn8/f0xZ84cnkHL2dkZCxcu1BhDtWbNGtTW1qqFLXR1nnRzc8OCBQtgZWWFL774AkDHnOHp6YnQ0FA0NjYKKl/ajIHt7e2QSCS8Y8icSuYYkUik1s+4x0dGRsLAwICGAC1atAhmZmaws7OjxsHeUJK57VZth5GREZYtWwaRSAQbGxs8evQIgYGBuHPnDu+78+fPx9WrV2ntZcLGjRtx6tQpjBo1qtO4a3JNGxsbLF68mM5XGzdupPOH0PFAxw79yZMnERMTo1PMpbZ7ZmJighdffFFjbCNZK4mSTM43Y8YMPHr0CEFBQYiMjKQ1oTu7Lnlv9erVdN4HOowgGRkZCAgIQGtrK7Kzs+n6oan9a9asQW5ubpd3crjni4qKgr6+Pn2O3M9cXV2xcOFCmJubo62tjYZ8REdHw8jISNBbb8OGDSgsLOStYdqur+m3keRHurh+qp6DK5ORMafpmoGBgZgxYwZsbW1hZ2dHZUbVeYh8Z8WKFcjJyRG851yjOFn7dG2zrmjrU7ocr5q/gBjpfHx8eGvUSy+9RPugQqGAk5OToGzZlfZw3+fOD56enpg0aRLq6+sRExNDPUHz8vIQGBiInJwcmJmZwdLSEl5eXrQdQrJLQEAA5syZA0dHR4hEIlhbW2Px4sU0BGndunWCsmVnqJbmNDAwwKJFi/DgwQOaB2b16tWoq6ujRj7ufKF6TzqbH7mGeX19fTU9gyi/mmRcoeNVmThxIry9vdUSQmo6XvV9kUiEsWPHUkX5SVUJYXWUu8GaNWuwbds27NmzB66urvif//kfXLhwAatXr8ahQ4d4qc4JQrWXgY6C82ZmZqisrMT+/fvh5+cnmOTnWeHRo0e4dOkSpk6dqjG5w7PAtWvXkJmZifnz5wtamJVKJfbt2wdzc3M6aXUHpVKJvXv3wsbGBiNHjuxJk584J06cQHNzMyIjI3HmzBlMmDChx4l7GIzeIj09HdevX8esWbP6JGt2d0hKSkJKSgrmzZvX7SQ/jx8/xsmTJzFu3LhOs4XW1tZi//79GDRo0BNzU+sN5HI5du3aBW9vb55rL4PxtEJCUbqaNDM1NRWXLl3CmDFjOjUEqqJQKLBnzx44Ojo+dXJjUlISUlNTMXfuXBw5cgSWlpZqmaufNWpra3HgwAEMHDiwz+bT69evIyMjA/Pnz3/i5SJPnDiBpqYmzJgxo9e90XqTu3fv4vbt25gzZ47OOVF6AlOUu8H06dNx6NAhSKVS2NnZISYmBv/93/+NAwcO4KeffhJMHKK6o1xTUwM3Nzfk5+c/NUIcg8FgMBgMBoPBYDwLmJqa9qliz1yvu8GePXtgZGSE3bt3Y+bMmfT9bdu2aSwToJrMi7he65rhjcFgMBgMBoPBYDAYHRDP3L6CKcrdQF9fH1FRUTh16hRPUT516pTOtc6cnJyQn5/f55YQBoPBYDAYDAaDwXjeEIqZ7k2YotxNXn/9dSxZsgTR0dGIjY3F9u3bkZeX12nGZYJYLFYrO8FgMBgMBoPBYDAYjP6HKcrdZP78+aioqMB7772HoqIihISE4NixY2pZghkMBoPBYDAYDAaD8WzBknkxGAwGg8FgMBgMBoPBQXtBXgaDwWAwGAwGg8FgMP7DYIoyg8FgMBgMBoPBYDAYHJiizGAwGAwGg8FgMBgMBgemKDMYDAaDwWAwGAwGg8GBKcoMBoPBYDAYDAaDwWBwYIoyg8FgMBgMBoPBYDAYHJiizGAwGAwGg8FgMBgMBgemKPcSX3zxBTw9PSGTyRAVFYWLFy9qPPb8+fMQiURqf/fv3+cdt2/fPgQFBcHAwABBQUE4cOBAX/8MBoPBYDxnfPDBBxg4cCBMTU1hZ2eHGTNm4MGDB1q/s3//fowdOxa2trYwMzNDbGwsfv/9d94x33//veBa1tzc3Jc/h8FgMBjPKR988AFEIhE2bdqk9bgLFy4gKioKMpkMXl5e+Oqrr9SO6Q09iinKvcCuXbuwadMmvPPOO7h9+zaGDh2KiRMnIi8vT+v3Hjx4gKKiIvrn6+tLP7t69Srmz5+PJUuW4M6dO1iyZAnmzZuH69ev9/XPYTAYDMZzxIULF7Bu3Tpcu3YNp06dglwux7hx49DQ0KDxOwkJCRg7diyOHTuGxMREjBw5ElOnTsXt27d5x5mZmfHWsaKiIshksr7+SQwGg8F4zrh58ya2b9+O0NBQrcdlZ2dj0qRJGDp0KG7fvo23334bGzZswL59++gxvaVHiZRKpbJbv4ZBGTx4MCIjI/Hll1/S9wIDAzFjxgx88MEHasefP38eI0eORFVVFSwsLATPOX/+fNTW1uL48eP0vQkTJsDS0hI7duzo9d/AYDAYjP8MysrKYGdnhwsXLmDYsGE6fy84OBjz58/Hu+++C6BjR3nTpk2orq7uo5YyGAwG4z+B+vp6REZG4osvvsD//M//IDw8HB9//LHgsW+99RYOHTqE9PR0+t6aNWtw584dXL16FUDv6VFsR7mHtLa2IjExEePGjeO9P27cOFy5ckXrdyMiIuDo6IjRo0fj3LlzvM+uXr2qds7x48d3ek4Gg8FgMLRRU1MDALCystL5OwqFAnV1dWrfqa+vh7u7O1xcXDBlyhS1HWcGg8FgMDpj3bp1mDx5MsaMGdPpsZp0pFu3bqGtrU3rMV3Vo5ii3EPKy8vR3t4Oe3t73vv29vYoLi4W/I6joyO2b9+Offv2Yf/+/fD398fo0aORkJBAjykuLu7SORkMBoPB6AylUonXX38d8fHxCAkJ0fl7H330ERoaGjBv3jz6XkBAAL7//nscOnQIO3bsgEwmQ1xcHDIyMvqi6QwGg8F4Dtm5cyeSkpIEvXCF0KQjyeVylJeXaz2mq3qUtEtHMzQiEol4r5VKpdp7BH9/f/j7+9PXsbGxyM/Px//7f/+P5wbXlXMyGAwGg9EZr776Ku7evYtLly7p/J0dO3bgL3/5Cw4ePAg7Ozv6fkxMDGJiYujruLg4REZG4rPPPsOnn37aq+1mMBgMxvNHfn4+Nm7ciJMnT3Ypv4WQjqT6fm/oUWxHuYfY2NhAIpGoWShKS0vVLBnaiImJ4VnhHRwcenxOBoPBYDAI69evx6FDh3Du3Dm4uLjo9J1du3ZhxYoV2L17d6cucWKxGAMHDmQ7ygwGg8HQicTERJSWliIqKgpSqRRSqRQXLlzAp59+CqlUivb2drXvaNKRpFIprK2ttR7TVT2KKco9RF9fH1FRUTh16hTv/VOnTmHIkCE6n+f27dtwdHSkr2NjY9XOefLkyS6dk8FgMBgMpVKJV199Ffv378fZs2fh6emp0/d27NiBZcuW4ddff8XkyZN1uk5ycjJvLWMwGAwGQxOjR4/GvXv3kJycTP+io6OxePFiJCcnQyKRqH1Hk44UHR0NPT09rcd0VY9irte9wOuvv44lS5YgOjoasbGx2L59O/Ly8rBmzRoAwJ/+9Cc8fvwYP/74IwDg448/hoeHB4KDg9Ha2oqff/4Z+/bt46U137hxI4YNG4YPP/wQ06dPx8GDB3H69OkuucsxGAwGg7Fu3Tr8+uuvOHjwIExNTamV3dzcHIaGhgDU16kdO3bgxRdfxCeffIKYmBj6HUNDQ5ibmwMA/vrXvyImJga+vr6ora3Fp59+iuTkZPzzn//sh1/JYDAYjGcNU1NTtXwZxsbGsLa2pu+rrk9r1qzB559/jtdffx2rVq3C1atX8c033/CyWfeaHqVk9Ar//Oc/le7u7kp9fX1lZGSk8sKFC/SzpUuXKocPH05ff/jhh0pvb2+lTCZTWlpaKuPj45VHjx5VO+eePXuU/v7+Sj09PWVAQIBy3759T+KnMBgMBuM5AoDg33fffUePUV2nhg8fLvidpUuX0mM2bdqkdHNzU+rr6yttbW2V48aNU165cuXJ/TAGg8FgPHcMHz5cuXHjRvpadX1SKpXK8+fPKyMiIpT6+vpKDw8P5Zdffql2nt7Qo1gdZQaDwWAwGAwGg8FgMDiwGGUGg8FgMBgMBoPBYDA4MEWZwWAwGAwGg8FgMBgMDkxRZjAYDAbjOeEvf/kLwsPD++36f/7zn/Hyyy/rdOwbb7yBDRs29HGLGAwGg8HoHixGmcFgMBiMZwCRSKT186VLl+Lzzz9HS0sLrSX5JCkpKYGvry/u3r0LDw+PTo8vLS2Ft7c37t69q3PJKgaDwWAwnhRMUWYwGAwG4xmAlGgCgF27duHdd9/FgwcP6Hvc0k39wdatW3HhwgX8/vvvOn9n9uzZ8PHxwYcfftiHLWMwGAwGo+sw12sGg8FgMJ4BHBwc6J+5uTlEIpHae6qu18uWLcOMGTOwdetW2Nvbw8LCAn/9618hl8uxefNmWFlZwcXFBd9++y3vWo8fP8b8+fNhaWkJa2trTJ8+HTk5OVrbt3PnTkybNo333t69ezFgwAAYGhrC2toaY8aMQUNDA/182rRpvNqXDAaDwWA8LTBFmcFgMBiM55izZ8+isLAQCQkJ+Pvf/46//OUvmDJlCiwtLXH9+nWsWbMGa9asQX5+PgCgsbERI0eOhImJCRISEnDp0iWYmJhgwoQJaG1tFbxGVVUVUlJSEB0dTd8rKirCwoULsXz5cqSnp+P8+fOYNWsWuI5sgwYNQn5+PnJzc/v2JjAYDAaD0UWYosxgMBgMxnOMlZUVPv30U/j7+2P58uXw9/dHY2Mj3n77bfj6+uJPf/oT9PX1cfnyZQAdO8NisRhff/01BgwYgMDAQHz33XfIy8vD+fPnBa+Rm5sLpVIJJycn+l5RURHkcjlmzZoFDw8PDBgwAGvXroWJiQk9xtnZGQA63a1mMBgMBuNJI+3vBjAYDAaDweg7goODIRb/2y5ub2+PkJAQ+loikcDa2hqlpaUAgMTERDx69Aimpqa88zQ3NyMzM1PwGk1NTQAAmUxG3wsLC8Po0aMxYMAAjB8/HuPGjcOcOXNgaWlJjzE0NATQsYvNYDAYDMbTBFOUGQwGg8F4jtHT0+O9FolEgu8pFAoAgEKhQFRUFH755Re1c9na2gpew8bGBkCHCzY5RiKR4NSpU7hy5QpOnjyJzz77DO+88w6uX79Os1xXVlZqPS+DwWAwGP0Fc71mMBgMBoNBiYyMREZGBuzs7ODj48P705RV29vbG2ZmZkhLS+O9LxKJEBcXh7/+9a+4ffs29PX1ceDAAfp5SkoK9PT0EBwc3Ke/icFgMBiMrsIUZQaDwWAwGJTFixfDxsYG06dPx8WLF5GdnY0LFy5g48aNKCgoEPyOWCzGmDFjcOnSJfre9evXsXXrVty6dQt5eXnYv38/ysrKEBgYSI+5ePEihg4dSl2wGQwGg8F4WmCKMoPBYDAYDIqRkRESEhLg5uaGWbNmITAwEMuXL0dTUxPMzMw0fu/ll1/Gzp07qQu3mZkZEhISMGnSJPj5+eG//uu/8NFHH2HixIn0Ozt27MCqVav6/DcxGAwGg9FVREpunQYGg8FgMBiMbqBUKhETE4NNmzZh4cKFnR5/9OhRbN68GXfv3oVUylKmMBgMBuPpgu0oMxgMBoPB6DEikQjbt2+HXC7X6fiGhgZ89913TElmMBgMxlMJ21FmMBgMBoPBYDAYDAaDA9tRZjAYDAaDwWAwGAwGgwNTlBkMBoPBYDAYDAaDweDAFGUGg8FgMBgMBoPBYDA4MEWZwWAwGAwGg8FgMBgMDkxRZjAYDAaDwWAwGAwGgwNTlBkMBoPBYDAYDAaDweDAFGUGg8FgMBgMBoPBYDA4MEWZwWAwGAwGg8FgMBgMDkxRZjAYDAaDwWAwGAwGg8P/B8dRAqGuytm3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -3690,10 +744,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "id": "721d1f03-df25-468d-8075-a807025a9c58", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAG3CAYAAABMoPP/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHpElEQVR4nO3dd1gUV9sG8Ht2gaWjoigoIHaxF+wF7DX2FrvGWFCjaBJNs3xJfFNeW+wVTWxJ7NHEaOwaDXZjbwnYFQtF+p7vD98dXReQLbML6/27rrmSPTPzzJlxd9hnz5xzJCGEABEREREREZENqGxdASIiIiIiInpzMSklIiIiIiIim2FSSkRERERERDbDpJSIiIiIiIhshkkpERERERER2QyTUiIiIiIiIrIZJqVERERERERkM0xKiYiIiIiIyGaYlBIREREREZHNMCkluyBJklFL8eLFAQChoaGQJAn//POPTetPuV/x4sUhSZKtq2Ez//zzDyRJQmhoqOLHioyMhCRJmDx5suLHIrLWZ/vlvz05MWDAAEiShL179ypWJ2t40++dRJQzDrauAJEl9O/f36Ds4MGDuHbtGqpUqYKqVavqrStYsKCVakZErxowYABWrFiBPXv2WCXJze1CQ0Oxb98+3Lhxw6ikhYiIyF4wKSW7EBkZaVA2YMAAXLt2DR07dsyyxWXlypV49uwZihYtqmwFiSjHOnXqhDp16vDHI3qjTZs2DRMmTEBAQICtq0JEpDgmpfRG4x97otzHy8sLXl5etq4GkU35+vrC19fX1tUgIrIK9imlN1pWfUp1fX/S09Pxf//3fyhVqhRcXFxQvnx5LF++XN5u9+7dCAsLg6enJ/Lnz49+/fohNjY202OlpqZi1qxZCAkJgYeHB9zc3FCrVi0sXboUQgij6v3kyRN89913aNmyJQIDA6HRaODt7Y1WrVph586dBttXqlQJkiTh4sWLmca7e/cuHBwcUKxYMWi1Wr11Bw8eRKdOneDj4wONRoPixYtj9OjRePDggUGcl/tA7dixA2FhYciXLx8kScKTJ08AAAcOHMDIkSNRuXJl5M+fHy4uLihXrhwmTJggb/MqIQTmz5+PihUrwtnZGcWKFcOYMWMQHx+fbb/gf/75B0OHDkXx4sWh0WhQqFAhdO3aFWfOnMn0OOnp6Zg2bRpKly4NZ2dnlChRAp9++ilSU1Mz3T47L1+LX3/9FQ0aNIC7uzvy58+Pzp07Z/lvAQDff/89GjRoAE9PT7i6uqJy5cqYNm0akpOTLXKcyZMnQ5KkTJ8wAIzrA5acnIylS5eiQ4cOKFGiBFxcXJAvXz40atQIa9euNdhekiSsWLECABAWFqbX11v3b5hdn9Jnz57h//7v/1CxYkW4uLjAy8sry2O9ei5LlixB5cqV4eLigiJFimDo0KFZvucy83K/2ri4OIwbNw5BQUFwdHTEmDFjABj32dTF27dvHwAgKChI73q8TAiBFStWoFGjRsiXLx9cXFxQuXJlfPvtt0hLSzOoa2xsLD766CNUqFAB7u7u8PLyQpkyZdCvXz/89ddfOT5nwPR7wP79+9GkSRN4eHjA09MTbdu2xfnz57M8zq+//op27drJxwkICEDHjh2xbds2g23//PNPdOjQAYUKFZLrNGLECNy+fTvT2KZ+ts+ePYvevXujaNGi0Gg08PPzw8CBA7MchyAxMREffvghAgIC4OzsjHLlymH69OlG3+OBrPuUWvI9rRMdHY2RI0fK18fb2xu1atXCl19+iaSkJL1tY2Nj8f7778vbFihQAK1atcLvv/9u9HGN+Xd8+b5w+fJl9OzZE4ULF4ZKpcKmTZsAPL/+X331FapWrYp8+fLB3d0dJUuWRLdu3bBjxw6j60dEViSI7FT//v0FADFp0qQst2ncuLEAIG7cuKFXDkAEBgaKTp06CQ8PD9GiRQvRokULodFoBACxbNky8dNPPwkHBwdRo0YN0blzZ1G0aFEBQDRo0EBotVq9eAkJCaJhw4YCgChYsKBo1aqVaNOmjcifP78AIIYOHWrUuf36668CgPD39xdNmzYVPXr0EHXr1hWSJAlJksTSpUv1tp82bZoAID755JNM482YMUMAEO+//75e+axZs4QkSUKtVou6deuKrl27inLlygkAIigoSNy+fVtve901HzJkiJAkSYSEhIiePXuKkJAQ8eTJEyGEELVr1xYajUa+bm3bthW+vr4CgKhQoYKIj483qN/o0aMFAKHRaESbNm1Ely5dRIECBURISIioW7dupv+GBw4cEJ6ennLcrl27ytfIxcVF7N692+A4Xbt2FQCEu7u76NChg3jrrbeEq6uraNu2rQgICBDG3DJ112LEiBF61yI4OFgAEF5eXuLUqVMG+7377rsCgHB2dhZt2rQRXbt2FQULFhQARN26dcWzZ8/MPs6kSZMEALF8+fJM6x4YGGhwrjdu3BAAROPGjfXKL1y4IACIwoULi8aNG4sePXqIxo0bC0dHx0w/f/379xclS5YUAETLli1F//795eXBgwdCCCGWL1+e6b5xcXGiRo0aAoAoVKiQ6Nq1q2jdurX8uXzvvfeyPJf3339fODk5ifr164uOHTsKHx8fAUA0bNjQ4POaFd01qFWrlqhatarInz+/6Nixo+jcubOYPHmyEMK4z+aDBw9E//79ReHChQUA0aVLF73roZORkSG6desmAAhPT0/RtGlT0aFDB1GkSBEBQLRp00ZkZGTI28fHx4tSpUoJAKJ06dKic+fOonPnzqJmzZrCwcEh23viq0y9B0RERAi1Wi2qVKkiunTpIsqUKSMACG9vb3Hnzh2D40RERAgAQq1WiwYNGoiePXuKRo0aCU9PT4P33Pfffy/UarWQJEnUr19f9OzZU45fuHBhceHCBYP4pny2f/75Z+Hk5CQAiBo1aoiuXbuKatWqyefx999/622fnJws6tWrJ9/nu3btKlq2bCkcHR3FiBEj5L8rOaW7lnv27NErt+R7Wggh9u3bJ7y8vAQAUaJECdG9e3fRtm1bERQUZHBvvXnzpihRooQAIAICAkSPHj1EkyZNhFqtFgDE9OnTDeJndj8Rwvh/R919oWfPnsLT01MEBQWJHj16iBYtWohffvlFpKeny9e/WLFiokOHDqJbt26ibt26wtnZWe8zRUS5D5NSslvmJqUARMWKFUVMTIxcvnv3bgFA+Pr6Cm9vb/Hzzz/L654+fSoqVKggABgkPMOHDxcARN++ffWSrvv374vatWsLAOKXX37J8bldv35dHDp0yKD8xIkTIl++fMLT01PvOP/++6+QJEmUKFEi03ghISECgF7y8ueffwqVSiUCAwPF6dOn5XKtViumTp0qAIiuXbvqxdFdcwBi7dq1mR5r27Zt4tGjR3plycnJcjI2ZcoUvXUHDhyQv+SdP39eLn/06JGcoLz6b/j06VNRpEgR4ejoKH766Se9eDt37hROTk6iaNGiIiUlRS5fvXq1/KXs5s2bcvn169dFsWLF5OPk1MvXYtGiRXK5VqsVH374oQAgqlevrrfPzz//LACIokWLiitXruidT4MGDTL94cCU41gyKX348KHYsWOHXlIkxPPrVrx4caFSqQw+X1l92dbJKikdOXKkACCaNWum9/6+cOGC/IV827ZtmZ6Lr6+vOHnypFz+4MEDOXH7448/Mq3Hq3TXQPcDwePHjw22MfazKUTW9yGdr776SgAQzZs3F/fv35fLExISRPv27QUAMWfOHLlcd/1GjRplEOvevXvi7NmzOTpfc+4BKpVKrF69Wi5PT08XXbp0EQDEp59+qrfP999/LycSLx9Hd44v//tER0cLFxcX4eDgILZu3SqXZ2RkiDFjxggAIiQkRC+GKZ/t69evC1dXV+Hl5SX27dunt27FihWZHufLL7+Uf7TQ/QgnhBDHjx+XfyCzZFJqiff0o0ePRKFChQQAMWPGDINkdt++fXrn0q5dO/lvWWpqqlx+4MAB4erqKtRqtcG/YWb3E1P+HXXvawBi5MiRIj09XW/9nj17BADRoUMHg/vRkydPxLFjx3J0TYjINpiUkt2yRFKaWWta9erVBQDRr18/g3WzZs0yOOa9e/eEo6OjCAoKEsnJyQb7nDp1SgAQ7du3z/G5Zefjjz8WAMSWLVv0ynUttX/++ade+ZUrVwQAERwcrFfeoUMHAUDs2LHD4BharVZUq1ZNqFQquXVLiBfXvG3btkbX+9mzZ8LBwcEggerdu7cAIKZNm2awj+5Hglf/DXUtvxMnTsz0WLovPevXr5fLdNdn1apVBtsvXLjQ5KS0Xr16ButSU1OFv7+/ACAOHz4slzdq1EgAMGjpFkKIM2fOCEmShIeHh14ybcpxLJmUZmfx4sUCgJg9e7ZeuSlJaUJCgnBxcREqlUpcvnzZYJ/Zs2fLra+ZncuSJUsM9vnvf//72nvEy15OSqOionK0z8uy+mxml5SmpaWJggULCg8PD73Pms7du3eFRqMRlSpVkst0SezGjRuNruPLzLkH9OnTx2Cf48ePZ/oeKl++vACg9yNfVj777DM5KXpVcnKy8PPzM7jPmfLZfu+99wQAsXDhwkzr0bFjRwFAHD9+XC7TfdYy+1Fi4sSJFk9KLfGe1r1X2rVr99ptr127JoDnrfWZ/SCja+1+9cmfzO4npvw76u4LhQoVEomJiQb7rVu3Tk6uiSjvYZ9Soiw4OTmhcePGBuUlSpQAADRv3txgXcmSJQEAd+7ckcv27duHtLQ0tGrVChqNxmCfKlWqwMPDA1FRUUbVLyMjA7///jsmT56MYcOGYcCAARgwYAD27NkDALhy5Yre9r179wYArF69Wq9c97pPnz5ymVarxR9//AEPDw80bdrU4NiSJKF+/frQarU4fvy4wfq33nor27rfunULCxYswJgxYzBo0CAMGDAAw4cPh5OTk0G9Dx8+DADo1q2bQZywsDB4e3sblOv67nXs2DHT4zdo0AAA5GuelpaGo0ePQqVSoWvXrgbb9+rVK9vzyU7Pnj0NyhwdHdGlSxcAz/vr6epw5MgRSJKEt99+22CfSpUqoXLlyoiPj8fp06dNPo5SDh48iM8//xzDhw/HwIEDMWDAAPz0008ADN+Lpjh+/DiSkpJQq1YtlC5d2mB93759AQCHDh3KtP9eixYtDMrKlCkDQP/zmhO+vr6oWbNmluuN/Wxm5+TJk3j48CEaNGiQ6WjEhQsXRunSpfH333/Lff9q1KgBAPjoo4/wyy+/ZNoX+XXMvQfk9Hrfvn0bFy5cgLe3t/xezc6BAwcAvLifvUyj0cj3Cd12pn62dfeQDh06ZLr+1XtIdHQ0YmJiULRoUdSrVy/HxzGHJd7Tu3btAgAMHTr0tdvq7iFt2rRBvnz5DNbrPoO6a58dY/8dX9asWTO4uroalFetWhUqlQrffPMN1q5di/j4+NfWg4hyD46+S5SFIkWKQKUy/N3Gzc0NADKdRka3LiUlRS7TDYgxf/58zJ8/P8vjvTyYxPjx4/Hw4UO99Q0aNMA777wDALh58ybatWuXaXKi8+of5G7dumH06NFYt24dZsyYAbVaDQBYs2YNJEnS+9IUGxuLhIQEAICDQ/a3iVfrCWQ/qvH06dMxceLEHA8edPv2bUiShGLFimW6PiAgwGBwKd01r127draxdXWPjY1FamoqfH194eTkZLCdh4cH8uXLZ9IAIoGBgZmW6+aj1A3ooatDkSJF4OzsnOU+p0+fznQQkJwex9KePn2Kzp07Y/fu3VluY4kvh7r6ZzWPZ758+eDl5YWnT58iLi7OYPTezN4/7u7uAPQ/rzmR3fvblM9mdnTv5V9//fW1g089evQIRYsWRdOmTTF27FjMnDkT7du3h5OTE6pWrYoWLVpg8ODBOZoL1dx7QE6vd0xMDIAXP+i9zuveB1l9roz9bOuue5EiRbKtj+7cdcfL6r2hxEjvlnhPG3P9jb32SsXK6lqWKVMG33zzDSZMmIBevXpBrVajYsWKaNasGQYOHIgKFSq8tl5EZDtMSomy8LovgDkdnTQjIwMAUK1aNVSuXDlH+/z888/4999/Dcp1Sek777yD06dPo3Pnzvjwww9RtmxZeHh4QKVSYdGiRRg6dKhBa5FuhMQtW7Zg165daNmyJU6cOIGLFy+iQYMGel8OdHX28PBA586ds61rZslQVknVkSNHMG7cOHh5eWHRokUIDQ1FkSJF5BZkPz8/o1utMmsV09W/W7dumf6irqNLWnUxcvpvagmZ1TundTCmnlkdJzuvjsCcnQ8//BC7d+9Go0aNMHXqVFSsWBH58uWDWq3G77//jpYtW5pUh6yYen0s+W+b1fsbMO2zmR3de7l06dKZtsC97OUnMaZPn46hQ4di8+bN+OOPP3Do0CH89ddf+Prrr7Fu3bosnyJ49bim3gOMvd6W3l633tTPdkZGBiRJQr9+/bLdTpfovO44StxbLBnTmFivO0dLxMpufXafv4iICHTr1g2bNm3Czp07ceDAAfz3v//FjBkzMHv2bISHh+e4bkRkXUxKiRSm+zU7NDQU06dPz9E+WU03ADwf8n7nzp0oXLgwfvzxR7nFU+f69etZ7tu7d29s2bIFq1atQsuWLeVHd199hKpgwYLQaDRwdHTMctoQU2zcuBEA8Pnnn6N///5665KSknD37l2DfXx9ffHPP//g5s2bmf6af/PmTYOyYsWK4dKlS/jkk09y9ENAwYIF4eTkhLt37yI1NdWgRSU+Pt6kVlIAmf64ADx/3A94nogDgLe3t1yHpKQkuLi4ZBkrs7kLc3ocAPL56VrCXpaRkZHpv0NWNm7cCLVajS1bthi0Tmb3XjSWrv43btzIdP3Tp0/x9OlTuLm5wcPDw2LHNYY5n82s6O4fFStWNPqzWLZsWXzwwQf44IMPkJycjLlz52L8+PEYOnToa5NSpe4Br/L39wcAXL16NUfb+/n54dKlS7hx44b8qOrLXv2MmPrZLlasGK5du4bZs2fD09MzR/V6+fhZ1Su38ff3x8WLF3H16lWUK1cu221f9xnU/d3Kydyqxv47GsPf3x+jRo3CqFGjkJ6ejrVr12LgwIGIiIhA7969M330mIhsj31KiRQWFhYGtVqNX375RW59MMfTp0+h1Wrh6+tr8KU3PT1dTvwy0759e3h4eGDTpk1ITEzEunXr4OjoaNBf08HBAaGhoXj06BH2799vdp11Hj9+DODFF9GX/fTTT5m2IOlah