-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatic.py
102 lines (91 loc) · 5.22 KB
/
static.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import cv2
import numpy as np
import imutils
import scipy.spatial as sp
from imutils import contours
from imutils import perspective
from scipy.spatial import distance as dist
import streamlit as st
from PIL import Image
def static():
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
def mp(x,y):
return((x[0]+y[0])*0.5,(x[1]+y[1])*0.5)
my_img = image_file.name
if image_file.name:
#frame = np.array(my_img)
# load the image, convert it to grayscale, and blur it slightly
image = cv2.imread(my_img)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 1)
# perform edge detection, then perform a dilation + erosion to
# close gaps in between object edges
edged = cv2.Canny(gray, 100, 200)
kernel = np.ones((3,3))
edged = cv2.dilate(edged,kernel, iterations=2)
edged = cv2.erode(edged, kernel, iterations=1)
# find contours in the edge map
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# sort the contours from left-to-right and initialize the
# 'pixels per metric' calibration variable
(cnts, _) = contours.sort_contours(cnts)
ppm = None
width= st.number_input("Enter the width(in inches):",min_value=0.0,
max_value=6.0,
step=1e-5,
format="%.5f")
st.image(my_img)
st.markdown("##### Uploaded Image")
# loop over the contours individually
for c in cnts:
# if the contour is not sufficiently large, ignore it
if cv2.contourArea(c) < 500:
continue
# compute the rotated bounding box of the contour
orig = image.copy()
box = cv2.minAreaRect(c)
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
box = np.array(box, dtype="int")
# order the points in the contour
box = perspective.order_points(box)
cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 10)
# loop over the original points and draw them
for (x, y) in box:
cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
(upper_left, upper_right, bottom_right, bottom_left) = box
(upper_left_upper_rightX, upper_left_upper_rightY) = mp(upper_left, upper_right)
(bottom_left_bottom_rightX, bottom_left_bottom_rightY) = mp(bottom_left, bottom_right)
# compute the mp
(upper_leftbottom_leftX, upper_leftbottom_leftY) = mp(upper_left, bottom_left)
(upper_rightbottom_rightX, upper_rightbottom_rightY) = mp(upper_right, bottom_right)
# draw the mps on the image
cv2.circle(orig, (int(upper_left_upper_rightX), int(upper_left_upper_rightY)), 5, (255, 0, 0), -1)
cv2.circle(orig, (int(bottom_left_bottom_rightX), int(bottom_left_bottom_rightY)), 5, (255, 0, 0), -1)
cv2.circle(orig, (int(upper_leftbottom_leftX), int(upper_leftbottom_leftY)), 5, (255, 0, 0), -1)
cv2.circle(orig, (int(upper_rightbottom_rightX), int(upper_rightbottom_rightY)), 5, (255, 0, 0), -1)
# draw lines between the mps
cv2.line(orig, (int(upper_left_upper_rightX), int(upper_left_upper_rightY)), (int(bottom_left_bottom_rightX), int(bottom_left_bottom_rightY)),
(255, 0, 255), 3)
cv2.line(orig, (int(upper_leftbottom_leftX), int(upper_leftbottom_leftY)), (int(upper_rightbottom_rightX), int(upper_rightbottom_rightY)),
(255, 0, 255), 3)
# compute the distance between the mps
diA = dist.euclidean((upper_left_upper_rightX, upper_left_upper_rightY), (bottom_left_bottom_rightX, bottom_left_bottom_rightY))
diB = dist.euclidean((upper_leftbottom_leftX, upper_leftbottom_leftY), (upper_rightbottom_rightX, upper_rightbottom_rightY))
if ppm is None:
ppm = diA / width
# compute the size of the object
dimA = diA / ppm
dimB = diB / ppm
# draw the object sizes
cv2.putText(orig, "{:.2f}in".format(dimA),
(int(upper_left_upper_rightX - 15), int(upper_left_upper_rightY - 10)), cv2.FONT_HERSHEY_COMPLEX,
1, (255, 0, 0), 2)
cv2.putText(orig, "{:.2f}in".format(dimB),
(int(upper_rightbottom_rightX + 10), int(upper_rightbottom_rightY)), cv2.FONT_HERSHEY_COMPLEX,
1, (255, 0, 0), 2)
st.write("Width:",dimB)
st.write("Height:",dimA)
st.image(orig)
st.markdown('#')