-
Notifications
You must be signed in to change notification settings - Fork 0
/
Cert.py
33 lines (24 loc) · 1.21 KB
/
Cert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import tensorflow as tf
import numpy as np
import pandas as pd
import logging
#--------------------------------------------- installing all packages
#logger = tf.get_logger()
#logger.setLevel(logging.ERROR)
#..............................................this is to identify the error.
#celsius_q = np.array([-40, -10, 0, 8, 15, 22, 38], dtype=float)
#fahrenheit_a = np.array([-40, 14, 32, 46, 59, 72, 100], dtype=float)
#for i,c in enumerate(celsius_q):
# print("{} this is the centigrade, while {} this is the fahrenheit".format(c, fahrenheit_a[i]))
#___________________________________________________________________ begin
#l0 = tf.keras.layers.Dense(units=1, input_shape= [1]) # defines the layer
#model = tf.keras.Sequential([l0])
#model.compile(loss='mean_squared_error',optimizer=tf.keras.optimizers.Adam(0.1))
#history = model.fit(celsius_q, fahrenheit_a, epochs=700, verbose=False)
#print("Finished training the model")
#import matplotlib.pyplot as plt
#plt.xlabel('Epoch Number')
#plt.ylabel("Loss Magnitude")
#plt.plot(history.history['loss'])
#plt.show()
#----------------------------------------------------------------- So far learnt a few steps however the udacity tutorial isnt off to a good start.