-
Notifications
You must be signed in to change notification settings - Fork 12
/
main.py
67 lines (59 loc) · 2.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Check out the code in work at https://www.kaggle.com/hsankesara/prototypical-net/
# Check out the blog at <COMING SOON>
import torch
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from matplotlib import pyplot as plt
import cv2
from tqdm import tqdm
import multiprocessing as mp
from preprocessing import read_images
from prototypicalNet import PrototypicalNet, train_step, test_step, load_weights
tqdm.pandas(desc="my bar!")
def main():
# Reading the data
trainx, trainy = read_images('../input/omniglot/images_background/')
testx, testy = read_images('../input/omniglot/images_evaluation/')
# Checking if GPU is available
use_gpu = torch.cuda.is_available()
# Converting input to pytorch Tensor
trainx = torch.from_numpy(trainx).float()
testx = torch.from_numpy(testx).float()
if use_gpu:
trainx = trainx.cuda()
testx = testx.cuda()
# Priniting the data
print(trainx.size(), testx.size())
# Set training iterations and display period
num_episode = 16000
frame_size = 1000
trainx = trainx.permute(0, 3, 1, 2)
testx = testx.permute(0, 3, 1, 2)
# Initializing prototypical net
protonet = PrototypicalNet(use_gpu)
# Training loop
frame_loss = 0
frame_acc = 0
for i in range(num_episode):
loss, acc = train_step(protonet, trainx, trainy, 5, 60, 5)
frame_loss += loss.data
frame_acc += acc.data
if((i+1) % frame_size == 0):
print("Frame Number:", ((i+1) // frame_size), 'Frame Loss: ', frame_loss.data.cpu().numpy().tolist() /
frame_size, 'Frame Accuracy:', (frame_acc.data.cpu().numpy().tolist() * 100) / frame_size)
frame_loss = 0
frame_acc = 0
# Test loop
num_test_episode = 2000
avg_loss = 0
avg_acc = 0
for _ in range(num_test_episode):
loss, acc = test_step(protonet, testx, testy, 5, 60, 15)
avg_loss += loss.data
avg_acc += acc.data
print('Avg Loss: ', avg_loss.data.cpu().numpy().tolist() / num_test_episode,
'Avg Accuracy:', (avg_acc.data.cpu().numpy().tolist() * 100) / num_test_episode)
# Using Pretrained Model
protonet = load_weights('./protonet.pt', protonet, use_gpu)
if __name__ == "__main__":
main()