37++WeDdXv37s300cFmzZoBgDx33es4OjqiVq1a0Gq1WL9+vcH6rObAzIl169YZlKWnp8vHqV+/vlyHOnXqQAiBNWvWGOzz999/4/Tp0/Dw8ECVKlVMPg7w4ove5cuXDfbZvXt3pvNeZuXx48fw8PAwSEgB4Mcff8x0H11ikJ6enuPj1KhRAy4uLvjrr78y7ZP5ww8/AHj+mLs1W7xfZupnM7vrERISAi8vL+zZswdxcXEm183Z2Rnjxo2Dr68v7t+/j/v372e7vVL3gFf5+fmhfPnyiI2NxYYNG167fcOGDQEAq1atMliXmpoq92PWbWfqZ9vYe0hgYCCKFSuGW7du4c8//8zxcWxNd56LFi167ba6frTbtm3LNJHXfQZ11z47xv47msrBwQF9+vRBSEgIUlNTM73nEVHuwKSUSGFFixbFgAEDcOXKFfTt2zfTJOrw4cPYvn17juL5+PjAy8sLf//9Nw4dOiSXZ2Rk4IMPPsj2j66Liws6d+6M+Ph4jB8/Hjdv3kSrVq0yHSzoo48+gkqlQv/+/TMdJOf27duYO3dujuqso/tFfOnSpXqJz/nz5/Hhhx9mus+7774LAPjvf/+LS5cuyeVPnjzBBx98kOk+Q4cORaFChfDll19i+fLlBsluYmIiVq5cqdfKqhvo47PPPtN7hPjff//F//3f/xlzmnoOHTqEZcuWya+FEJg0aRKio6NRpUoVvUcyR40aBQCYNGmSXqtafHw8Ro4cCSEEhg4dmmnfOGOOoxvA64cfftBrlb9+/bpch5wqU6YMnjx5YpAUz5gxQx7Y51W6FpeX/z1fx83NDYMGDYJWq0V4eDgSExPldZcvX8bnn38OAEbX35JM/Wxmdz00Gg3Gjx+PJ0+eoEuXLpm2uJ05c0bv+m/atAlHjhwx2O7kyZO4d+8ePDw8kD9//teejxL3gMxMmDABADBmzBicO3dOb11iYqJef+XBgwfDxcUFa9aswbZt2+RyrVaLjz76CLdu3UJISAjq1KkjrzPlsz1u3Di4uLhg7Nix2Lp1q8H6R48eYd68eXpjAeiOM27cOL0fEE6dOmWR66SEd955BwULFsTWrVsxZ84cg3vlgQMH8PTpUwDPB/lr27Yt4uPj8d577+ndw//880/Mnz8farUaI0aMeO1xTfl3fJ09e/Zg165dBt0P/v33X1y4cCHbsQmIKBew+ni/RFZi7pQwWQ3dn910Frp50l6dpDsxMVGEhYUJAMLDw0M0bNhQ9OjRQzRu3FgULVpUABDvvfdejs/tiy++EMDzieabN28uevToIYoXLy5cXFxEeHh4tuf9+++/y1MgAFnPJyqEEN999508KXrlypVFly5dRNu2bUXFihWFWq0WXl5eOb42Qjyf07JIkSICgAgKChLdu3cXzZo1E46OjqJbt25ZTrKuOydnZ2fRtm1b0bVrV+Ht7S1q1Kgh6tSpIwCIW7du6e1z8OBBUaBAAfnfsm3btqJz586iZs2aws3NTQDQm+NPq9WKTp06yf9GHTt2FB06dBBubm6iTZs2IiAgwKQpYYYPHy4kSRK1atUSvXr1kuey9fDwECdOnDDYTzdfq4uLi2jbtq3o1q2bPI9gnTp1DKZCMPU4/fr1EwCEl5eXaN++vWjSpIlwdXXN8t8hqylhfvjhB/m91LBhQ9GrVy8RHBwsVCqVGDt2bKafh2PHjglJkoRGoxEdOnQQgwcPFoMHDxYPHz4UQmQ9T2lcXJw8N62Pj4/o1q2baNOmjXB2dhYAxOjRow3OM6v3lBBZf16zkpNpcUz5bK5fv16eaqNr167y9dDJyMgQvXr1EgCERqMRdevWFT169BBNmzYVQUFBAv+bm1FHN51J0aJFRbt27cTbb78tQkNDhYODgwAgZs6cmaPzFcLy94Cs7q26OWjVarX8PmrcuLHw9PQ0uN7ff/+9UKvVQpIk0aBBA9GrVy9RtmxZAUAULlxYXLhwQW97Uz/b69evFy4uLgKAKFu2rLxf1apVhZOTkwCgNzVKcnKyPO90wYIFRbdu3USrVq2Ek5OTPFe1JaeEyYyx72khnk+t5eHhIQCIkiVLiu7du4t27drJ762X/z7evHlTLg8MDBQ9e/YUTZs2ld8j//3vfw3iZ1VfY/8ds7ov6OimAitUqJBo1aqV6N27t2jRooV8fxgzZkyOrwkRWR+TUrJbuSkpFeL5fINLliwRjRs3Fvnz5xdOTk6iWLFiolGjRuLrr78WMTExOT858XwC92rVqglXV1fh7e0tOnToIE6fPv3aP9zp6enC19dXABDu7u7i2bNn2R7n2LFjonfv3sLf3184OjqKAgUKiMqVK4vw8HCxd+9evW1f94VUCCFiYmLE22+/LYoWLSqcnZ1F+fLlxbRp00R6enqWX160Wq347rvvRPny5YWTk5Pw8/MT4eHh4unTp6JUqVJCkqRMz+PWrVti3Lhxoly5csLFxUW4u7uLMmXKiB49eoh169bpzfcpxPN5Pb/44gtRokQJ4eTkJAIDA8WECRNEcnJytl8EM/Pytdi6dauoW7eucHV1FV5eXqJDhw7i3LlzWe67cuVKUa9ePeHu7i6cnZ1FhQoVxBdffJHpOZp6nJSUFDFhwgTh7+8vnJycRMmSJcXnn3+e5b9DdgnZtm3bRJ06dYSHh4fIly+faNasmdi7d2+2n4dVq1aJ6tWry1/6X/4cZvceTkhIEFOmTBHBwcFCo9EIDw8P0aBBA7F69epMz9PaSakQpn02Z8yYIZ+T7nq86ueffxatWrUSBQsWFI6OjsLX11fUqVNHTJ48WVy8eFHe7uTJk2LcuHEiJCRE+Pj4CI1GIwIDA8Vbb72V7WczK5a8B2R3b924caNo0aKFfH8MCAgQnTp1Etu3bzfY9tChQ6J9+/bC29tbODo6ioCAADF8+HBx8+bNTGOb+tm+fPmyGDp0qChRooTQaDTCy8tLlC9fXgwcOFD88ssvQqvV6m0fHx8vxo8fL4oWLSqcnJxEmTJlxNdffy0yMjJybVIqxPM5SN99910RGBgonJycRMGCBUXt2rXFtGnTRFJSkt62Dx8+FOPGjRMlS5YUTk5OIl++fKJFixaZzmf7uvoa8+/4ur9tV65cEZ988omoX7++8PX1FU5OTqJo0aKiefPmZs/ZS0TKk4Sw4LCIRERWdOvWLRQvXhylSpXChQsXbF0dPQMGDMCKFSuwZ88ehIaG5vnjEBERESmFfUqJKNe7ePGiXt8tAHjw4AEGDhyI9PR0vP322zaqGRERERGZi1PCEFGuN3PmTKxevRrVqlWDr68v7t27hxMnTiAuLg7Vq1fH+PHjbV1FIiIiIjIRk1IiyvU6d+6M27dv48SJEzh69CjUajVKliyJLl26yKNkEhEREVHexD6lREREREREZDPsU0pEREREREQ2w6SUiIiIiIiIbIZJKREREREREdkMk1IiIiIiIiKyGSalREREREREZDNMSomIiIiIiMhmmJQSERERERGRzTApJSIiIiIiIpthUkpEREREREQ2w6SUiIiIiIiIbIZJKREREREREdkMk1IiIiIiIiKyGSalREREREREZDNMSomIiIiIiChTMTExCA0NRXBwMCpXroyffvrJ4seQhBDC4lGJiIiIiIgoz7tz5w7u3buHqlWr4v79+6hevTouXboENzc3ix3DwWKRiIiIiIiIyK74+vrC19cXAODj44MCBQrg0aNHFk1K+fguERERERGRndq/fz/at28PPz8/SJKETZs2GWwzb948BAUFwdnZGTVq1MCBAwcyjXXs2DFotVr4+/tbtI5sKc0BrVaL27dvw8PDA5Ik2bo6RERERERvNCEE4uPj4efnB5Uq77WzJScnIzU11aR9hRAGOYlGo4FGo8l0+8TERFSpUgUDBw5Ely5dDNavW7cOY8aMwbx581C/fn0sXLgQrVu3xvnz5xEQECBvFxsbi379+mHJkiUm1Ttbgl4rJiZGAODChQsXLly4cOHChUsuWmJiYmydKhgtKSlJFHAy/Zzd3d0NyiZNmpSjYwMQGzdu1CurVauWGDZsmF5ZuXLlxIQJE+TXycnJomHDhmLlypXmnn6m2FKaAx4eHgCA6KsX4fm//7c08SxBkbgAAG2acqHjHikX+9EtxWIDgKRW8O3v5KxYaElS7tdAkfJMsdgAAAWvuUhNViy2ysNbsdjax7cViw0AkoJ1F0/uKRZbyldYsdjaR3cUiw0Aar/SisZXikh8olzwNNNaA3JKCK1ywVOTlIvtmHmrhiUo+fkEAFWRksrFLmTZxwJfln7lmGKxJWfL9a/LjFrBay4U/Ixm/HtGkbjxz5JQ8u335e/peUlqaioepQI/1gHcjPxqlJgOdD+SgJiYGHh6esrlWbWS5qQux48fx4QJE/TKW7RogcOHDwMAhBAYMGAAmjRpgr59+5p0nNdhUpoDuuZxTw8PvX98SxIOCj4WnKFgUiqUu4lpU1wViw0AkoOSSamLYqEVTUodFQv9nFq5A4gU5a6Lyl25LxraVIXf5wrWXaQpV3cl6630vUXt4a5ofKUISbm/FUhT9uuG0CqYlDoq+PdZyaQ0Vbm/Q4Cy90WVgklGupuC9y3nvHtvUTQpdVP2vZiXu9a5O0pwMzIHkKTnjaOenp4WyUsePnyIjIwMFC6s/2Nw4cKFcffuXQDAoUOHsG7dOlSuXFnuj/r999+jUqVKZh9fh0kpERERERGRlUkqFSSVkUmpSgDIsHxdXknuxUv9Vhs0aACtkj/+gaPvEhERERERWZ8kmbYACAkJQXBwMObOnWtWFQoWLAi1Wi23iurcv3/foPVUSWwpJSIiIiIisjLTW0qBqKgoizy+6+TkhBo1amDnzp3o1KmTXL5z50506NDB7Pg5xaSUiIiIiIjIyiRJZXSf2Od9So2TkJCAq1evyq9v3LiBU6dOoUCBAggICEBERAT69u2LmjVrom7duli0aBGio6MxbNgwo49lKialREREREREdurYsWMICwuTX0dERAAA+vfvj8jISPTo0QOxsbGYOnUq7ty5g4oVK2L79u0IDAy0Wh2ZlBIREREREVmZJJnw+O7/WkpDQkKgVqsRHh6O8PDwbPcJDQ3F8ylKszZixAiMGDHCqLpYEpNSIiIiIiIiKzPn8V1L9SnNLZiUEhERERERWZmkkkwY6EihytgYk1IiIiIiIiJrk1TyFC8538f4gY7yAjvNtYmIiIiIiOyTpeYpzS3YUkpERERERGRluWGe0tyCSSkREREREZG1SRIkYzuJSlpl6mJjTEqJiIiIiIis7HlLqXFJqb0OdJSrTmvatGkICQmBh4cHfHx80LFjR1y6dCnTbUNDQ7FgwQLExsaiVatW8PPzg0ajgb+/P0aOHIm4uDh5271790KSpEyXu3fvWuv0iIiIiIiIACDL/OR1iz3KVUnpvn37EB4ejiNHjmDnzp1IT09HixYtkJiYqLfdo0ePcPjwYbRv3x4qlQodOnTAli1bcPnyZURGRmLXrl0YNmyYQfxLly7hzp07eouPj4+1To+IiIiIiAiAbp5S4xd7lKse3/3tt9/0Xi9fvhw+Pj44fvw4GjVqJJdv27YNVapUQdGiRQEAw4cPl9cFBgZixIgR+Oabbwzi+/j4IF++fMpUnoiIiIiIyApCQkKgVqsRHh6O8PBwW1fHbLkqKX3V06dPAQAFChTQK9+yZQs6dOiQ6T63b9/Ghg0b0LhxY5OPm5KSgpSUFPn1y48CExERERERmU2ler4Ytc/z/9jb6Lu5tv1XCIGIiAg0aNAAFStWlMtTUlKwY8cOg6S0V69ecHV1RdGiReHp6YklS5YYxCxWrBjc3d3lpWzZspkee9q0afDy8pIXf39/y54cERERERG90fj47gu59qxGjhyJM2fOYM2aNXrlu3fvhre3NypVqqRXPmPGDJw4cQKbNm3CtWvXEBERYRDzwIEDOHXqlLzs2LEj02NPnDgRT58+lZeYmBjLnRgREREREb3xdKPvGrvYo1z5+O6oUaOwZcsW7N+/H8WKFdNbl9Wju0WKFEGRIkVQrlw5eHt7o2HDhvj000/h6+srbxMUFJSjPqUajQYajcbs8yAiIiIiIsqMKaPp2uvou7kqKRVCYNSoUdi4cSP27t2LoKAgg/Vbt27FypUrXxsHgF6/UCIiIiIiotxCkkyYp9Q+c9LclZSGh4dj9erV2Lx5Mzw8POQ5RL28vODi4oLjx48jMTFRbyTe7du34969ewgJCYG7uzvOnz+PDz74APXr10fx4sX14t+/fx/Jycl6Zd7e3nB0dFT83IiIiIiIiCyBo+8qaP78+QCA0NBQvfLly5djwIAB2Lx5M9q2bQsHhxfVdnFxweLFizF27FikpKTA398fnTt3xoQJEwziZzaw0Z9//ok6depY9kSIiIiIiIiyYcrARbqWUnsbfTdXJaW6x26zsnnzZnzyySd6ZWFhYTh8+HC2+4WGhr42NhERERERkdWoJBOmhLHPnCZXJaXZSU1NRZcuXdC6dWtbV4WIiIiIiMgsprWUMim1KScnJ0yaNMnW1SAiIiIiIjKbpJIgqYwcfdfI7fOKPJOUEhERERER2Qu2lL5gn7OvEhERERERUZ7ApJSIiIiIiMjKdC2lxi7A8ylhgoODMXfuXBufhWXw8V0iIiIiIiIrk1QqSEaOviv9b/RdTglDRERERERE5pFUzxej9rHPPqVMSomIiIiIiKzMnJZSe8OklIiIiIiIyMokSYIkGTkljJHb5xUc6IiIiIiIiIhshi2lREREREREVsbHd19gUkpERERERGRlzx/fNTIplbQK1ca2mJQaIePmRWS4uysT+58zisQFAAgF37xq5d5C2vvRisUGoGjdJScXxWKLjDTFYksqtWKxAUAkxSkXOz1dsdjG/oppDKFV9o+L5KDc+zzh9j+KxXb3K65YbG3yM8ViA4BIeKRc7ORExWIjNVmx0CI1SbHYACApeD8XaamKxZYcnRSLnf5MufstAKjv/6tYbMlRo1hsiAzlYiss40qUYrGV/FuU/PieInETk5X7bFqNZHxLqdGj9eYRTEqJiIiIiIiszaQpYewzKbXPsyIiIiIiIsrFJJVk0gIAISEhCA4Oxty5c218FpbBllIiIiIiIqI8JCoqCp6enrauhsUwKSUiIiIiIrIySVKZMNCRfT7oyqSUiIiIiIjIykybEoZJKREREREREVkAW0pfYFJKRERERERkZUxKX2BSSkREREREZG0q6fli7D52yD5TbSIiIiIiIsoT2FJKRERERERkZXx89wUmpURERERERFYmqSQTRt+1z8d3mZQSERERERFZGVtKX2BSSkREREREZGWcp/QFJqVERERERERWJkGCJBn3OK4E+3x81z5TbSIiIiIiIjsVEhKC4OBgzJ0719ZVsYhcnZROmzYNISEh8PDwgI+PDzp27IhLly5lum1oaCgWLFiA2NhYtGrVCn5+ftBoNPD398fIkSMRFxcnb7t3715IkoQnT55Y6UyIiIiIiIheolKZtgCIiorC+fPnER4ebuOTsIxcnZTu27cP4eHhOHLkCHbu3In09HS0aNECiYmJets9evQIhw8fRvv27aFSqdChQwds2bIFly9fRmRkJHbt2oVhw4bZ6CyIiIiIiIj06QY6MnaxR7m6T+lvv/2m93r58uXw8fHB8ePH0ahRI7l827ZtqFKlCooWLQoAGD58uLwuMDAQI0aMwDfffJPj46akpCAlJUV+/XIrKxERERERkbk40NELeeqsnj59CgAoUKCAXvmWLVvQoUOHTPe5ffs2NmzYgMaNG+f4ONOmTYOXl5e8+Pv7m15pIiIiIiKiV7Cl9IU8c1ZCCERERKBBgwaoWLGiXJ6SkoIdO3YYJKW9evWCq6srihYtCk9PTyxZsiTHx5o4cSKePn0qLzExMRY7DyIiIiIiIkmSTFrsUZ5JSkeOHIkzZ85gzZo1euW7d++Gt7c3KlWqpFc+Y8YMnDhxAps2bcK1a9cQERGR42NpNBp4enrqLURERERERGR5ubpPqc6oUaOwZcsW7N+/H8WKFdNbl9Wju0WKFEGRIkVQrlw5eHt7o2HDhvj000/h6+trrWoTERERERFlin1KX8jVZyWEwMiRI7Fhwwbs3r0bQUFBBuu3bt2Kt95667VxAOgNXkRERERERGQzkgRIKiMX+3x8N1e3lIaHh2P16tXYvHkzPDw8cPfuXQCAl5cXXFxccPz4cSQmJuqNxLt9+3bcu3cPISEhcHd3x/nz5/HBBx+gfv36KF68uI3OhIiIiIiI6AW2lL6Qq5PS+fPnAwBCQ0P1ypcvX44BAwZg8+bNaNu2LRwcXpyGi4sLFi9ejLFjxyIlJQX+/v7o3LkzJkyYYM2qExERERERZcmU0XTtdfTdXJ2U6h67zcrmzZvxySef6JWFhYXh8OHD2e4XGhr62thERERERESKUUmQVEY+jmvs9nlEnk21U1NT0aVLF7Ru3drWVSEiIiIiIiIT5eqW0uw4OTlh0qRJtq4GERERERGR0fj47gt5NiklIiIiIiLKqyTJhIGOmJQSERERERGRReimeTF2HzvEpJSIiIiIiMjKOCXMC0xKiYiIiIiIrEySJEiScaPpGrt9XmGfqTYRERERERFZRKdOnZA/f3507dpVkfhMSomIiIiIiKxM9/iusYstjB49GitXrlQsPpNSIiIiIiIiK3v++K7KyMU2j++GhYXBw8NDsfhMSomIiIiIiKzM+ITU+HlNAWD//v1o3749/Pz8IEkSNm3aZLDNvHnzEBQUBGdnZ9SoUQMHDhywwBnmHJNSIiIiIiIia1OpTFsAxMXF6S0pKSlZHiYxMRFVqlTBnDlzMl2/bt06jBkzBh9//DFOnjyJhg0bonXr1oiOjlbktDPD0XeNkHHzEjLcXBSJnR5zQZG4gMKT7Cr4XHvCXWU/CJJaube/SsHYStJmpNu6CrmT0CoWWpuRoVhsAFA7aRSL/ezxfcViK3nNUxLiFIsNAJ6pyYrFTkt6pljs9JSkPBkbUPbepeTfUJWjo2KxU+KfKBYbAAqXq6FY7IT7NxWLnZGW9Rd3cwmtcvctAHDQKPMdFICi91yfD1crFjuvM6XlU7e9v7+/XvmkSZMwefLkTPdp3bo1WrdunWXM6dOnY/DgwXjnnXcAADNnzsSOHTswf/58TJs2zaj6mSpvfnMmIiIiIiJ6Q8XExMDT01N+rdGY9iN0amoqjh8/jgkTJuiVt2jRAocPHzarjsZgUkpERERERGRtLz2Oa9Q+ADw9PfWSUlM9fPgQGRkZKFy4sF554cKFcffuXfl1y5YtceLECSQmJqJYsWLYuHEjQkJCzD6+DpNSIiIiIiIia5NUzxdj91GiKq+M6iuE0CvbsWOHIsfV4UBHREREREREVmbOPKUhISEIDg7G3LlzzapDwYIFoVar9VpFAeD+/fsGradKYkspERERERGRtUkmPL77v5bSqKgoizy+6+TkhBo1amDnzp3o1KmTXL5z50506NDB7Pg5xaSUiIiIiIjI2iT188XYfYyUkJCAq1evyq9v3LiBU6dOoUCBAggICEBERAT69u2LmjVrom7duli0aBGio6MxbNgwo49lKialREREREREdurYsWMICwuTX0dERAAA+vfvj8jISPTo0QOxsbGYOnUq7ty5g4oVK2L79u0IDAy0Wh2ZlBIREREREVmbSjJh9N3ngw+FhIRArVYjPDwc4eHh2e4SGhoKIUS224wYMQIjRowwri4WxKSUiIiIiIjI2swYfddSfUpzCyalRERERERE1mbGPKX2hkkpERERERGRteWieUptzT7PioiIiIiIyE5Zap7S3IItpURERERERFYmqdSQVMZN8aLbnn1KiYiIiIiIyDx8fFfGpJSIiIiIiMjaONCRzO7Oatq0aZAkCWPGjJHLQkNDIUmSwTJs2DDbVZSIiIiIiN5cupZSYxc7ZFctpVFRUVi0aBEqV65ssG7IkCGYOnWqXpmrq6u1qkZERERERPSCSjKhpVRSpi42ZjepdkJCAnr37o3Fixcjf/78ButdXV1RpEgRvcWeOgcTEREREdGbgaPv5lLh4eFo27YtmjVrhs8//9ysWCkpKUhJSZFfx8XFmVs9IiIiIiKiF8wY6MjeRt+1i5bStWvX4sSJE5g2bVqW28ybNw/u7u56y4oVKzLddtq0afDy8pIXf39/papORERERERvIN2UMMYu9ijPt5TGxMTgvffew++//w5nZ+cst+vduzc+/vhjvTIfH59Mt504cSIiIiLk13FxcUxMiYiIiIjIciQTRt/lQEe50/Hjx3H//n3UqFFDLsvIyMD+/fsxZ84c+TFcLy8vlCpVKkcxNRoNNBqNIvUlIiIiIiLiPKUv5PmktGnTpjh79qxe2cCBA1GuXDl8+OGHUKvts4mbiIiIiIjyMM5TKsvzSamHhwcqVqyoV+bm5gZvb2+98mfPnuHu3bt622k0mkxH6iUiIiIiIsqtQkJCoFarER4ejvDwcFtXx2x5PinNqcWLF2Px4sV6ZS1btsRvv/1moxoREREREdEbi6PvyuwyKd27d2+2r4mIiIiIiGxKpX6+GLuPHbLLpJSIiIiIiChXkyQTWkolZepiY0xKiYiIiIiIrExSqSAZOXCRsdvnFUxKiYiIiIiIrI1Twsjs86yIiIiIiIgoT2BSSkREREREZG26eUqNXfB8Spjg4GDMnTvXxidhGXx8l4iIiIiIyNok9fPF2H3AKWGIiIiIiIjIXC+1fBq1jx1iUkpERERERGRtHOhIZnZSmpiYiNWrV+PKlSuIjY2FEEJvvSRJWLp0qbmHISIiIiIishuSZMKUMExKDf31119o27YtYmNjs9yGSSkRERERERFlxaxUOyIiAmlpafjxxx/x8OFDaLVagyUjI8NSdSUiIiIiIrIPZoy+a2/Maik9fvw4PvroI3Tt2tVS9SEiIiIiIrJ/ksqE0XeZlBrw9PREwYIFLVWXXE8kx0Oo0m1dDeMp+YuKVqtYaEcXN8ViA4AQytVd5eCkWGwoWG8lrwkACAXfL0peFyX/AAiRplhsQNlrrlLnzbHyNO7KDqGvzaNPCKkcHBWLLaUmKxYbULaPlcpRueui5GfIJZ+y388eR19WLLaS9y1tRh78Hvc/GakpisVW+jsXZYGj78rMOqu33noLv/32m6XqQkRERERE9GbQjb5r7GKHzDqrb775Bvfu3cOoUaNw7do1g5F3iYiIiIiIKBNm9CkNCQlBcHAw5s6da+OTsAyznhspUKAAJElCVFQU5s2bl+k2kiQhPT3vPipBRERERESUm0RFRcHTU9nuKNZkVlLar18/SJJkqboQERERERG9ESRJZXSfeM5TmonIyEgLVYOIiIiIiOgNolI/X4zdxw7lzaETiYiIiIiI8jJTBi5iS2nWjhw5gg0bNuD69esAgJIlS6JTp06oU6eOJcITERERERHZF04JIzM7KR02bBgWL15sMPLut99+i3fffRfz58839xBERERERET2RZJMaCm1z/F8zEq158yZg0WLFqFly5bYv38/Hj9+jMePH2P//v1o1aoVFi1aZDfDFBMREREREZHlmZWULlmyBI0aNcK2bdvQoEEDeHl5wcvLCw0aNMAvv/yChg0bYtGiRZaqKxERERERkX2QTJij1E77lJp1VpcvX0aXLl0ynRZGkiR06dIFV65cMecQRERERERE9kdSm7bYIbP6lGo0Gjx58iTL9Y8fP4ZGozHnEERERERERHZHUqkgGTlwkbHb5xVmnVXt2rWxYMEC3Llzx2DdnTt3sHDhQo7AS0RERERE9CrdlDDGLnbIrJbSTz/9FGFhYShfvjwGDhyI4OBgAMC5c+ewYsUKPHv2DJ9++qlFKkpERERERGQ3OCWMzKyzql+/PjZt2oR8+fJh1qxZGDp0KIYOHYrZs2cjX7582LRpE+rVq2epuppk2rRpkCQJY8aMkctCQ0P1XhMREREREeUVISEhCA4OtpuZTsyep7RNmza4fv06Tpw4gevXr0MIgZIlS6J69epQ2TiTj4qKwqJFi1C5cmWb1oOIiIiIiEiPGS2lUVFR8PT0VKBStmF2UgoAKpUKNWvWRM2aNS0RziISEhLQu3dvLF68GJ9//rmtq0NERERERPSCKaPp2unou/b5UDKA8PBwtG3bFs2aNTN635SUFMTFxektREREREREFqOSjJ+nVGU4Fac9MKqlNCgoCCqVChcvXoSjoyNKlCjx2n0kScK1a9dMrqAp1q5dixMnTiAqKsqk/adNm4YpU6ZYuFZERERERETPSZIKkpGj6Rq7fV5hVFIaGBgISZIgSc8z9ICAAPn/c4uYmBi89957+P333+Hs7GxSjIkTJyIiIkJ+HRcXB39/f0tVkYiIiIiI3nQcfVdmVFK6d+/ebF/nBsePH8f9+/dRo0YNuSwjIwP79+/HnDlzkJKS8toYGo0GGo1GyWoSERERERERzBzoKDo6GoUKFYKLi0um65OSkvDgwQMEBASYcxijNG3aFGfPntUrGzhwIMqVK4cPP/wQarV9dg4mIiIiIqI8RFI9X4zdxw6ZdVZBQUHYuHFjluu3bNmCoKAgcw5hNA8PD1SsWFFvcXNzg7e3NypWrGjVuhAREREREWVKpTZtsUNmtZQKIbJdn5GRkev6nBIREREREdmeCS2ldjp5itnzlGaXdB45cgQFChQw9xBmywt9YYmIiIiI6A3CgY5kRiels2bNwqxZs+TXY8aMwccff2yw3ZMnT/D06VP069fPvBoSERERERHZGU4J84LRSWm+fPkQGBgIAPj333/h7e2NwoUL620jSRLc3d1Ru3ZtjBkzxiIVJSIiIiIiIvtjdFLav39/9O/fHwCgUqnwySef4O2337Z4xYiIiIiIiOwWH9+VmdWnVKvVWqoeREREREREbw5JBUhGjqbLx3eJiIiIiIjIIthSKjM7Kb127RpmzJiBo0eP4vHjxwatp5Ik4dq1a+YehoiIiIiIyH4wKZWZdVZnz55F9erVsWTJEqSmpuL69etwc3NDcnIy/vnnH6jVagQEBFiqrkRERERERPZBUpm22CGzzuqzzz6Dk5MTTp8+jT/++APA8yljbt++jYULF+LJkyeYO3euRSpKRERERERE1vfLL7+gbNmyKF26