-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathmain.py
408 lines (342 loc) · 19.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os, sys
from typing import Optional
from util.logger import setup_logger
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import torch.distributed as dist
import datasets
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch
from models import build_DABDETR, build_dab_deformable_detr
from util.utils import clean_state_dict
def get_args_parser():
parser = argparse.ArgumentParser('DAB-DETR', add_help=False)
# about lr
parser.add_argument('--lr', default=1e-4, type=float,
help='learning rate')
parser.add_argument('--lr_backbone', default=1e-5, type=float,
help='learning rate for backbone')
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--save_checkpoint_interval', default=100, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--modelname', '-m', type=str, required=True, choices=['dab_detr', 'dab_deformable_detr'])
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--pe_temperatureH', default=20, type=int,
help="Temperature for height positional encoding.")
parser.add_argument('--pe_temperatureW', default=20, type=int,
help="Temperature for width positional encoding.")
parser.add_argument('--batch_norm_type', default='FrozenBatchNorm2d', type=str,
choices=['SyncBatchNorm', 'FrozenBatchNorm2d', 'BatchNorm2d'], help="batch norm type for backbone")
# * Transformer
parser.add_argument('--return_interm_layers', action='store_true',
help="Train segmentation head if the flag is provided")
parser.add_argument('--backbone_freeze_keywords', nargs="+", type=str,
help='freeze some layers in backbone. for catdet5.')
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.0, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=300, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true',
help="Using pre-norm in the Transformer blocks.")
parser.add_argument('--num_select', default=300, type=int,
help='the number of predictions selected for evaluation')
parser.add_argument('--transformer_activation', default='prelu', type=str)
parser.add_argument('--num_patterns', default=0, type=int,
help='number of pattern embeddings. See Anchor DETR for more details.')
parser.add_argument('--random_refpoints_xy', action='store_true',
help="Random init the x,y of anchor boxes and freeze them.")
# for DAB-Deformable-DETR
parser.add_argument('--two_stage', default=False, action='store_true',
help="Using two stage variant for DAB-Deofrmable-DETR")
parser.add_argument('--num_feature_levels', default=4, type=int,
help='number of feature levels')
parser.add_argument('--dec_n_points', default=4, type=int,
help="number of deformable attention sampling points in decoder layers")
parser.add_argument('--enc_n_points', default=4, type=int,
help="number of deformable attention sampling points in encoder layers")
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--cls_loss_coef', default=1, type=float,
help="loss coefficient for cls")
parser.add_argument('--mask_loss_coef', default=1, type=float,
help="loss coefficient for mask")
parser.add_argument('--dice_loss_coef', default=1, type=float,
help="loss coefficient for dice")
parser.add_argument('--bbox_loss_coef', default=5, type=float,
help="loss coefficient for bbox L1 loss")
parser.add_argument('--giou_loss_coef', default=2, type=float,
help="loss coefficient for bbox GIOU loss")
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
parser.add_argument('--focal_alpha', type=float, default=0.25,
help="alpha for focal loss")
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str, required=True)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--fix_size', action='store_true',
help="Using for debug only. It will fix the size of input images to the maximum.")
# Traing utils
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving')
parser.add_argument('--note', default='', help='add some notes to the experiment')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--pretrain_model_path', help='load from other checkpoint')
parser.add_argument('--finetune_ignore', type=str, nargs='+',
help="A list of keywords to ignore when loading pretrained models.")
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help="eval only. w/o Training.")
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--debug', action='store_true',
help="For debug only. It will perform only a few steps during trainig and val.")
parser.add_argument('--find_unused_params', action='store_true')
parser.add_argument('--save_results', action='store_true',
help="For eval only. Save the outputs for all images.")
parser.add_argument('--save_log', action='store_true',
help="If save the training prints to the log file.")
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--rank', default=0, type=int,
help='number of distributed processes')
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
parser.add_argument('--amp', action='store_true',
help="Train with mixed precision")
return parser
def build_model_main(args):
if args.modelname.lower() == 'dab_detr':
model, criterion, postprocessors = build_DABDETR(args)
elif args.modelname.lower() == 'dab_deformable_detr':
model, criterion, postprocessors = build_dab_deformable_detr(args)
else:
raise NotImplementedError
return model, criterion, postprocessors
def main(args):
utils.init_distributed_mode(args)
# torch.autograd.set_detect_anomaly(True)
# setup logger
os.makedirs(args.output_dir, exist_ok=True)
os.environ['output_dir'] = args.output_dir
logger = setup_logger(output=os.path.join(args.output_dir, 'info.txt'), distributed_rank=args.rank, color=False, name="DAB-DETR")
logger.info("git:\n {}\n".format(utils.get_sha()))
logger.info("Command: "+' '.join(sys.argv))
if args.rank == 0:
save_json_path = os.path.join(args.output_dir, "config.json")
# print("args:", vars(args))
with open(save_json_path, 'w') as f:
json.dump(vars(args), f, indent=2)
logger.info("Full config saved to {}".format(save_json_path))
logger.info('world size: {}'.format(args.world_size))
logger.info('rank: {}'.format(args.rank))
logger.info('local_rank: {}'.format(args.local_rank))
logger.info("args: " + str(args) + '\n')
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# build model
model, criterion, postprocessors = build_model_main(args)
wo_class_error = False
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_params)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info('number of params:'+str(n_parameters))
logger.info("params:\n"+json.dumps({n: p.numel() for n, p in model.named_parameters() if p.requires_grad}, indent=2))
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
}
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
if args.dataset_file == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", args)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if not args.resume and args.pretrain_model_path:
checkpoint = torch.load(args.pretrain_model_path, map_location='cpu')['model']
from collections import OrderedDict
_ignorekeywordlist = args.finetune_ignore if args.finetune_ignore else []
ignorelist = []
def check_keep(keyname, ignorekeywordlist):
for keyword in ignorekeywordlist:
if keyword in keyname:
ignorelist.append(keyname)
return False
return True
logger.info("Ignore keys: {}".format(json.dumps(ignorelist, indent=2)))
_tmp_st = OrderedDict({k:v for k, v in clean_state_dict(checkpoint).items() if check_keep(k, _ignorekeywordlist)})
_load_output = model_without_ddp.load_state_dict(_tmp_st, strict=False)
logger.info(str(_load_output))
# import ipdb; ipdb.set_trace()
if args.eval:
os.environ['EVAL_FLAG'] = 'TRUE'
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
data_loader_val, base_ds, device, args.output_dir, wo_class_error=wo_class_error, args=args)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
log_stats = {**{f'test_{k}': v for k, v in test_stats.items()} }
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
epoch_start_time = time.time()
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm, wo_class_error=wo_class_error, lr_scheduler=lr_scheduler, args=args, logger=(logger if args.save_log else None))
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}_beforedrop.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.save_checkpoint_interval == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir,
wo_class_error=wo_class_error, args=args, logger=(logger if args.save_log else None)
)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
epoch_time = time.time() - epoch_start_time
epoch_time_str = str(datetime.timedelta(seconds=int(epoch_time)))
log_stats['epoch_time'] = epoch_time_str
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
print("Now time: {}".format(str(datetime.datetime.now())))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)