-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable_WBGreedy.py
598 lines (546 loc) · 23.9 KB
/
table_WBGreedy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import numpy as np
import random
import time as time
def distancePS(centerSet: np.ndarray, i: int, complete: np.ndarray) -> float:
"""
Returns the distance between a certain point and a certain set.
Args:
centerSet (np.ndarray): A numpy array containing confirmed center indexes
i (int): The index of any point
complete (np.ndarray): An adjacency matrix of the dataset
Returns:
min_distance (float): The distance between point and center set
"""
min_distance = float("inf")
for center in centerSet:
distance = complete[center][i]
if (distance < min_distance):
min_distance = distance
return min_distance
def distance_lossMax(centerSet: np.ndarray, i: int, complete: np.ndarray) -> tuple[float, int]:
"""
Returns the distance between a certain point and a certain set, exclusively designed for loss-maximizing deletion.
Args:
centerSet (np.ndarray): A numpy array containing confirmed center indexes
i (int): The index of any point
complete (np.ndarray): An adjacency matrix of the dataset
Returns:
min_distance (float): The distance between point and center set
dis_center (int): The index of the center caused the distance
"""
min_distance = float("inf")
dis_center = None
for center in centerSet:
distance = complete[center][i]
if (distance < min_distance):
min_distance = distance
dis_center = center
return min_distance, dis_center
def GMM(points_index: np.ndarray, k: int, complete: np.ndarray) -> np.ndarray:
"""
Returns indexes of k centers after running GMM Algorithm.
Args:
points_index (np.ndarray): The indexes of data
k (int): A decimal integer, the number of centers
complete (np.ndarray): An adjacency matrix of the dataset
Returns:
centers (np.ndarray): A numpy array with k indexes as center point indexes
"""
centers = []
initial_point_index = random.choice(points_index)
centers.append(initial_point_index)
while (len(centers) < k):
max_distance = 0
max_distance_vector_index = None
for i in points_index:
distance = distancePS(centers, i, complete)
if distance > max_distance:
max_distance = distance
max_distance_vector_index = i
centers.append(max_distance_vector_index)
centers = np.array(centers)
return centers
def loss(centerSet: np.ndarray, points_index: np.ndarray, complete:np.ndarray) -> float:
"""
Returns the loss value with centers and data points.
Args:
centerSet (np.ndarray): The numpy array containing all center indexes
points_index (np.ndarray): The indexes of data
complete (np.ndarray): An adjacency matrix of the dataset
Returns:
loss_value (float): The loss value of certain centers and data points
"""
max_distance = float("-inf")
for i in points_index:
distance = distancePS(centerSet, i, complete)
if (distance > max_distance):
max_distance = distance
return max_distance
def GB_deletion(z: int, complete: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""
Returns the left indexes and the deleted indexes after z-point deletion with GMM.
Args:
z (int): A decimal integer, the number of deleted points
complete (np.ndarray): An adjacency matrix of the dataset
Returns:
deleted_points (np.ndarray): A numpy array with n-z indexes
deletion_points (np.ndarray): A numpy array with z indexes
"""
amount = complete.shape[0]
complete_array = np.arange(amount)
deletion_points = GMM(complete_array, z, complete)
deleted_points = np.setdiff1d(complete_array, deletion_points)
return deleted_points, deletion_points
def k_NN(number_neighbors: int, points_index: np.ndarray, query_point: int, complete: np.ndarray) -> np.ndarray:
"""
Returns the k nearest neighbors of the query points.
Args:
number_neighbors (np.ndarray): A demical integer, the number of neighbors
points_index (np.ndarray): The indexes of data
query_point (int): The index of any query point
complete (np.ndarray): An adjacency matrix of the dataset
Returns:
nearest_indices (np.ndarray): The indices of k nearest neighbors in points_index
"""
distances = []
for index in points_index:
distances.append(complete[query_point][index])
nearest_indices = np.argsort(distances)[:number_neighbors]
return nearest_indices
def WBNN_deletion(coreSet: np.ndarray, z: int, complete: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""
Returns the left indexes and the deleted indexes after deleting z clustered points.
