forked from x1001000/sed-yamnet-jetson-nano
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yamnet.py
138 lines (118 loc) · 5.42 KB
/
yamnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright 2019 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Core model definition of YAMNet."""
import csv
import numpy as np
import tensorflow as tf
from tensorflow.keras import Model, layers
import features as features_lib
def _batch_norm(name, params):
def _bn_layer(layer_input):
return layers.BatchNormalization(
name=name,
center=params.batchnorm_center,
scale=params.batchnorm_scale,
epsilon=params.batchnorm_epsilon)(layer_input)
return _bn_layer
def _conv(name, kernel, stride, filters, params):
def _conv_layer(layer_input):
output = layers.Conv2D(name='{}/conv'.format(name),
filters=filters,
kernel_size=kernel,
strides=stride,
padding=params.conv_padding,
use_bias=False,
activation=None)(layer_input)
output = _batch_norm('{}/conv/bn'.format(name), params)(output)
output = layers.ReLU(name='{}/relu'.format(name))(output)
return output
return _conv_layer
def _separable_conv(name, kernel, stride, filters, params):
def _separable_conv_layer(layer_input):
output = layers.DepthwiseConv2D(name='{}/depthwise_conv'.format(name),
kernel_size=kernel,
strides=stride,
depth_multiplier=1,
padding=params.conv_padding,
use_bias=False,
activation=None)(layer_input)
output = _batch_norm('{}/depthwise_conv/bn'.format(name), params)(output)
output = layers.ReLU(name='{}/depthwise_conv/relu'.format(name))(output)
output = layers.Conv2D(name='{}/pointwise_conv'.format(name),
filters=filters,
kernel_size=(1, 1),
strides=1,
padding=params.conv_padding,
use_bias=False,
activation=None)(output)
output = _batch_norm('{}/pointwise_conv/bn'.format(name), params)(output)
output = layers.ReLU(name='{}/pointwise_conv/relu'.format(name))(output)
return output
return _separable_conv_layer
_YAMNET_LAYER_DEFS = [
# (layer_function, kernel, stride, num_filters)
(_conv, [3, 3], 2, 32),
(_separable_conv, [3, 3], 1, 64),
(_separable_conv, [3, 3], 2, 128),
(_separable_conv, [3, 3], 1, 128),
(_separable_conv, [3, 3], 2, 256),
(_separable_conv, [3, 3], 1, 256),
(_separable_conv, [3, 3], 2, 512),
(_separable_conv, [3, 3], 1, 512),
(_separable_conv, [3, 3], 1, 512),
(_separable_conv, [3, 3], 1, 512),
(_separable_conv, [3, 3], 1, 512),
(_separable_conv, [3, 3], 1, 512),
(_separable_conv, [3, 3], 2, 1024),
(_separable_conv, [3, 3], 1, 1024)
]
def yamnet(features, params):
"""Define the core YAMNet mode in Keras."""
net = layers.Reshape(
(params.patch_frames, params.patch_bands, 1),
input_shape=(params.patch_frames, params.patch_bands))(features)
for (i, (layer_fun, kernel, stride, filters)) in enumerate(_YAMNET_LAYER_DEFS):
net = layer_fun('layer{}'.format(i + 1), kernel, stride, filters, params)(net)
embeddings = layers.GlobalAveragePooling2D()(net)
logits = layers.Dense(units=params.num_classes, use_bias=True)(embeddings)
predictions = layers.Activation(activation=params.classifier_activation)(logits)
return predictions, embeddings
def yamnet_frames_model(params):
"""Defines the YAMNet waveform-to-class-scores model.
Args:
params: An instance of Params containing hyperparameters.
Returns:
A model accepting (num_samples,) waveform input and emitting:
- predictions: (num_patches, num_classes) matrix of class scores per time frame
- embeddings: (num_patches, embedding size) matrix of embeddings per time frame
- log_mel_spectrogram: (num_spectrogram_frames, num_mel_bins) spectrogram feature matrix
"""
waveform = layers.Input(batch_shape=(None,), dtype=tf.float32)
waveform_padded = features_lib.pad_waveform(waveform, params)
log_mel_spectrogram, features = features_lib.waveform_to_log_mel_spectrogram_patches(
waveform_padded, params)
predictions, embeddings = yamnet(features, params)
frames_model = Model(
name='yamnet_frames', inputs=waveform,
outputs=[predictions, embeddings, log_mel_spectrogram])
return frames_model
def class_names(class_map_csv):
"""Read the class name definition file and return a list of strings."""
if tf.is_tensor(class_map_csv):
class_map_csv = class_map_csv.numpy()
with open(class_map_csv) as csv_file:
reader = csv.reader(csv_file)
next(reader) # Skip header
return np.array([display_name for (_, _, display_name) in reader])