From 53844f0446eafb71303d84486ddf60c3dcf01a91 Mon Sep 17 00:00:00 2001 From: HydrogenSulfate <490868991@qq.com> Date: Mon, 27 Nov 2023 05:30:24 +0000 Subject: [PATCH] refine docs --- README.md | 22 +++++++++++++--------- 1 file changed, 13 insertions(+), 9 deletions(-) diff --git a/README.md b/README.md index 969f8cff3a..ce08c276d8 100644 --- a/README.md +++ b/README.md @@ -51,7 +51,7 @@ python ./custom_op_test.py 除少量 `deprecated` 相关的警告外,如果输出全部都是 True,则说明自定义算子安装成功并且运行正常。 -### 2.1 训练 +### 2.2 训练 > [!NOTE] > 暂时只支持 water_se_e2_a 案例的训练 @@ -63,7 +63,7 @@ cd examples/water/se_e2_a dp train ./input.json ``` -### 2.2 评估 +### 2.3 评估 ``` sh # 进入案例目录 @@ -74,7 +74,7 @@ WEIGHT_PATH="path/to/your_model.pdparams" dp test -m ${WEIGHT_PATH} -s ../data/data_3/ -n 30 ``` -### 2.3 导出静态图模型 +### 2.4 导出静态图模型 ``` sh # 进入案例目录 @@ -87,7 +87,7 @@ DUMP_PATH="path/to/your_dump" dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH} ``` -### 2.4 在 LAMMPS(GPU) 中推理 +### 2.5 在 LAMMPS(GPU) 中推理 1. 修改 `examples/water/lmp/in.lammps` 文件,将 `pair_style deepmd` 后面的路径改为 **2.3 导出静态图模型** 这一章节内设置好的 DUMP_PATH 的值 @@ -108,7 +108,7 @@ dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH} pip install python/dist/paddlepaddle_gpu-0.0.0-cp39-cp39-linux_x86_64.whl ``` -3. 安装 LAMMPS 并运行推理 +3. Paddle 推理库和 LAMMPS 联合编译安装,并运行推理 ``` sh # 下载并解压 lammps 源码 @@ -166,7 +166,9 @@ dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH} lmp_serial -in in.lammps ``` -4. 直接运行推理 +4. [可选]直接运行推理 + + 若已完成 **3. Paddle 推理库和 LAMMPS 联合编译安装,并运行推理**,且没有对 C++ 代码进行修改,则无需重新联合编译 Paddle 推理库和 LAMMPS,直接运行以下命令即可开始推理。 ``` sh # 设置推理时的 GPU 卡号 @@ -182,7 +184,7 @@ dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH} lmp_serial -in in.lammps ``` ---- +-------------------------------------------------------------------------------- DeePMD-kit Manual ======== @@ -216,7 +218,8 @@ For more information, check the [documentation](https://deepmd.readthedocs.io/). # Highlights in DeePMD-kit v2.0 -* [Model compression](doc/freeze/compress.md). Accelerate the efficiency of model inference 4-15 times. +- [Model compression](doc/freeze/compress.md). Accelerate the efficiency of model inference 4-15 times. + - [New descriptors](doc/model/overall.md). Including [`se_e2_r`](doc/model/train-se-e2-r.md) and [`se_e3`](doc/model/train-se-e3.md). - [Hybridization of descriptors](doc/model/train-hybrid.md). Hybrid descriptor constructed from the concatenation of several descriptors. - [Atom type embedding](doc/model/train-se-e2-a-tebd.md). Enable atom-type embedding to decline training complexity and refine performance. @@ -226,7 +229,8 @@ For more information, check the [documentation](https://deepmd.readthedocs.io/). ## Highlighted features -* **interfaced with TensorFlow**, one of the most popular deep learning frameworks, making the training process highly automatic and efficient, in addition, Tensorboard can be used to visualize training procedures. +- **interfaced with TensorFlow**, one of the most popular deep learning frameworks, making the training process highly automatic and efficient, in addition, Tensorboard can be used to visualize training procedures. + - **interfaced with high-performance classical MD and quantum (path-integral) MD packages**, i.e., LAMMPS and i-PI, respectively. - **implements the Deep Potential series models**, which have been successfully applied to finite and extended systems including organic molecules, metals, semiconductors, insulators, etc. - **implements MPI and GPU supports**, making it highly efficient for high-performance parallel and distributed computing.