Args:
coreSet (np.ndarray): A numpy array as the coreset indexes
z (int): A decimal integer, the number of deleted points
complete (np.ndarray): An adjacency matrix of the dataset
Returns:
deleted_points (np.ndarray): A numpy array with n-z indexes
deletion_points (np.ndarray): A numpy array with z indexes
"""
amount = complete.shape[0]
set_coreSet = set()
for each in coreSet:
set_coreSet = set_coreSet | each
list_coreSet = list(set_coreSet)
numpy_coreSet = np.array(list_coreSet)
query_point = random.choice(numpy_coreSet)
nearest_indices = k_NN(z, numpy_coreSet, query_point, complete)
deletion_coreSet = numpy_coreSet[nearest_indices]
complete_array = np.arange(amount)
deleted_points = np.setdiff1d(complete_array, deletion_coreSet)
return deleted_points, deletion_coreSet
def WBGreedy_deletion(coreSet: np.ndarray, z: int, complete: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""
Returns the left indexes and the deleted indexes after deleting z points in a greedy way.
Args:
coreSet (np.ndarray): A numpy array as the coreset indexes
z (int): A decimal integer, the number of deleted points
complete (np.ndarray): An adjacency matrix of the dataset
Returns:
deleted_points (np.ndarray): A numpy array with n-z indexes
deletion_points (np.ndarray): A numpy array with z indexes
"""
amount = complete.shape[0]
set_coreSet = set()
for each in coreSet:
set_coreSet = set_coreSet | each
list_coreSet = list(set_coreSet)
numpy_coreSet = np.array(list_coreSet)
complete_array = np.arange(amount)
rest_points = np.setdiff1d(complete_array, numpy_coreSet)
deletion_coreSet = []
for i in range(z):
deleted_point = None
max_distance = float("-inf")
for point in rest_points:
possible_distance, possible_center = distance_lossMax(numpy_coreSet, point, complete)
if possible_distance > max_distance:
max_distance = possible_distance
deleted_point = possible_center
deletion_coreSet.append(deleted_point)
indices = np.where(numpy_coreSet == deleted_point)[0]
numpy_coreSet = np.delete(numpy_coreSet, indices)
deletion_coreSet = np.array(deletion_coreSet)
deleted_points = np.setdiff1d(complete_array, deletion_coreSet)
return deleted_points, deletion_coreSet
def coreset_generate(points_index: np.ndarray,
centers_list: np.ndarray,
z: int,
complete: np.ndarray) -> tuple[np.ndarray, np.ndarray, int]:
"""
Returns the coreset indexes.
Args:
points_index (np.ndarray): The indexes of data
centers_list (np.ndarray): The center index set generated by GMM
z (int): A decimal integer, the number of deleted points
complete (np.ndarray): An adjacency matrix of the dataset
Returns:
coreset (np.ndarray): A numpy array as the coreset indexes
center_mark (np.ndarray): A numpy array with the center index corresponding to each set in coreset
size_coreset (int): A decimal integer, the size of coreset
"""
coreset = []
center_mark = []
radius = loss(centers_list, points_index, complete)
for i, center in enumerate(centers_list):
center_mark.append(center)
circles_index = []
for k in points_index:
if (complete[k][center] <= radius):
circles_index.append(k)
if (len(circles_index) <= z):
coreset.append(set(circles_index))
else:
circle_index_array = np.array(circles_index)
nearest_indices = k_NN(z+1, circle_index_array, center, complete)
nearest_z_points = circle_index_array[nearest_indices]
coreset.append(set(nearest_z_points))
coreset = np.array(coreset)
center_mark = np.array(center_mark)
size_coreset = 0
real_coreset = set()
for each in coreset:
real_coreset = real_coreset | each
size_coreset = len(real_coreset)
return coreset, center_mark, size_coreset
def robust_solution(coreset: np.ndarray,
center_mark: np.ndarray,
deletion_points: np.ndarray,
k: int) -> np.ndarray:
"""
Returns the new center set index by our algorithm after deletion.
Args:
coreset (np.ndarray): A numpy array with k sets
center_mark (np.ndarray): A numpy array with the center index corresponding to each set in coreset
deletion_points (np.ndarray): A numpy array with z already deleted point indexes
k (int): A decimal integer, the number of centers
Returns:
new_centerSet (np.ndarray): A numpy array with k point indexes as center point indexes after deletion
"""
new_centerSet = []
new_coreset = set()
set_deletion_points = set(deletion_points)
for i in range(k):
set_coreset = coreset[i]
deleted_coreset = set_coreset - set_deletion_points
new_coreset = new_coreset | deleted_coreset
if (center_mark[i] in deletion_points):
if (len(deleted_coreset) == 0):
continue
else:
array_deleted_coreset = np.array(list(deleted_coreset))
new_center = random.choice(array_deleted_coreset)
new_centerSet.append(new_center)
else:
new_centerSet.append(center_mark[i])
number_centers = len(new_centerSet)
if (number_centers < k):
array_new_coreset = np.array(list(new_coreset))
random_integers = random.sample(range(len(array_new_coreset)), k - number_centers)
for integer in random_integers:
new_centerSet.append(array_new_coreset[integer])
new_centerSet = np.array(new_centerSet)
return new_centerSet
def G(points: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""
Returns the adjacency matrix of n points and the list of edges.
