Skip to content

Latest commit

 

History

History

UNet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Unet

Dataset

Images for segmentation of optical coherence tomography images with diabetic macular edema.

  • You can download dataset from here

  • Download and unzip the data on Unet directory

How to use the module

First install all the necessary dependencies

pip3 install -r requirements.txt
  • Download the dataset and save it in Unet directory
  • To train, test and save your own model first import the Unet module
import Unet
"""
width_out : width of the output image
height_out : height of the output image
width_in : width of the input image
height_in : height of the input image
"""
unet = Unet.Unet(inchannels, outchannnels)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(unet.parameters(), lr = 0.01, momentum=0.99)
outputs = outputs.permute(0, 2, 3, 1)
m = outputs.shape[0]
outputs = outputs.resize(m*width_out*height_out, 2)
labels = labels.resize(m*width_out*height_out)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

To know more checkout run_unet.py

Implementation

Go to this to checkout implementation and functioning of Unet Networks.

Project Manager

Heet Sankesara