-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathrun_example_downscaled.py
34 lines (28 loc) · 1.11 KB
/
run_example_downscaled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
import os
from multiarea_model import MultiAreaModel
from config import base_path
"""
Down-scaled model.
Neurons and indegrees are both scaled down to 10 %.
Can usually be simulated on a local machine.
Warning: This will not yield reasonable dynamical results from the
network and is only meant to demonstrate the simulation workflow.
"""
d = {}
conn_params = {'replace_non_simulated_areas': 'het_poisson_stat',
'cc_weights_factor': 1.0, # run model in Ground State
'cc_weights_I_factor': 1.0}
network_params = {'N_scaling': 0.01,
'K_scaling': 0.01,
'fullscale_rates': os.path.join(base_path, 'tests/fullscale_rates.json')}
sim_params = {'t_sim': 2000.,
'num_processes': 1,
'local_num_threads': 1}
M = MultiAreaModel(network_params, simulation=True,
sim_spec=sim_params,
theory=True)
p, r = M.theory.integrate_siegert()
print("Mean-field theory predicts an average "
"rate of {0:.3f} spikes/s across all populations.".format(np.mean(r[:, -1])))
M.simulation.simulate()