Args:
points (np.ndarray): The dataset, a numpy array with n points
Returns:
complete (np.ndarray): The adjacency matrix of n points
edges (np.ndarray): The numpy array of edges
"""
length = points.shape[0]
complete = np.zeros((length, length))
edges = []
for k, point_k in enumerate(points):
for j, point_j in enumerate(points):
distance_kj = np.linalg.norm(point_k - point_j)
complete[k][j] = distance_kj
if (j > k):
edges.append(distance_kj)
edges.sort()
edges = np.array(edges)
return complete, edges
def G_i2(complete: np.ndarray, edges: np.ndarray, i: int) -> np.ndarray:
"""
Returns the adjacency matrix of G_i^2.
Args:
complete (np.ndarray): The adjacency matrix of n points
edges (np.ndarray): The numpy array of edges
i (int): A decimal integer, determining the longest edge of the graph
Returns:
matrix (np.ndarray): The adjacency matrix of G_i^2
"""
G_i = np.copy(complete)
length = complete.shape[0]
threshold = edges[i]
indices = complete > threshold
G_i[indices] = 0
for i in range(length):
indices_i = G_i[i] > 0
for j in range(i+1, length):
indices_j = G_i[j] > 0
indices_ij = indices_i & indices_j
if True in indices_ij:
G_i[i][j] = complete[i][j]
G_i[j][i] = complete[j][i]
matrix = G_i
return matrix
def a_neighbor(matrix: np.ndarray, alpha: int) -> np.ndarray:
"""
Returns several center indexes after running a_neighbor k-center algorithm.
Args:
matrix (np.ndarray): The adjacency matrix of G_i^2
alpha (int): A decimal integer, the number of nearest neighbors
Returns:
centers (np.ndarray): A set with some point indexes as center point indexes
"""
centers = []
length = matrix.shape[0]
C_array = np.zeros(length)
for j in range(alpha):
for v in range(length):
if C_array[v] < j:
centers.append(v)
C_array[v] = alpha
for u in range(length):
if matrix[v][u] > 0:
C_array[u] += 1
centers = np.array(centers)
return centers
def a_neighbor_k_center(complete: np.ndarray,
edges: np.ndarray,
alpha: int,
k: int) -> np.ndarray:
"""
Returns the adjacency matrix of G_i^2.
Args:
complete (np.ndarray): The adjacency matrix of n points
edges (np.ndarray): The numpy array of edges
alpha (int): A decimal integer, the number of nearest neighbors
k (int): A decimal integer, the number of centers
Returns:
centers (np.ndarray): A numpy array with k point indexes as center point indexes
"""
low = 0
high = len(edges) - 1
centers = None
while low <= high:
mid = (low + high) // 2
matrix = G_i2(complete, edges, mid)
centers = a_neighbor(matrix, alpha)
number_centers = len(centers)
if number_centers == k:
return centers
elif number_centers > k:
low = mid + 1
else:
high = mid - 1
if len(centers) < k:
amount = complete.shape[0]
numpy_centers = np.array(centers)
complete_array = np.arange(amount)
rest_points = np.setdiff1d(complete_array, numpy_centers)
random_integers = random.sample(range(len(rest_points)), k - len(centers))
for integer in random_integers:
centers.append(rest_points[integer])
centers = np.array(centers)
return centers
## WB-Greedy
def k_Greedy_compare_robust(points_index: np.ndarray, complete: np.ndarray) -> tuple[np.ndarray, float, np.ndarray]:
"""
Returns the ratio of the loss caused by our algorithm to the optimal loss after complete-knowledge deletion.
(k, z) = (10, 10), (5, 20) or (20, 5).
Args:
points_index (np.ndarray): The indexes of data
complete (np.ndarray): The adjacency matrix of n points
Returns:
ratios (np.ndarray): A numpy array with ratios
spent_time (float): The time spent on running algorithms
size_coreset_array (np.ndarray): A numpy array with coreset size in different cases
"""
ratios = []
size_coreset_array = []
k_rounds = [10, 5, 20]
z_rounds = [10, 20, 5]
start_time = time.time()
for round in range(3):
ratio = 0
k = k_rounds[round]
z = z_rounds[round]
for i in range(10):
random.seed(i)
points_gmm = GMM(points_index, k, complete)
points_coreset, points_coreset_center_mark, size_coreset = coreset_generate(points_index, points_gmm, z, complete)
size_coreset_array.append(size_coreset)
points_left_points, points_deleted_points = WBGreedy_deletion(points_coreset, z, complete)
loss_best = float("inf")
for d in range(10):
random.seed(7*d*d+6*d+12)
best_answers = GMM(points_left_points, k, complete)
loss_temp = loss(best_answers, points_left_points, complete)
if loss_temp < loss_best:
loss_best = loss_temp
random.seed(14*i+9)
new_centers = robust_solution(points_coreset, points_coreset_center_mark, points_deleted_points, k)
loss_new = loss(new_centers, points_left_points, complete)
ratio = ratio + loss_new / loss_best / 10
ratios.append(ratio)
end_time = time.time()
spent_time = end_time - start_time
ratios = np.array(ratios)
size_coreset_array = np.array(size_coreset_array)
return ratios, spent_time, size_coreset_array
def k_Greedy_compare_GMM(points_index: np.ndarray, complete: np.ndarray) -> tuple[np.ndarray, float]:
"""
Returns the ratio of the loss caused by GMM to the optimal loss after complete-knowledge deletion.
(k, z) = (10, 10), (5, 20) or (20, 5).
Args:
points_index (np.ndarray): The indexes of data
complete (np.ndarray): The adjacency matrix of n points
Returns:
ratios (np.ndarray): A numpy array with ratios
spent_time (float): The time spent on running algorithms
"""
k_z_ratios = []
k_rounds = [10, 5, 20]
z_rounds = [10, 20, 5]
start_time = time.time()
for round in range(3):
ratio = 0
k = k_rounds[round]
z = z_rounds[round]
for i in range(10):
random.seed(i)
points_gmm = GMM(points_index, k + z, complete)
points_gmm_array = np.array([set(points_gmm)])
points_left_points, points_deleted_points = WBGreedy_deletion(points_gmm_array, z, complete)
loss_best = float("inf")
for d in range(10):
random.seed(7*d*d+6*d+12)
best_answers = GMM(points_left_points, k, complete)
loss_temp = loss(best_answers, points_left_points, complete)
if loss_temp < loss_best:
loss_best = loss_temp
new_centers = np.array(list(set(points_gmm) - set(points_deleted_points)))
loss_new = loss(new_centers, points_left_points, complete)
ratio = ratio + loss_new / loss_best / 10
k_z_ratios.append(ratio)
end_time = time.time()
spent_time = end_time - start_time
k_z_ratios = np.array(k_z_ratios)
return k_z_ratios, spent_time
def k_Greedy_compare_fault(a: int, complete: np.ndarray, edges: np.ndarray) -> tuple[np.ndarray, float]:
"""
Returns the ratio of the loss caused by Fault Tolerant algorithm to the optimal loss after complete-knowledge deletion.
(k, z) = (10, 10), (5, 20) or (20, 5).
Args:
a (int): A decimal integer in a_neighbor k-center algorithm
complete (np.ndarray): The adjacency matrix of n points
edges (np.ndarray): The numpy array of edges
Returns:
ratios (np.ndarray): A numpy array with ratios
spent_time (float): The time spent on running algorithms
"""
fault_ratios = []
k_rounds = [10, 5, 20]
z_rounds = [10, 20, 5]
start_time = time.time()
for round in range(3):
k = k_rounds[round]
z = z_rounds[round]
random.seed(z)
ratio = 0
centers = a_neighbor_k_center(complete, edges, a, k+z)
points_centers_array = np.array([set(centers)])
points_left_points, points_deleted_points = WBGreedy_deletion(points_centers_array, z, complete)
loss_best = float("inf")
for d in range(10):
random.seed(7*d*d+6*d+12)
best_answers = GMM(points_left_points, k, complete)
loss_temp = loss(best_answers, points_left_points, complete)
if loss_temp < loss_best:
loss_best = loss_temp
new_centers = np.array(list(set(centers) - set(points_deleted_points)))
