-
Notifications
You must be signed in to change notification settings - Fork 1
/
bibliography.bib
164 lines (146 loc) · 4.81 KB
/
bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
@article{rudin2019stop,
title={Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead},
author={Rudin, Cynthia},
journal={Nature Machine Intelligence},
volume={1},
number={5},
pages={206--215},
year={2019},
publisher={Nature Publishing Group}
}
@article{matsui2001np,
title={NP-completeness for calculating power indices of weighted majority games},
author={Matsui, Yasuko and Matsui, Tomomi},
journal={Theoretical Computer Science},
volume={263},
number={1-2},
pages={305--310},
year={2001},
publisher={Elsevier}
}
@article{lundberg2020local,
title={From local explanations to global understanding with explainable AI for trees},
author={Lundberg, Scott M and Erion, Gabriel and Chen, Hugh and DeGrave, Alex and Prutkin, Jordan M and Nair, Bala and Katz, Ronit and Himmelfarb, Jonathan and Bansal, Nisha and Lee, Su-In},
journal={Nature machine intelligence},
volume={2},
number={1},
pages={56--67},
year={2020}
}
@article{schervish1996p,
title={P values: what they are and what they are not},
author={Schervish, Mark J},
journal={The American Statistician},
volume={50},
number={3},
pages={203--206},
year={1996},
publisher={Taylor \& Francis}
}
@article{young1985monotonic,
title={Monotonic solutions of cooperative games},
author={Young, H Peyton},
journal={International Journal of Game Theory},
volume={14},
number={2},
pages={65--72},
year={1985},
publisher={Springer}
}
@inproceedings{lundberg2017unified,
title={A unified approach to interpreting model predictions},
author={Lundberg, Scott M and Lee, Su-In},
booktitle={Advances in neural information processing systems},
pages={4765--4774},
year={2017}
}
@book{pearl2009causality,
title={Causality},
author={Pearl, Judea},
year={2009},
publisher={Cambridge university press}
}
@article{janzing2019feature,
title={Feature relevance quantification in explainable AI: A causality problem},
author={Janzing, Dominik and Minorics, Lenon and Bl{\"o}baum, Patrick},
journal={arXiv preprint arXiv:1910.13413},
year={2019}
}
@article{sundararajan2019many,
title={The many Shapley values for model explanation},
author={Sundararajan, Mukund and Najmi, Amir},
journal={arXiv preprint arXiv:1908.08474},
year={2019}
}
@article{chen2019explaining,
title={Explaining Models by Propagating Shapley Values of Local Components},
author={Chen, Hugh and Lundberg, Scott and Lee, Su-In},
journal={arXiv preprint arXiv:1911.11888},
year={2019}
}
@article{kononenko2010efficient,
title={An efficient explanation of individual classifications using game theory},
author={Kononenko, Igor and others},
journal={Journal of Machine Learning Research},
volume={11},
number={Jan},
pages={1--18},
year={2010}
}
@inproceedings{ribeiro2016should,
title={" Why should i trust you?" Explaining the predictions of any classifier},
author={Ribeiro, Marco Tulio and Singh, Sameer and Guestrin, Carlos},
booktitle={Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining},
pages={1135--1144},
year={2016}
}
@inproceedings{sundararajan2017axiomatic,
title={Axiomatic attribution for deep networks},
author={Sundararajan, Mukund and Taly, Ankur and Yan, Qiqi},
booktitle={Proceedings of the 34th International Conference on Machine Learning-Volume 70},
pages={3319--3328},
year={2017},
organization={JMLR. org}
}
@inproceedings{shrikumar2017learning,
title={Learning important features through propagating activation differences},
author={Shrikumar, Avanti and Greenside, Peyton and Kundaje, Anshul},
booktitle={Proceedings of the 34th International Conference on Machine Learning-Volume 70},
pages={3145--3153},
year={2017},
organization={JMLR. org}
}
@article{sturmfels2020visualizing,
title={Visualizing the Impact of Feature Attribution Baselines},
author={Sturmfels, Pascal and Lundberg, Scott and Lee, Su-In},
journal={Distill},
volume={5},
number={1},
pages={e22},
year={2020}
}
@inproceedings{fong2017interpretable,
title={Interpretable explanations of black boxes by meaningful perturbation},
author={Fong, Ruth C and Vedaldi, Andrea},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={3429--3437},
year={2017}
}
@misc{andosa_2019,
title={andosa/treeinterpreter},
url={https://github.com/andosa/treeinterpreter},
journal={GitHub},
author={Saabas, Ando}
}
@misc{breiman_1984,
title={Classification and regression trees},
journal={CRC press},
author={Breiman, Leo and Friedman, Jerome and Stone, Charles J. and Olshen, R.A.},
year={1984}
}
@article{louppe2014understanding,
title={Understanding random forests: From theory to practice},
author={Louppe, Gilles},
journal={arXiv preprint arXiv:1407.7502},
year={2014}
}