-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdataset.py
40 lines (33 loc) · 1.34 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from collections import defaultdict
from typing import Literal
from datasets import load_dataset
from tqdm import tqdm
from ..base_dataset import BaseDataset
from .utils import get_subject_mapping
class CEvalDataset(BaseDataset):
def __init__(
self, disciplines: set[str] = None, split: Literal["test", "val", "dev"] = "val"
):
"""
Args:
disciplines: Disciplines to load. If None, all disciplines will be loaded.
split: The split to load. One of "test", "val", "dev".
"""
subject_mapping = get_subject_mapping()
self.data = []
if disciplines is None:
disciplines = set(subject_mapping.keys())
for discipline in tqdm(disciplines, desc=f"Loading CEval > {split}"):
ds = load_dataset("ceval/ceval-exam", discipline, split=split)
for item in ds:
item["id"] = f"{discipline}_{split}_{item['id']:>04}"
item["type"] = discipline
self.data.append(item)
def load(self) -> list[dict]:
return self.data
def load_as_dict_of_discipline(self, num_shots: int) -> dict[str, list[dict]]:
examples = defaultdict(list)
for item in self.data:
if len(examples[item["type"]]) < num_shots:
examples[item["type"]].append(item)
return examples