loss_new = loss(new_centers, points_left_points, complete)
ratio = ratio + loss_new / loss_best
fault_ratios.append(ratio)
end_time = time.time()
spent_time = end_time - start_time
fault_ratios = np.array(fault_ratios)
return fault_ratios, spent_time
def main():
adult_complete = np.load("dataset/adult_complete.npy")
adult_edges = np.load("dataset/adult_edges.npy")
CelebA_complete = np.load("dataset/CelebA_complete.npy")
CelebA_edges = np.load("dataset/CelebA_edges.npy")
Gaussian_blob_complete = np.load("dataset/Gaussian_blob_complete.npy")
Gaussian_blob_edges = np.load("dataset/Gaussian_blob_edges.npy")
glove_complete = np.load("dataset/glove_complete.npy")
glove_edges = np.load("dataset/glove_edges.npy")
movielens_complete = np.load("dataset/movielens_complete.npy")
movielens_edges = np.load("dataset/movielens_edges.npy")
## Fix $k$ WB-Greedy Deletion Implementation
## The "lossMax" in the names of files means the deletion is under loss maximizing, namely WB-Greedy
index = np.arange(1000)
a = 2
times = []
all_size_coreset = []
adult_robust, time_temp, size_coreset_array = k_Greedy_compare_robust(index, adult_complete)
np.save("results_1/adult_lossMax_robust.npy", adult_robust)
times.append(time_temp)
all_size_coreset.append(size_coreset_array)
adult_gmm, time_temp = k_Greedy_compare_GMM(index, adult_complete)
np.save("results_1/adult_lossMax_gmm.npy", adult_gmm)
times.append(time_temp)
adult_fault, time_temp = k_Greedy_compare_fault(a, adult_complete, adult_edges)
np.save("results_1/adult_lossMax_fault.npy", adult_fault)
times.append(time_temp)
CelebA_robust, time_temp, size_coreset_array = k_Greedy_compare_robust(index, CelebA_complete)
np.save("results_1/CelebA_lossMax_robust.npy", CelebA_robust)
times.append(time_temp)
all_size_coreset.append(size_coreset_array)
CelebA_gmm, time_temp = k_Greedy_compare_GMM(index, CelebA_complete)
np.save("results_1/CelebA_lossMax_gmm.npy", CelebA_gmm)
times.append(time_temp)
CelebA_fault, time_temp = k_Greedy_compare_fault(a, CelebA_complete, CelebA_edges)
np.save("results_1/CelebA_lossMax_fault.npy", CelebA_fault)
times.append(time_temp)
Gaussian_blob_robust, time_temp, size_coreset_array = k_Greedy_compare_robust(index, Gaussian_blob_complete)
np.save("results_1/Gaussian_blob_lossMax_robust.npy", Gaussian_blob_robust)
times.append(time_temp)
all_size_coreset.append(size_coreset_array)
Gaussian_blob_gmm, time_temp = k_Greedy_compare_GMM(index, Gaussian_blob_complete)
np.save("results_1/Gaussian_blob_lossMax_gmm.npy", Gaussian_blob_gmm)
times.append(time_temp)
Gaussian_blob_fault, time_temp = k_Greedy_compare_fault(a, Gaussian_blob_complete, Gaussian_blob_edges)
np.save("results_1/Gaussian_blob_lossMax_fault.npy", Gaussian_blob_fault)
times.append(time_temp)
glove_robust, time_temp, size_coreset_array = k_Greedy_compare_robust(index, glove_complete)
np.save("results_1/glove_lossMax_robust.npy", glove_robust)
times.append(time_temp)
all_size_coreset.append(size_coreset_array)
glove_gmm, time_temp = k_Greedy_compare_GMM(index, glove_complete)
np.save("results_1/glove_lossMax_gmm.npy", glove_gmm)
times.append(time_temp)
glove_fault, time_temp = k_Greedy_compare_fault(a, glove_complete, glove_edges)
np.save("results_1/glove_lossMax_fault.npy", glove_fault)
times.append(time_temp)
movielens_robust, time_temp, size_coreset_array = k_Greedy_compare_robust(index, movielens_complete)
np.save("results_1/movielens_lossMax_robust.npy", movielens_robust)
times.append(time_temp)
all_size_coreset.append(size_coreset_array)
movielens_gmm, time_temp = k_Greedy_compare_GMM(index, movielens_complete)
np.save("results_1/movielens_lossMax_gmm.npy", movielens_gmm)
times.append(time_temp)
movielens_fault, time_temp = k_Greedy_compare_fault(a, movielens_complete, movielens_edges)
np.save("results_1/movielens_lossMax_fault.npy", movielens_fault)
times.append(time_temp)
times = np.array(times)
all_size_coreset = np.array(all_size_coreset)
np.save("results_1/time_k_lossMax_deletion.npy", times)
np.save("results_1/size_coreset_k_lossMax_deletion.npy", all_size_coreset)
if __name__ == "__main__":
main()