-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvie_preprocess.py
81 lines (71 loc) · 3 KB
/
vie_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import argparse
from tqdm import tqdm
import os
from vinorm import TTSnorm
import py_vncorenlp
path = os.path.join(os.getcwd(),"py_vncorenlp") # Get current path. Pycorenlp requires absolute path.
rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir=path)
def seg_sentence(text):
"Segment a sentence"
seg_text = rdrsegmenter.word_segment(text)
return seg_text[0]
def seg_sentences(text):
"Segment sentences"
seg_text = rdrsegmenter.word_segment(text)
return seg_text
def clean_text(text):
norm_text = TTSnorm(text, punc=False, unknown=True, rule=False).strip() # Normalize before segmenting word
seg_text = seg_sentence(norm_text)
return seg_text
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--out_extension", default="cleaned")
parser.add_argument("--audio_path", type=str)
parser.add_argument(
"--filelists",
nargs="+",
default=[
"filelists/train.txt",
"filelists/val.txt",
],
)
args = parser.parse_args()
for filelist in args.filelists:
print("START:", filelist)
print("-----------Normalizing Text And Segmented On Raw Text-------------")
with open(filelist + "." + args.out_extension, "w", encoding="utf-8") as out_file:
with open(filelist, "r", encoding="utf-8") as trans_file:
lines = trans_file.readlines()
if len(lines) != 0:
for line in tqdm(lines):
try:
utt, text = line.strip().split("|")
norm_seg_text = clean_text(text)
out_file.write(
"{}|{}\n".format(
utt,
norm_seg_text
)
)
except Exception as e:
print(line)
print(f"Error while preprocess data:\n{e}")
if args.audio_path is not None:
#Check Audio Files is exists
with open(filelist, "r", encoding="utf-8") as f:
audioPaths = set()
countSame = 0
countNotFound = 0
for line in f.readlines():
utt, phones = line.strip().split("|")
if utt in audioPaths:
print(f"Duplicate:{line}")
countSame += 1
continue
if not os.path.isfile(os.path.join(args.audio_path,utt)):
print(f"Not found audio respectively:{utt}")
countNotFound += 1
continue
audioPaths.add(utt)
print(f"Total duplicate audio:{countSame},Total not found audio:{countNotFound}")
print("Done!")