NJYsWWLx+GYlpQcPHsS7776LsmXLQpIkAIAQAgAwZMgQtG7dGhMmTDC/lkRERERERPZE9/iusYuVpaenIyIiArt378aJEyfw1Vdf4dGjRxY9hllnFR8fj5IlSwIAnJycAACJiYny+vr16+PgwYPmHIKIiIiIiMjuSJLapMXa/vrrL1SoUAFFixaFh4cH2rRpgx07dlj0GGYlpYULF8aDBw8AAB4eHnBzc8Ply5fl9Y8fP0ZGRoZ5NSQiIiIiIrI3Vmop3b9/P9q3bw8/Pz9IkoRNmzYZbDNv3jwEBQXB2dkZNWrUwIEDB+R1t2/fRtGiReXXxYoVw61bt0w65ayYlZRWrVoVx44dk183btwYs2bNwv79+7F3717MmTMHVapUMbuSREREREREdsWMgY7i4uL0lpSUlCwPk5iYiCpVqmDOnDmZrl+3bh3GjBmDjz/+GCdPnkTDhg3RunVrREdHA3jRPVOv6v/rumkpZk0J8/bbb2PevHlISkqCi4sLpk6disaNGyMsLAwA4OLigi+//NIiFc0Nnl0/AwdnJ0ViazzyKxIXAERaqnKxhfb1G+XC2ADg5OqhWGxtRrpisVVqjXKxHRwViw0Aqc8SFIvt6KLcv2dGarJisd39SysWGwASYq4oFtujsL9isSUF+8ykJycpFhsANEWKKxY77UGMYrEdPQsoFvvRlTOKxQYA90K+isVOjn+iWOx8lRsqFjv+/BHFYgOAZ9GSisVW8vOvVfB+nvYsXrHYSktPzTqhMVfcgpHKxE1KRbGxixSJbS1aSNDCuOROt72/v/7f4EmTJmHy5MmZ7tO6dWu0bt06y5jTp0/H4MGD8c477wAAZs6ciR07dmD+/PmYNm0aihYtqtcyevPmTdSuXduoer+OWUlpjx490KNHD/l19erVcf78eWzcuBFqtRqtW7dGiRIlzK4kERERERERPRcTEwNPT0/5tUZjWqNFamoqjh8/bjA4bYsWLXD48GEAQK1atfD333/j1q1b8PT0xPbt2/HZZ5+ZXvlMmJWUZsbf3x+jR4+2dFgiIiIiIiK7ka4VSNcaPhr7un0AwNPTUy8pNdXDhw+RkZGBwoUL65UXLlwYd+/eBQA4ODjgv//9L8LCwqDVavHBBx/A29vb7GO/zOJJKREREREREWXPnKTU0l7tIyqE0Ct766238NZbbylybMDIpHTQoEFGH0CSJCxdutTo/YiIiIiIiOyVOUlpSEgI1Go1wsPDER4ebnIdChYsCLVaLbeK6ty/f9+g9VRJRiWlkZGRRh+ASSkREREREZE+c5LSqKgoizy+6+TkhBo1amDnzp3o1KmTXL5z50506NDB7Pg5ZVRSqtUqOxoqERERERHRmyDDhKQ0w4THdxMSEnD16lX59Y0bN3Dq1CkUKFAAAQEBiIiIQN++fVGzZk3UrVsXixYtQnR0NIYNG2b0sUzFPqVERERERER26tixY/KUnQAQEREBAOjfvz8iIyPRo0cPxMbGYurUqbhz5w4qVqyI7du3IzAw0Gp1ZFJKRERERERkZdbqUxoaGgohsj/OiBEjMGLECKPqYklmJaU5GfiIfUqJiIiIiIj05YY+pbmFWUlpTgY+YlJKRERERESkLzdNCWNrKnN21mq1BktaWhouXbqEIUOGoE6dOnj8+LGl6kpERERERGQXMoSQE9OcLhmveQw3rzIrKc2MWq1G6dKlsXDhQnh7e+PDDz+09CGIiIiIiIjeWCEhIQgODsbcuXNtXRWLUHSgo9atW2Py5MmYP3++kochIiIiIiLKU9in9AVFk9LY2FgkJCQoeQgiIiIiIqI8h31KX1AkKX3y5Al27dqFGTNmoEaNGkocgoiIiIiIKM9iUvqCWX1KVSoV1Gq1weLt7Y3u3btDpVJh+vTplqprpiZPngxJkvSWIkWKyOtDQ0MN1kuShGHDhilaLyIiIiIioqwYO8iRKUlsXmFWS2m/fv0gSZJemSRJKFCgAMqUKYNevXrBw8PDrArmRIUKFbBr1y75tVqt1ls/ZMgQTJ06Va/M1dVV8XoRERERERFlJsOEJDODSamhnMxTag0ODg56raOvcnV1zXY9ERERERFRXhESEgK1Wo3w8HCEh4fbujpmU3SgI2u5cuUK/Pz8oNFoULt2bXz55ZcoUaKEyfFSUlKQkpIiv46Li7NENYmIiIiIiABw9N2XWWSe0jVr1qB79+6oUaMGatasie7du2Pt2rWWCP1atWvXxsqVK7Fjxw4sXrwYd+/eRb169RAbGytvM2/ePLi7u+stK1asyDLmtGnT4OXlJS/+/v7WOBUiIiIiInpDsE/pC2a1lCYmJqJ9+/bYt28fhBDIly8fhBA4ceIE1q9fj8WLF2PLli1wc3OzVH0NtG7dWv7/SpUqoW7duihZsiRWrFiBiIgIAEDv3r3x8ccf6+3n4+OTZcyJEyfK+wLPW0qZmBIRERERkaVw9N0XzGop/eijj7B3716MGjUKt2/fxqNHj/D48WPcvn0bo0aNwp49ewySQaW5ubmhUqVKuHLlilzm5eWFUqVK6S3ZNXdrNBp4enrqLURERERERJaSIYxvJc0QTEoNrFu3Dt26dcPMmTP1BhIqUqQIZs6ciS5dumDdunVmV9IYKSkpuHDhAnx9fa16XCIiIiIiopxK15ryCK+ta60Ms5LS+Ph4hIWFZbm+SZMmig8SNH78eOzbtw83btzA0aNH0bVrV8TFxaF///7yNs+ePcPdu3f1lsePHytaLyIiIiIiIiWEhIQgODgYc+fOtXVVLMKsPqWVK1fWe0z2VVeuXEGlSpXMOcRr3bx5E7169cLDhw9RqFAh1KlTB0eOHEFgYKC8zeLFi7F48WK9/Vq2bInffvtN0boRERERERFlhqPvvmBWUvr555+jU6dOCA0NRfv27fXWbd68GUuWLMGmTZvMOcRrvW6U37179yp6fCIiIiIiImNxoKMXzEpKV61ahaCgIHTs2BFly5ZF+fLlIUkSzp8/j0uXLqFSpUr44Ycf8MMPP8j7SJKEpUuXml1xIiIiIiKivIpJ6QtmJaWRkZHy/1+8eBEXL17UW3/mzBmcOXNGr4xJKRERERERvekyTEhKM5iUGtJq7XT4JyIiIiIiIgWxpfQFs0bfJSIiIiIiIjKHWS2lLzt//jyuX78OAChZsiTKly9vqdBERERERER2xZyW0pCQEKjVaoSHhyM8PFyJ6lmV2Unpvn37MHz4cFy6dEmvvFy5cpg/fz4aNWpk7iGIiIiIiIjsCqeEecGspPTYsWNo2bIlVCoVBg4ciEqVKkEIgb///htr1qxBy5YtcfDgQdSoUcNS9SUiIiIiIsrzMoQJAx0J++xTalZSOmXKFHh5eeHPP/9EiRIl9NZ9/PHHqFOnDqZMmYItW7aYVUkiIiIiIiJ7woGOXjBroKNDhw5hxIgRBgkpAAQFBWH48OE4ePCgOYcgIiIiIiKyO7qk1NjFHpmVlCYlJcHb2zvL9QULFkRSUpI5hyAiIiIiIiI7ZlZSWqpUqWwfzd28eTNKlSplziGIiIiIiIjsDltKXzArKe3fvz927dqF7t274/Tp00hNTUVqaipOnTqFHj16YPfu3Rg4cKCl6kpERERERGQXmJS+YNZARxERETh58iTWrFmD9evXAwAkSYIQAkII9OrVC2PHjrVIRXMD15JV4erqokjslH/PKRIXANQOjorFTk9NUSx2hoKxAeBZsnKPlqscnRSLrU1LVSy22slZsdgAkJ6i3DVPfRavWGxJMuv3u2wlnP1TsdgA4OCkUSz209v/KBZb467cMPcOGmXu4zrpV04pFlulVisWO+5OtGKxVY7K/R0CgGeP7isaXyl3D2xWLLbS7/O0pAuKxc5IT1MsttBqFYut5P0WANKSnikW29HNXbHYqQlPFYmbkKzc+8RaMkxIMjOYlOp78OABrl+/jqlTp2LQoEHYsGEDbty4ASEESpYsiU6dOqFp06aWrCsREREREZFdSNcKqDn6LgATklKtVosRI0ZgyZIlEP+bJ6dWrVrYuHEjihQpYvEKEhERERER2RtzktKQkBCo1WqEh4cjPDxciepZldFJ6Zw5c7Bo0SL4+fmhbt26uHLlCo4ePYohQ4Zg69atStSRiIiIiIiI/icqKgqensp1dbE2o5PSlStXonz58jhy5Ag8PDwAAEOGDMHy5cvx+PFj5M+f3+KVJCIiIiIisid8fPcFo0fvuHTpEgYMGCAnpAAwatQoaLVaXL582aKVIyIiIiIiskcZwviRdzOEfSalRreUJiYmws/PT69M9/rZM+VGBSMiIiIiIrIX6VpAZXRLqUKVsTGTRt+VJCnT18JOM3ciIiIiIiJLStcKE5JS+8y3TEpKf/nlF9y8eVN+/ezZM0iShLVr1+LYsWN620qShPfff9+8WhIREREREdkRJqUvmJSUrl27FmvXrjUoX7JkiUEZk1IiIiIiIiLKitFJ6Z49e5SoBxERERER0RuDLaUvGJ2UNm7cWIl6EBERERERvTEy/jeirrH72COTHt8lIiIiIiIi06VrBSS2lAJgUkpERERERGR1TEpfYFJKRERERERkZUxKX1DZugJKmDx5MiRJ0luKFCkirw8NDcWYMWNsV0EiIiIiIiIThYSEIDg4GHPnzrV1VSzCbltKK1SogF27dsmv1Wq1DWtDRERERET0gjktpVFRUfD09FSiWjZht0mpg4ODXusoERERERFRbpEhjE9KMwQf381Trly5Aj8/PwQFBaFnz564fv16jvdNSUlBXFyc3kJERERERGQp6f+bEsbYxR7ZZVJau3ZtrFy5Ejt27MDixYtx9+5d1KtXD7GxsTnaf9q0afDy8pIXf39/hWtMRERERERvEialL9hlUtq6dWt06dIFlSpVQrNmzbBt2zYAwIoVK3K0/8SJE/H06VN5iYmJUbK6RERERET0hmFS+oLd9il9mZubGypVqoQrV67kaHuNRgONRqNwrYiIiIiIiMguW0pflZKSggsXLsDX19fWVSEiIiIiIkKGCa2kGWwpzTvGjx+P9u3bIyAgAPfv38fnn3+OuLg49O/f39ZVIyIiIiIiQrpWQBg7+i6T0rzj5s2b6NWrFx4+fIhChQqhTp06OHLkCAIDA21dNSIiIiIiIialL7HLpHTt2rXZrt+7d691KkJERERERJQJJqUv2GVSSkRERERElJsxKX3hjRjoiIiIiIiIiHIntpQSERERERFZWYaA0S2ldtpQyqSUiIiIiIjI2tK1Aipjk1I7zUqZlBIREREREVkZk9IXmJQSERERERFZGZPSF5iUEhERERERWVmGVhidZBrbBzWv4Oi7REREREREZLJOnTohf/786Nq1q0n7MyklIiIiIiKysnStMGnJjUaPHo2VK1eavD+TUiIiIiIiIiuzp6Q0LCwMHh4eJu/PpJSIiIiIiMjKrJWU7t+/H+3bt4efnx8kScKmTZsMtpk3bx6CgoLg7OyMGjVq4MCBAxY4w5zjQEdERERERERWlq4VkEwc6CguLk6vXKPRQKPRZLpPYmIiqlSpgoEDB6JLly4G69etW4cxY8Zg3rx5qF+/PhYuXIjWrVvj/PnzCAgIAADUqFEDKSkpBvv+/vvv8PPzM+ocMsOk1AjiaSxEWub/2OZyLltLkbgAgPRUxUI7atwUi+3qrFxsAFC551cstjbhsWKxJScXxWIrTeUToFxwSa1YaPH4jmKxofD7XEkq9wKKxRZCq1zsxCeKxQag6HtR++BfxWIjNUmx0JKC7xUAkLx8FIutvXtVsdgO5RsoFlskxSsWGwCQkaZYaJGm3PcWEf9Qsdhq/2DFYgOANvaWYrFV3kUVi62eptBnKCURwHZlYluRMPFpXH9/f73XkyZNwuTJkzPdtnXr1mjdunWWsaZPn47BgwfjnXfeAQDMnDkTO3bswPz58zFt2jQAwPHjx02raA4xKSUiIiIiIspDYmJi4OnpKb/OqpX0dVJTU3H8+HFMmDBBr7xFixY4fPiwWXU0BpNSIiIiIiIiaxP/W4zdB4Cnp6deUmqqhw8fIiMjA4ULF9YrL1y4MO7evZvjOC1btsSJEyeQmJiIYsWKYePGjQgJCcnx/kxKiYiIiIiIrM2MpNTSJEnSP4wQBmXZ2bFjh1nH5+i7RERERERE1iZMXACEhIQgODgYc+fONasKBQsWhFqtNmgVvX//vkHrqZLYUkpERERERGRtZrSURkVFWeTxXScnJ9SoUQM7d+5Ep06d5PKdO3eiQ4cOZsfPKSalRERERERE1malx3cTEhJw9eqLUZBv3LiBU6dOoUCBAggICEBERAT69u2LmjVrom7duli0aBGio6MxbNgw4w9mIialREREREREdurYsWMICwuTX0dERAAA+vfvj8jISPTo0QOxsbGYOnUq7ty5g4oVK2L79u0IDAy0Wh2ZlBIREREREVmbGS2lISEhUKvVCA8PR3h4eLa7hIaGQrxmQtQRI0ZgxIgRRlbGcpiUEhERERERWVsu6FOaWzApJSIiIiIisrZcNCWMrTEpJSIiIiIisjYmpTLOU0pERERERJSHWGqe0tyCLaVERERERETWxj6lMialRERERERE1sbHd2VMSomIiIiIiKyNSanMLvqU3rp1C3369IG3tzdcXV1RtWpVHD9+XF4fGhoKSZIMlmHDhtmw1kRERERE9MYSJi52KM+3lD5+/Bj169dHWFgYfv31V/j4+ODatWvIly+f3nZDhgzB1KlT9cpcXV2tWFMiIiIiIqL/YUupLM8npV999RX8/f2xfPlyuax48eIG27m6uqJIkSJWrBkREREREZHlhYSEQK1WIzw8HOHh4baujtnyfFK6ZcsWtGzZEt26dcO+fftQtGhRjBgxAkOGDDE5ZkpKClJSUuTXcXFxlqgqERERERHRcxx9V5bn+5Rev34d8+fPR+nSpbFjxw4MGzYMo0ePxsqVK/W2mzdvHtzd3fWWFStWZBpz2rRp8PLykhd/f39rnAoREREREb0p2KdUludbSrVaLWrWrIkvv/wSAFCtWjWcO3cO8+fPR79+/eTtevfujY8//lhvXx8fn0xjTpw4EREREfLruLg4JqZERERERGQ57FMqy/NJqa+vL4KDg/XKypcvj/Xr1+uVeXl5oVSpUjmKqdFooNFoLFZHIiIiIiIiA3aaZBorzyel9evXx6VLl/TKLl++jMDAQBvViIiIiIiI6DXYUirL831Kx44diyNHjuDLL7/E1atXsXr1aixatMhgFKpnz57h7t27esvjx49tVGsiIiIiIiLThISEIDg4GHPnzrV1VSwiz7eUhoSEYOPGjZg4cSKmTp2KoKAgzJw5E71799bbbvHixVi8eLFeWcuWLfHbb79Zs7pEREREREQcffcleT4pBYB27dqhXbt2Wa7fu3ev9SpDRERERET0Onx8V2YXSSkREREREVGewqRUxqSUiIiIiIjI2piUypiUEhERERERWRuTUlmeH32XiIiIiIiI8i4mpURERERERNYmTFzAKWGIiIiIiIjIXJwSRsaklIiIiIiIyNrYp1TGpJSIiIiIiMjamJTKmJQSERERERFZG5NSGQc6IiIiIiIiIpthSykREREREZG1saVUxqSUiIiIiIjI2piUypiUGkFydoXk7KxI7LRrJxWJCwCSlDef0k5LTlQ0vjYjXbHYKgcnxWKnJSl3XRxd3BSLDQCpCU8Viy2plHufazMyFIstSZJisQFlr0ti7D3FYju5KzfMvaPGRbHYgLKfI0mt3J9toeA9MTUxXrHYAKB2UuZvMwCkJCp333I4sEGx2FqtcvctABBarXKxhXKx1Qr+fVZaRnqqYrGVvC7XcFeRuPFIR1VFIlsRk1IZk1IiIiIiIiJrY1Iqy5tNaERERERERHmZMHEBEBISguDgYMydO9fq1VYCW0qJiIiIiIjykKioKHh6KtfVxdqYlBIREREREVkbH9+VMSklIiIiIiKyBTtNMo3FpJSIiIiIiMja2FIqY1JKRERERERkbUxKZUxKiYiIiIiIrI1JqYxTwhAREREREZHNsKWUiIiIiIjI2thSKmNSSkREREREZG1MSmVMSomIiIiIiKyNSamMSSkREREREZG1MSmVMSklIiIiIiKyNialMrsdfffWrVvo06cPvL294erqiqpVq+L48ePy+tDQUIwZM8Z2FSQiIiIiIjJBSEgIgoODMXfuXFtXxSLssqX08ePHqF+/PsLCwvDrr7/Cx8cH165dQ758+WxdNSIiIiIiIrNaSqOiouDp6WnpGtmMXSalX331Ffz9/bF8+XK5rHjx4rarEBERERER0cv4+K7MLh/f3bJlC2rWrIlu3brBx8cH1apVw+LFi3O8f0pKCuLi4vQWIiIiIiIiixEmLnbILpPS69evY/78+ShdujR27NiBYcOGYfTo0Vi5cmWO9p82bRq8vLzkxd/fX+EaExERERHRG4VJqcwuk1KtVovq1avjyy+/RLVq1TB06FAMGTIE8+fPz9H+EydOxNOnT+UlJiZG4RoTEREREdEbhUmpzC6TUl9fXwQHB+uVlS9fHtHR0TnaX6PRwNPTU28hIiIiIiIiy7PLgY7q16+PS5cu6ZVdvnwZgYGBNqoRERERERHRSzjQkcwuW0rHjh2LI0eO4Msvv8TVq1exevVqLFq0COHh4bauGhERERERER/ffYldJqUhISHYuHEj1qxZg4oVK+L//u//MHPmTPTu3dvWVSMiIiIiImJS+hK7fHwXANq1a4d27dpluX7v3r3WqwwREREREdHL+PiuzG6TUiIiIiIiolyLSanMLh/fJSIiIiIioryBLaVERERERES2YKctn8ZiUkpERERERGRtfHxXxqSUiIiIiIjI2piUypiUEhERERERWRuTUhmTUiIiIiIiImtjUirj6LtERERERERkkpiYGISGhiI4OBiVK1fGTz/9ZHQMtpQSERERERFZm520lDo4OGDmzJmoWrUq7t+/j+rVq6NNmzZwc3PLeQwF60dERERERESZsZOk1NfXF76+vgAAHx8fFChQAI8ePTIqKeXju0RERERERNYmTFyMtH//frRv3x5+fn6QJAmbNm0y2GbevHkICgqCs7MzatSogQMHDph0SseOHYNWq4W/v79R+7GlNAeEeP6vH5+UrNgx0pNSFIstSXnzt4e05FRF42u16YrFVqkVC410Ba+LAxwViw0AaclpisWWVMq9z7UZGYrFliRJsdiAstclMUW5z5CTg3LvFUeh7J8+Byj3GZXUWsViiwzl/j2V/OwDgFqr3Ps8RcG6O2QoeN/SKnffAgChVfC9KJSLrXZQ9p6rpIx05d6LSl4Xpf5WJKQ+j6v7np4npSUan2SmJwIA4uLi9Io1Gg00Gk2muyQmJqJKlSoYOHAgunTpYrB+3bp1GDNmDObNm4f69etj4cKFaN26Nc6fP4+AgAAAQI0aNZCSYpiv/P777/Dz8wMAxMbGol+/fliyZImRJwVA0GvFxMSY+jsGFy5cuHDhwoULFy5cFFpiYmJsnSoYLSkpSRQpUsTkc3Z3dzcomzRpUo6ODUBs3LhRr6xWrVpi2LBhemXlypUTEyZMyPE5JScni4YNG4qVK1fmeJ+XsaU0B/z8/BATEwMPD48ctWrExcXB398fMTEx8PT0tGhdlIytdHzGtn58xrZ+fMa2fnzGtn58xrZ+fMa2fnzGtn58Y2ILIRAfHy+30uUlzs7OuHHjBlJTTXuyRghhkJNk1Ur6OqmpqTh+/DgmTJigV96iRQscPnw4x/UZMGAAmjRpgr59+5pUDyalOaBSqVCsWDGj9/P09FTkZqB0bKXjM7b14zO29eMztvXjM7b14zO29eMztvXjM7b14+c0tpeXlyLHtwZnZ2c4Ozvbuhp4+PAhMjIyULhwYb3ywoUL4+7duzmKcejQIaxbtw6VK1eW+6t+//33qFSpUo7rwaSUiIiIiIjoDfZqy2tmrbFZadCgAbRm9jPPmyPgEBERERERkVkKFiwItVpt0Cp6//59g9ZTJTEpVYBGo8GkSZNMfrbbVrGVjs/Y1o/P2NaPz9jWj8/Y1o/P2NaPz9jWj8/Y1o+vdN3JkJOTE2rUqIGdO3fqle/cuRP16tWzWj2k/43CRERERERERHYmISEBV69eBQBUq1YN06dPR1hYGAoUKICAgACsW7cOffv2xYIFC1C3bl0sWrQIixcvxrlz5xAYGGiVOjIpJSIiIiIislN79+5FWFiYQXn//v0RGRkJAJg3bx6+/vpr3LlzBxUrVsSMGTPQqFEjq9WRSSkRERERERHZDPuUEhERERERkc0wKSUiIiIiIiKbYVJKRERERERENsOklIiy1aRJEzx58sTW1SAiO/bs2TNbVyHXaNSokd49d8uWLUhKSrJdhYiIrIBJqYLS09MRHR1t62pk6d9//8XixYsxb948nDt3TvHj3bt3T/HrcfbsWYwZM8asGIMGDUJ8fLxlKpSJqVOnZvoFLCkpCVOnTrXosaZMmYKHDx+aFWPv3r1ITU21UI2IzGPt+xZZh4+PD/r27YsdO3ZAq9Xaujo2dfDgQb17bp8+fXDnzh2LHiMsLAxLly7F06dPLRoXAKKjo5HXx9D8448/0K5dO5QsWRKlSpVCu3btsGvXLltXK1M3b97U+zt/4MAB9O7dGw0bNkSfPn3w559/2rB2WevcuXOOFnpzcPRdBZ0+fRrVq1dHRkaGSfvPmzcPGzZsQIECBTBs2DA0adJEXvfw4UPUqlUL169fNyn2/v370aZNGzk5cnBwwIoVK9CrVy+T4r0sPj4ew4cPx4EDBxAaGorFixdj7NixmD9/PiRJQoMGDbB161Z4enqafSwAiIuLw5o1a7B06VIcO3YMlStXxqlTp0yOp1arcefOHfj4+FikfjmNHxsbCx8fH5PeL3FxcQZlQggUKlQIBw8eRLly5QDApGuuUqlw9+5dxa6HNfz777/4/fffkZaWhsaNG6NChQoWjX/r1i2sX78ely9fhiRJKFOmDDp37oyiRYuaFfenn37Cpk2bkJaWhmbNmuHdd9+1UI2ft0y9//77evFnz56NggULWiS+EnVX8r6lo+Q11wkLC0OfPn3QtWtXeHl5WTx+XrRhwwasWbMG27Ztg6enJ3r06IE+ffogJCTEpHj58+eHJEk52vbRo0cmHSMgIAAnT56Et7c3AGDOnDno16+f2X/bXr3nenh44PTp0yhRooRZcV82evRo/PTTT3jy5AnatGmDvn37ok2bNnBycjI7ttJ/Q1/27NkzREdHG/xwWrlyZZNjzpkzB2PHjkXXrl1Rt25dAMCRI0fw888/Y/r06Rg5cqRZdb558ya2bNmSab2nT59udLx69erh008/RevWrbF582Z07twZ7dq1Q/ny5XH58mX88ssv2LBhA9q1a2dUXGMSwg0bNhhbbQwcOFDv9erVq9G+fXt4eHjolS9fvtzo2JRHCVLMqVOnhEqlMmnfWbNmCVdXVxEeHi769OkjNBqN+PLLL+X1d+/eNTm2EEI0atRItGvXTty6dUs8evRIDB06VBQrVszkeC8bOXKkKFeunJg9e7YIDQ0VHTp0EBUrVhQHDx4U+/fvFxUrVhQfffSR2cfZu3ev6Nu3r3B1dRUqlUp8+OGH4sqVK2bHlSRJ3Lt3z+w42cW/f/++Qfkff/whChYsaFJMlUqV6SJJkt5/Ta3v1atXxdOnT7NdTJUvXz6RP3/+HC2m2Ldvn3BzcxOSJAlJkoSjo6NYvXq1yfV91dy5c4VGoxGSJIl8+fIJLy8vIUmS0Gg0Yu7cuSbHXbhwoZAkSZQpU0ZUrlxZqFQqMWHCBIvVe/z48cLV1VUMGTJEjB49WhQsWFB07drVIrGVqruS9y0hlL/mOqNGjRJFihQRzs7OonPnzmLjxo0iJSXF5HidOnXK8WIspT+fr4qLixPLli0TzZs3Fw4ODqJ06dJiypQpRseJjIyUl//+978if/78omfPnmLWrFli1qxZomfPniJ//vxi+vTpJtf11b8VHh4e4tq1aybHyyquu7u7ReK+KiMjQ+zYsUP0799feHp6ivz584shQ4aIvXv3mhVX6b+hQghx//590bZt2yz/9pnDz89PfPfddwblc+bMEb6+vmbF3rVrl3B1dRUVKlQQDg4OomrVqvLfjbCwMJNienh4iBs3bgghhKhdu7b4z3/+o7f+u+++E9WqVTM67oABA+RF9x7x9/eX7yUBAQHC09NTDBgwwKR6v0qp9znlHUxKzVCtWrVsl3Llypl8cwwODharVq2SXx8+fFj4+PiITz/9VAhhflKaP39+cfbsWfl1QkKCUKlU4tGjRybH1PH39xe7d+8WQghx69YtIUmS2LJli7x+27ZtomzZsibFvn37tvjiiy9EyZIlRZEiRcTYsWNFVFSUcHBwEOfOnTO77kJknTSaS/flTqVSGXzR8/T0FCqVSowYMcKk2EWLFhVt27YVu3fvFnv37hV79+4Ve/bsEWq1WixfvlwuM4UuoX1d4msqpb88KpnI/PLLL0KtVotx48aJ27dvy+W3b98WY8eOFQ4ODmLbtm0mxa5YsaL45JNP5NfLly8X7u7uZtdZp0SJEmLNmjXy66NHjwoHBweRnp5udmyl6q7kfUsI5a/5yyyZECj55fHlz+frFks7d+6cqFq1qtlJRufOnTNNMr777jvRoUMHk+MqlTxKkiRWrlwpNm/eLDZv3ixcXV3FokWL5Ne6xZKSkpLEjz/+KKpUqWL29bZGUvr222+LevXqib/++ku4ubmJ33//XXz//feibNmy4pdffjErtru7e6Y/cF++fFm4ubmZFTskJET+Hqd7v8THx4u33npLzJs3z6SYXl5e4vTp00IIIXx8fOT/17l69apwdXU1q94ffPCBeOedd/T+PqSnp4t3331XjB8/3qzYOkxKiY/vmsHZ2Rk9e/ZEUFBQpuvv3LmDxYsXm/Q4pqurK86fP4/ixYvLZefOnUPTpk0xcOBAjBkzBn5+fiY/GpzZI5keHh44c+ZMlueTU87Ozrhy5Qr8/f0BAG5ubjh58iTKlCkD4PmjlMHBwUhMTDQpdrdu3dCnTx80b94cKtXzbtGOjo44ffo0goODzao78PzaeHl5vfbRL2Mf+VqxYgWEEBg0aBBmzpyp99iek5MTihcvLj8qZKxHjx5h8ODBePr0Kb7//nv5sVFLXBeVSoX169ejQIEC2W7XuHFjk4+h06VLF4SFhRk8HjVnzhzs2rULmzZtMjpmgQIFsH//flSsWBEAkJiYCE9PTzx8+BD58+c3q76NGzdGw4YN8fnnn2e6/pNPPsGBAwewb98+o2O7ubnh7Nmz8iN7GRkZcHFxQXR0NIoUKWJWvYHn77kbN27oPWLs4uKCy5cvy59dUylVdyXvW0rW+3WSk5OxdetWfPHFFzh79qzJ93UA+PDDD/Ho0SMsWLAAarUawPPzGDFiBDw9PfHNN98YHXPlypXo0aMHNBqNyfXKqeTkZGzZsgWrV6/Gb7/9Bh8fH/Tq1QtfffWVyTHd3d1x6tQplCpVSq/8ypUrqFatGhISEkyKq9Rjtrq/a9mRJMms98nL7t69i7Vr1+KHH37AiRMnEBISgqNHj5ocT6VS4fPPP4e7u3u2240ePdrkY/j6+mLz5s2oVasWPD09cezYMZQpUwZbtmzB119/jYMHD5ocu3fv3qhatSref/99vfJvv/0Wx48fx5o1a0yO7eHhgVOnTqFkyZLInz8/Dh48iAoVKuD06dPo0KED/vnnH6NjdujQAcHBwZg2bRpatWqFNm3a6F3bJUuW4Ouvv8bly5dNrreuK1DZsmX1yi9duoR69eohNjbW5Ng6SjymTnmLg60rkJdVrFgRtWvXxvDhwzNdf+rUKSxevNik2AULFkRMTIxeUlqhQgXs3r0bTZo0wa1bt0yK+7Lz58/j7t278mshBC5cuKA3yI8p/TK8vb3x4MED+Ytthw4dkC9fPnl9QkKCyV9uAgMDcfDgQQQEBCAwMFDuK2lpU6ZMsXhfr/79+wMAgoKCUL9+fTg4WO7jV6BAAWzcuBHz589HrVq18O2331q0n139+vWt0j9ox44dmX75bNmyJSZMmGBSzCdPnujV3c3NDa6urnjy5InZSenJkyexaNGiLNf37dsXs2bNMil2UlKS3pc6tVoNjUZjsVFKMzIyDPqPOTg4ID093ezYStZdqfsWoPw1z8zLCcGZM2dM7kOps2zZMhw8eFBOSIHn5xEREYF69eqZlJQOHDgQrVq1UvQe8Pvvv2PVqlXYtGkT1Go1unbtih07dljkxy5vb29s3LjRIMnYtGmT3B/UVEuWLJHfM+np6YiMjDTol21s8mWNgZ7i4uKwfv16rF69Gnv37kWJEiXw9ttvY+3atQbJuyle/lEkM5IkmZWUJiYmyu/HAgUK4MGDByhTpgwqVaqEEydOmBwXAMqXL48vvvgCe/fu1etTeujQIYwbNw6zZ8+WtzX2HNzc3JCSkgIA8PPzw7Vr1+QxDkwdlPA///kPGjZsiNu3b6NBgwb4+OOPERUVhfLly+PSpUtYt24dFixYYFJsnfT0dFy4cMEgKb1w4cIbPzAZWQ6TUjM0aNAAly5dynK9h4cHGjVqZHLs9evXo2HDhnrlwcHB+OOPPxAWFmZS3Je9PHCSTrt27SBJEoQQJv8SW7lyZURFRaF69eoAnndef5nuZmmKS5cu4dChQ1i6dClCQkJQpkwZ9OnTBwByPKhFTvTs2VOxL2CvfsmaMmUKwsPDLTLAzPDhw9G4cWO8/fbb2Lp1q9nxrE2pL49KJTJarRaOjo5Zrnd0dDRrFMqXv/ACmX/pNfWLnRACAwYM0PuBKDk5GcOGDYObm5tcZsoAFoBydW/atKnBNbXEfUvper9MyYRAiS+P1nigqmPHjmjbti1WrFiBtm3bZvu5MtaUKVMwePBggyTjt99+w5IlS0yOGxAQoPfDc5EiRfD999/rbWNK8jVo0CDMmjXLYMAXSypcuDDy58+P7t2748svvzT7x5BXHTt2TNEfMcqWLYtLly6hePHiqFq1KhYuXIjixYtjwYIF8PX1NSv20qVLkT9/fpw/fx7nz5+Xy/Ply4elS5fKr035t61Tpw4OHTqE4OBgtG3bFuPGjcPZs2exYcMG1KlTx6T6li9fHkePHsUnn3yCr7/+GomJiVi1ahUcHBwQEhKCtWvXomPHjibF1hk4cCAGDRqEq1evyvU8cuQI/vOf/xgMWJRTW7Zs0Xut1Wrxxx9/4O+//9Yrf+utt0yrNOU5fHzXDKdOnULVqlUViX3gwAFcu3YNAwYMyHT9uXPn8PPPP2PSpEkmxT958uRrH8cEnrdMmhK7RIkSWbY0/vrrr3BxcUFoaKjRsV+WkJCANWvWYNmyZTh69KicjHXs2BGFChUyOa5SIwcqOULuq+/F1NRUTJgwAXv27MGGDRvMerQxKCgIx44dM7tFISciIyMxePBgtGrVKtMvj1l9HrKjUqnkhOVV5iYytWvXRs+ePTF27NhM10+fPh3r1q0z6VG44sWLv/aHFkmSTB6BO6dfJEwZ+VCpuv/777852s6U+xag/DXXcXFxkROC3r17WzQhiIiIQGRkJD766CODL4/9+vUzaXRPlUqFe/fumXVfzYru0eCUlBSLjciemaNHj2L27Nm4cOEChBAIDg7G6NGjUbt2bcWOaSolR6+Njo5GsWLFsGvXLjRr1ixHjwobyxqj765atQppaWkYMGAATp48iZYtWyI2NhZOTk6IjIxEjx49FDu2Oa5fv46EhARUrlwZz549w/jx43Hw4EGUKlUKM2bMMPnepSOEwP3796HVauHt7W2R0ZSB5wnjt99+i1mzZsnTE/n6+uK9997DuHHjsm0Vz4q1H1On3I9JqRlUKhWqV6+OwYMH4+2337bo454qlQrVqlXDO++8Y/HYSsdXuu6ZuXDhApYuXYrvv/8ejx49QlpamsmxlPoCltVNW5cUmZMcWeuanzlzRp72pHTp0mYNu58VS395VDKRWbFiBYYPH45vv/0W7777rvxIdnp6OhYuXIj3338f8+bNMymZJvtjjYRAqS+PrVu3fm23C1Na1ZVMYKzZF9aSlJyGyxoJoy2mEXv27BkuXryIgIAAs546io+Px5EjR5Ceno6QkBCLTZH1cuy0tDTUqlXLorEz4+TkhNOnT5v8ZBrw/J7l7++v92Od7gd2JX9EojcTk1Iz/Pnnn1i2bBl+/PFHpKWloXPnzhg8eLBFHq39888/sXz5cqxbt87isXXxlay7UrFfJy0tDVu3bjVrwuWBAwfm6FHgZcuWGRW3WLFiqFq1KsaNGyd/GRVCoFmzZliyZIncmmlKHyqlr/lff/2FwYMH4/z583KLoyRJqFChgvwotTny6pdHABg/fjymT58ODw8PlCxZEgBw7do1JCQkYPTo0ZgxY4bJsbVaLSIjI7Fhwwb8888/kCQJJUqUQJcuXdC3b1+LPrKeF5w5cyZH2ynxY4klKN0CptSXR5VKhe7du8PFxSXb7UxpVc/LCVibNm2wZs0a+UfAL774AuHh4fIYCrGxsWjYsKHeI6A5oWTLtDUSxilTpuD999+Hq6urxWOPGjUK3bt3N+jaZAlnzpxB69at5R9zPD098fPPP6NZs2YWi3337l0IISwaOyIiItPyWbNmoU+fPvJTTqY8JaHkZ8gaj6lT3sKk1AKSkpLw448/Yvny5Thw4ACKFy+OQYMGoX///ihWrFiujZ3X6/6ye/fuISUlBQEBAWbHUqlUCAwMRLVq1bLtS7Vx40aj4io5Qq6OEtf8/PnzqF27NsqXL4+xY8eifPnycp/MGTNm4NKlSzhy5IhZ9VfyD581EpmjR49izZo18uiGZcqUQc+ePU3uIwQ8/8GiXbt2+PXXX1GlShWUK1dOvu5nz57FW2+9ZdJoxDo5/eHG1D6lmSXUQUFB6Nq1q8kJtdKPe708gEl2TO1TmlcTMCXrnZcTsFevuaenJ06dOiWPHnrv3j2TRslXagR4XWylk9JHjx7h2bNnen9zzp07h2+//RaJiYno2LEj3n77bZNi67pjlCxZEoMHD0b//v0tNjJ2mzZt8PjxY/z3v/+Fs7MzpkyZgkuXLuHixYu5OrZKpUKVKlX0BpQEgH379qFmzZpwc3ODJEnYvXu3SbHz4j2L8iYmpRZ27do1LF++HCtXrsSdO3fQvHlzbN++PdfHVjq+pWLHx8dj+PDhOHDgAEJDQ7F48WKMHTsW8+fPhyRJaNCgAbZu3WpWy8CIESOwdu1aBAQEYNCgQejTp0+O+t/m1Pz58/H555/LI+RaMil9maWuebdu3ZCRkYH169cbfEkSQqBz585wdHTEjz/+aHJdlf7Sm1WfUh1TE5lnz57h/fffx6ZNm5CWloamTZviu+++s8hjWcuXL8d7772HzZs3G7R47969Gx07dsScOXPQr18/k+Ir2adUCIH27dtj+/btFk2olewLDyBHfa/N6VOq9Ps8L355VPLRYCUTXl387KaEMScpfXXasMzoRnQ3NrbS07X06tULvr6+csvc/fv3Ua5cOfj5+aFkyZL49ddfsXTpUvTt29fo2CqVCjt37sTWrVuxatUqPH36FK1bt8aQIUPQpk0bsx6J9/Hxwfbt21GzZk0Az1u6fXx88PTp09deL1vGnjZtGhYvXowlS5boDWBpqSnh8uI9i/ImJqUKSEhIwKpVq/DRRx/hyZMnFu2krWRspeNbIvaoUaOwa9cujBgxAhs2bICXlxeuXbuGBQsWQKvVYsSIEXjrrbfwxRdfmFXXlJQUbNiwAcuWLcPhw4fRtm1bDB48GC1atLDII5Pnz5/H22+/jeDgYPz000+KJKWAZa55oUKF8Ouvv8p/TF8VFRWFNm3a4MGDBybXU8kvj0r2KdX1Ge3duzdcXFywevVqhIaG4qeffjI61qtatGiBJk2aZDkVzpdffol9+/Zhx44dZh/L0pRKqG3RX/1l0dHRmDx5stGP7usomRDk1S+PSj8arFTCq4uvVFKq5PUuVqzYa6drMWcwr6CgICxfvlwezPDbb7/FggULcPHiRTg4OODbb7/Fzz//jCNHjhgd++Vrk5aWho0bN2LZsmXYtWsXChcujAEDBmDgwIEmjWKt5DzISs+xHBUVhT59+qB9+/aYNm0aHB0dLZaUKnnPUvJHI8p7mJRa0L59+7Bs2TKsX78earUa3bt3x+DBg816hM8asZWOb8nYAQEBWLFiBcLCwnD79m0UK1YMmzdvRvv27QEA27dvR0REhEUeidH5999/ERkZiZUrVyItLQ3nz5836ZdNJUfIfZUlr7mzszOuXLkizzv7qpiYGJQuXRrJyckm11fJL49JSUkYP3683JrZrFkzzJ492yKtmSVLlsQXX3yBnj17Anje97Z+/fpITk42aUCZlxUpUgS//fZbliN8nzx5Uu6jZIpBgwa9dhtJkvSmQMgppRJqW/ZXB4DTp0+jevXqJv9Yp2RCoOSXx3379ll8bmWdvJrwAs9bkO/evSt/qX41yTA1Kc2rj2LruLi44OLFi/IPfW3atEGFChXkOXIvX76MunXrIjY21ujYWdU/Ojoay5YtQ2RkJGJiYkz6jKrValy+fFn+9xRCwN/fHwcPHtSbM96UJ7GUjK2TkJCA8PBwnDp1Cj/88ANq1KiBU6dOmZ2UKnnPUuoxdcqbOE+pmWJiYhAZGYnIyEjcuHED9erVw3fffYfu3bvrzfWX22Ln1brfv39f/gXUz88PLi4uevPxVahQATExMWbV/VWSJMmPf5ozSXT16tUNWnlMGXggK0pd8+LFi+Ovv/7KMik9evSo2cPYA8+/0L3uy6MpPvvsM0RGRqJ3795wdnbGmjVrMHz4cIu0ZsbExOgNuFGrVi04ODjg9u3bWV6vnHr06BEKFy6c5frChQvj8ePHJsePjIzMUd9pU5w5cwZff/11lutbt26d4/6bL6tbty7q1q2L2bNny32nmzVrpmh/dUtTcv7GBQsWvPbLoylJqbOzM3bu3InWrVvLZStXrsSkSZPkPoLfffedSQOVKT1Y1+zZsxW73q/O9fvqPL8pKSkmx1WKNQZH8/T0xJMnT+S/C7qB8l6ug6nXJisBAQGYPHkyJk2ahF27dpkUQwiBMmXKGJRVq1ZN/n9Tu3ooGVvH3d0dK1aswNq1a9G8eXOLPemm5D1rypQpVn/ihXIvJqVmaN68Ofbs2YNChQqhX79+GDRokMGE5bkxttLxlYzt7e2NBw8eyF/4O3TooNe5PyEhwSIjuL78+O7BgwfRrl07zJkzB61atTK5z8qhQ4ewbNkyTJgwAePGjbNoK4+S17xHjx6IiIhA2bJlUbFiRb11Z8+exfjx403q2/Qqpb48btiwAUuXLpVbM/v06YP69esjIyPD7NbMjIwMg3ngHBwckJ6eblZcXezsWqbUarVZxxk2bBjWrl2L69evW7zvtNIJtYuLC/r374/+/fvLfacXLlyIyZMnW7yvvSUpnRAo9eVx8uTJCA0NlZPSs2fPYvDgwRgwYADKly+Pb775Bn5+fpg8ebLRsfNyAtavXz+9Y/Tp0yfTbYxlzo+fr2ONh+Nq1aqF2bNnY/HixdiwYQPi4+P1+jpevnzZ5B/tAgMDX/vDS/PmzU2KvWfPHpP2s3XsV/Xs2RMNGjTA8ePHzf7BWOnPUM+ePdmnlF4QZLL27duLTZs2ifT09DwVW+n4SsZu1aqVWLBgQZbrly9fLurVq2fWMYYPHy7y588vqlSpImbOnCkePnxoVrxXPXv2TERGRorGjRsLlUolSpQoIT7//HMRExNjckwlr3lSUpKoV6+eUKvVolWrVmLs2LFi7NixomXLlkKtVou6deuKpKQks46hUqnEvXv3LFRjfY6OjuLmzZt6Zc7OziI6Otrs2JIkiTZt2ohOnTrJi4ODg2jRooVemaViv7y0adNGqFQqs+qfnJwsVq9eLZo1ayZcXV1Ft27dxG+//Sa0Wq1ZcVUqlbh//36W6+/evWt23V8WHx8vFixYIAoUKGDRuK86deqUWfElSVLsfa7kZ6hIkSIiKipKfv3RRx+J+vXry69//PFHUb58eZNi7927V6SlpZldx8woeb2FEOLatWsiIyNDsfhKmDx5skhMTFT0GCdOnBDe3t7CyclJqFQq8fHHH+ut79Onjxg6dKiidTDFihUrRHJycp6LraS8es+ivIl9SilPOXnyJEqUKJHl4x6//vorXFxc5AEWTKFSqRAQEIBq1apl+yuhqYNjvEzpEZUtQdcnZcaMGZlOezJ27FizW6eVHjn05X5fgOUGmFByBFslY2fGUn2ngdf3EU5JScFvv/1m9uNllu4L/7ppcp48eYJ9+/aZXG8l529U8jP0ar/yBg0aoFWrVvjkk08AAP/88w8qVaqE+Ph4o2MrOQ2Pkn1hAcO+nz169MDs2bOzfUrA1qwxRdb169fh7u6OP//8E0WKFEHt2rX11m/btg3BwcEWHUfBEpTsy5tXpz/Jq/csypuYlFKeYo3RNwcMGJCjR1YslQwoPaKyuVQqFapXr45Bgwahd+/eilxzpQdSeTVB2rp1K5o0aaLX19YSPzLkZdHR0XKf5NTUVFy8eNHkpFTJz1BmfacHDx5skb7wSv8QoGRCoOSXx8DAQHz//fdo1KgRUlNTkS9fPmzduhVNmzYF8Pxx3saNG5s0IImS0/BYe97ZV0ffzY2UnCJLJy8m60DeHcFaSdb4EYNIh0kp5Sm2Hn3TkpQeUdlSXr3mXbp0waBBgyx6zY8ePYpHjx4pMpCKtVsc85LM+k4PHDjQrL7TSlK6r73SsksIdOWmJgRKfnkcOnQozp49i6+++gqbNm3CihUrcPv2bbk/9apVqzBz5kxERUUZHVtJ1p53Ni8kpTmZIuvx48dZjvqdE3nxugDKTlGSV6c/scaPGEQ6TEopT0pKSpJH3zxw4ECeGX1TyVYepSl5zVu3bo3Q0FB8+OGHAJ63vFSvXl1vIJWhQ4eaNJAKZW7EiBFYu3YtAgICMHDgQPTp0wfe3t4Wia3UdDNvvfUWBg8ejHbt2pk9SJUtKDlnrpIJ74MHD9C5c2ccOnQI7u7uiIyM1HvUuWnTpqhTp45J80Pv3r0bI0eOxJEjRwymw3j69Cnq1auHBQsW6I1ynVu8bkqYvOTp06dYtWoVli5dilOnTpmVZOTlpFSpqcmUnjNXKdb4EYNIh0kp5Xl5oV8mkPdbeV5m6Wvu6+uLrVu3ombNmgCAjz/+GPv27cPBgwcBAD/99BMmTZqE8+fPW6T+pGzfaZVKlaPpZjZu3Gh07LxMyTlzlUx4dZ4+fQp3d3eDHwQePXoEDw8PODo6Gh3zrbfeQlhYGMaOHZvp+tmzZ2PPnj0mvVeUTnhfTTQy6xYA5L5E42W7d+/GsmXLsGHDBgQGBqJLly7o0qWLPFWJKfJqsq7kvLZKz5lrbZb8EYNIh0kp2YXc3i8TyPutPK+y5DVXciAVypyS/T5fboW19HQzedn777+PefPm6c2ZGxoaapE5c5VMeHPS8g0Ay5YtMzp2YGAgfvvtN5QvXz7T9RcvXkSLFi0QHR1tdGwlE14g73YNuHnzJiIjI7Fs2TIkJiaie/fuWLBgAU6fPo3g4GCz4+fVZJ19Sl9PiR8xiHSYlFKellf6ZdoTJa65kgOpkG283F/18OHDaNu2LQYPHowWLVooPvddblWyZEl88cUX8py5f/31F+rXr4/k5GSzf6hSMuFVsuXb2dkZf//9N0qVKpXp+qtXr6JSpUpISkoyOraSCW9e1aZNG7n/eO/evdGqVSuo1Wo4OjpaLCnNq8k6R9/NnNI/YhDJrDn/DJElREdHi6lTp4oSJUoISZJE/fr1xbJly0RCQoKtq2a3lL7m7777rqhbt67Yv3+/iIiIEN7e3iIlJUVe/8MPP4iaNWta5Fhkff/884+YPHmyKFGihPD39xfx8fG2rpJNKDlnbokSJcSaNWvk10ePHhUODg4Wmbv45bmbZ82aJWJjY82OqVOiRAmxYcOGLNevX79eBAUFmRRbo9GIK1euZLn+ypUrwtnZ2aTYeZVarRZjx44Vly9f1it3cHAQ586ds1Gtcgcl5+RUes5cpbRu3Vp4eHiIXr16iV9++UW+n/D9QkrIfcMrEmWjefPmCAoKwrx589C1a1dcuHABBw8exMCBA3P9QEF5lTWu+eeffw61Wo3GjRtj8eLFWLRokTyyJ/D8scAWLVpY5FhkfZIkyYPtaLVaW1fHZjIyMvTe1wDg4OCA9PR0s2PHxMTo9Y2sVasWHBwccPv2bbNjz5s3D3fu3MGHH36IrVu3wt/fH927d8eOHTuybTnNiTZt2uCzzz5DcnKywbqkpCRMmjQJ7dq1Myl20aJFcfbs2SzXnzlzBr6+vibFzqsOHDiA+Ph41KxZE7Vr18acOXPw4MEDW1crV/jyyy9x9OhRvbKVK1ciKCgIPj4+ePfdd5GSkpLrYivp999/xzvvvIMpU6agbdu2dtH1iHIvPr5LeYq99cvMC6x5zZUYSIVsI69NN2MNSs6Z++rgMoByA8z8+++/iIyMxMqVK5GWlobz58+bPKftvXv3UL16dajVaowcORJly5aFJEm4cOEC5s6di4yMDJw4ccKkOS5HjRqFvXv3IioqCs7OznrrkpKSUKtWLYSFheV4PlN78uzZM6xduxbLli3DX3/9hYyMDEyfPh2DBg2Ch4eHratnE61atUJYWJgio8ArGVtJL08JV65cOfTt2xc9evSAn58fH98li2NSSkQ2p+RAKmR9Sk43k5cp2ddOyYT3VdHR0fLUVqmpqbh48aLJSSnwPMkdPny4XsurJElo2bIl5s2bh+LFi5sUV8mE155cunQJS5cuxffff48nT56gefPm2LJli62rZXVKjgKf10eY548YZA1MSonI5jiFiH1RcroZypzSg8tYo+X78ePHuHr1KoQQKF26NPLnz292TKUSXnuUkZGBrVu3YtmyZW9kUqrkKPD2NMI8f8QgpTApJSKb4xQi9kXJ6WbI+uyh5VuJhJfsi5KjwNvjCPNv+o8YZHlMSokoV+AUIkS5E1u+6U0wdOhQnD17Fl999RU2bdqEFStW4Pbt2/LgZKtWrcLMmTMRFRWVq2IT2QsmpUSU61hyIBUiMg9bvulN8ODBA3Tu3BmHDh2Cu7s7VqxYgU6dOsnrmzZtijp16uCLL77IVbGJ7AWTUiLKdSw9kAoREVFOZDcKvLu7u8G0TrklNlFe92aOy09EuU5KSgrWrFmD5s2bo2zZsjh79izmzJmD6OhoJqRERGQVXl5emU5/VqBAAbOTRiVjE+V1DrauABHRqwOprF27Ns8NpEJEREREpuHju0RkcxxIhYiIiOjNxZZSIrK5fv36cYRdIiIiojcUW0qJiIiIiIjIZjjQEREREREREdkMk1IiIiIiIiKyGSalREREREREZDNMSomIiIiIiMhmmJQSEdEbJzQ0FMWLF89zsYmIiOwRk1IiIjLL06dP4erqCkmSEBkZaevqEBERUR7DpJSIiMyyevVqJCcno2TJkli6dKmtq5Mjv//+Oy5dumTrahARERGYlBIRkZmWLl2KRo0aYdy4cTh48KBRyV5CQoKCNcuak5MTNBqNTY5NRERE+piUEhGRyc6cOYPjx49jwIAB6NWrFzQaDZYtW5bptpIkYcCAAfjjjz/QoEEDuLu7o127dvL6Y8eOoVOnTihYsCA0Gg3Kli2LL774Aunp6Xpx/vrrLwwYMABlypSBq6srPDw8UL9+fWzcuDHH9c6s36eu7ObNm+jevTvy588PNzc3tGzZEpcvXzaIcevWLfTq1Qv58uWDu7s7mjRpghMnTmR5zJyc3wcffABJkrB8+XK9fS9cuAA3NzfUr1/f4HoQERHldZIQQti6EkRElDeNHj0ay5Ytw927d+Hu7o7u3bvjwIEDiImJgYODg962kiShQoUKiI6OxjvvvIPy5csDAIYMGYLt27ejU6dOKFWqFPr06YMCBQrgzz//xPfff4/OnTvjp59+kuNMnDgR+/btQ/PmzVGsWDHExsZixYoVuHjxIlatWoW33377tfUODQ3FP//8g3/++Uev7Ny5c/D09ETdunVRv3593LhxA7NmzUKJEiXw999/Q61WAwCePHmC6tWr499//8U777yDqlWrIioqChs3boS3tzfS09P1Yuf0/NLS0tCwYUP8/fffOHbsGMqVK4fk5GTUqlULMTExOHXqFAIDA0395yIiIsqdBBERkQmSk5NFgQIFRL9+/eSybdu2CQBi8+bNBtsDEADEH3/8oVeelJQkfHx8RMOGDUVaWpreuunTpwsAYs+ePXJZQkKCQezExERRpkwZUb58+RzVvXHjxiIwMNCgDID46quv9Mq//vprAUD89ttvctnEiRMFADF//ny9bb/55hsBQC+2sed348YNkS9fPlGlShWRnJwshg4dKgCI9evX5+jciIiI8ho+vktERCbZuHEjHj16hAEDBshlLVu2hK+vb5YDHlWtWhVNmjTRK9u5cyfu37+Pfv364cmTJ3j48KG8tGnTBsDzgYl03Nzc5P9/9uwZYmNj8ezZMzRp0gQXLlxAXFycyeekUqkwevRovTJdfa9cuSKXbd68Gd7e3njnnXf0th01ahQ8PDzMOr/ixYtjyZIlOH36NJo2bYqFCxdi+PDh6Ny5s8nnRURElJs5vH4TIiIiQ0uXLkWhQoVQrFgxXL16VS5v3rw5Vq9ejbt376JIkSJ6+5QuXdogzoULFwA8f4x3yJAhmR7r3r178v/fv38fn3zyCTZv3oz79+8bbPvkyRN4enqadE5+fn5wdnbWK/P29gYAxMbGymXXrl1DtWrVDB5R1mg0KFGiBJ48eSKXGXt+ANClSxf0798fK1asQPny5TF9+nSTzoeIiCgvYFJKRERG++eff/DHH39ACIEyZcpkus2KFSvw4Ycf6pW5uroabCf+N7TBf/7zH9SoUSPTWH5+fgAArVaL5s2b4+LFixg9ejRCQkLg5eUFtVqN5cuXY/Xq1dBqtSafl67PaGbEK0MwSJKUo5jGnJ/O06dPsX//fgDAnTt3cO/ePfYlJSIiu8WklIiIjLZ8+XIIIbBw4UIUKFDAYP3UqVOxbNkyg6Q0M7qk1tXVFc2aNct227Nnz+LMmTP47LPPMGXKFL11S5YsMeIMzFOyZElcvnwZ6enpeq2lKSkpuH79ut41Meb8dN599138+++/+O677/DBBx+gV69e2L9/v0HLLBERkT1gn1IiIjKKVqtFZGQkgoOD8e6776Jr164GS+/evXH58mUcPHjwtfFatmwJHx8ffP3113j48KHB+qSkJMTHxwN40ZL5aqvl33//bdSUMObq2LEjYmNjDRLh7777Tq6rjjHnBwALFy7Ejz/+iIkTJ2LkyJGYNWsW/vzzT0yePFmRcyEiIrI1/uRKRERG2blzJ6Kjo/HZZ59luU2XLl0wYcIELF26FA0aNMg2nqurK1auXImOHTuiXLlyGDRoEEqXLo0nT57g4sWL2LBhAzZu3IjQ0FCUL18eFSpUwNdff41nz56hbNmyuHz5MhYuXIiKFStmO0+oJb3//vtYs2YNwsPDcerUKVSpUkWeEqZkyZJ6c4kac37nzp3D2LFjUa9ePTkJHTJkCHbt2oVp06ahadOmCAsLs8o5EhERWQuTUiIiMopuZN2uXbtmuU2pUqVQuXJl/PTTT5g9e7bBiLSvatmyJaKiovCf//wHq1atwoMHD5A/f36ULFkSERERqFy5MoDnLaXbtm3D+PHjsWLFCiQmJqJixYpYsWIFTp8+bbWkNF++fDhw4ADGjx+PtWvX4ocffkCtWrXwxx9/ICIiQm+O0pyeX1JSEnr06AFnZ2esWbNG71HdRYsWISoqCn369MHp06dRsGBBq5wnERGRNUji1WegiIiIiIiIiKyEfUqJiIiIiIjIZpiUEhERERERkc0wKSUiIiIiIiKbYVJKRERERERENsOklIiIiIiIiGyGSSkRERERERHZDJNSIiIiIiIishkmpURERERERGQzTEqJiIiIiIjIZpiUEhERERERkc0wKSUiIiIiIiKbYVJKRERERERENvP/HpV9QPmyxbcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from M2E_visualize_time_ave_pop_rates import plot_time_averaged_population_rates\n", "plot_time_averaged_population_rates(M, data_path)"