-
Notifications
You must be signed in to change notification settings - Fork 1
/
StructureFromMotion.m
164 lines (126 loc) · 5.44 KB
/
StructureFromMotion.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
%% directory.
imageDir = fullfile('C:\Users\Administrator.USER-20190423VA\Desktop\DATA\test');
imds = imageDatastore(imageDir);
% Convert the images to grayscale.
images = cell(1, numel(imds.Files));
for i = 1:numel(imds.Files)
I = readimage(imds, i);
images{i} = rgb2gray(I);
end
%% Load Camera Parameters
load(fullfile('C:\Users\Administrator.USER-20190423VA\Desktop\DATA\camparament\Ecameradata.mat'));
%% Create a View Set Containing the First View
I = undistortImage(images{1}, cameraParams);
border = 50;
roi = [border, border, size(I, 2)- 2*border, size(I, 1)- 2*border];
prevPoints = detectSURFFeatures(I, 'NumOctaves', 8, 'ROI', roi);
% Extract features. Using 'Upright' features improves matching, as long as
% the camera motion involves little or no in-plane rotation.
prevFeatures = extractFeatures(I, prevPoints, 'Upright', true);
vSet = viewSet;
% Add the first view. Place the camera associated with the first view
% and the origin, oriented along the Z-axis.
viewId = 1;
vSet = addView(vSet, viewId, 'Points', prevPoints, 'Orientation', ...
eye(3, 'like', prevPoints.Location), 'Location', ...
zeros(1, 3, 'like', prevPoints.Location));
%% Add the Rest of the Views
for i = 2:numel(images)
% Undistort the current image.
I = undistortImage(images{i}, cameraParams);
% Detect, extract and match features.
currPoints = detectSURFFeatures(I, 'NumOctaves', 8, 'ROI', roi);
currFeatures = extractFeatures(I, currPoints, 'Upright', true);
indexPairs = matchFeatures(prevFeatures, currFeatures, ...
'MaxRatio', .7, 'Unique', true);
% Select matched points.
matchedPoints1 = prevPoints(indexPairs(:, 1));
matchedPoints2 = currPoints(indexPairs(:, 2));
[relativeOrient, relativeLoc, inlierIdx] = helperEstimateRelativePose(...
matchedPoints1, matchedPoints2, cameraParams);
% Add the current view to the view set.
vSet = addView(vSet, i, 'Points', currPoints);
% Store the point matches between the previous and the current views.
vSet = addConnection(vSet, i-1, i, 'Matches', indexPairs(inlierIdx,:));
% Get the table containing the previous camera pose.
prevPose = poses(vSet, i-1);
prevOrientation = prevPose.Orientation{1};
prevLocation = prevPose.Location{1};
% Compute the current camera pose in the global coordinate system
% relative to the first view.
orientation = relativeOrient * prevOrientation;
location = prevLocation + relativeLoc * prevOrientation;
vSet = updateView(vSet, i, 'Orientation', orientation, ...
'Location', location);
% Find point tracks across all views.
tracks = findTracks(vSet);
% Get the table containing camera poses for all views.
camPoses = poses(vSet);
% Triangulate initial locations for the 3-D world points.
xyzPoints = triangulateMultiview(tracks, camPoses, cameraParams);
% Refine the 3-D world points and camera poses.
[xyzPoints, camPoses, reprojectionErrors] = bundleAdjustment(xyzPoints, ...
tracks, camPoses, cameraParams, 'FixedViewId', 1, ...
'PointsUndistorted', true);
% Store the refined camera poses.
vSet = updateView(vSet, camPoses);
prevFeatures = currFeatures;
prevPoints = currPoints;
end
%% Compute Dense Reconstruction
I = undistortImage(images{1}, cameraParams);
% Detect corners in the first image.
prevPoints = detectMinEigenFeatures(I, 'MinQuality', 0.001);
% Create the point tracker object to track the points across views.
tracker = vision.PointTracker('MaxBidirectionalError', 1, 'NumPyramidLevels', 6);
% Initialize the point tracker.
prevPoints = prevPoints.Location;
initialize(tracker, prevPoints, I);
% Store the dense points in the view set.
vSet = updateConnection(vSet, 1, 2, 'Matches', zeros(0, 2));
vSet = updateView(vSet, 1, 'Points', prevPoints);
% Track the points across all views.
for i = 2:numel(images)
% Read and undistort the current image.
I = undistortImage(images{i}, cameraParams);
% Track the points.
[currPoints, validIdx] = step(tracker, I);
% Clear the old matches between the points.
if i < numel(images)
vSet = updateConnection(vSet, i, i+1, 'Matches', zeros(0, 2));
end
vSet = updateView(vSet, i, 'Points', currPoints);
% Store the point matches in the view set.
matches = repmat((1:size(prevPoints, 1))', [1, 2]);
matches = matches(validIdx, :);
vSet = updateConnection(vSet, i-1, i, 'Matches', matches);
end
% Find point tracks across all views.
tracks = findTracks(vSet);
% Find point tracks across all views.
camPoses = poses(vSet);
% Triangulate initial locations for the 3-D world points.
xyzPoints = triangulateMultiview(tracks, camPoses,...
cameraParams);
% Refine the 3-D world points and camera poses.
[xyzPoints, camPoses, reprojectionErrors] = bundleAdjustment(...
xyzPoints, tracks, camPoses, cameraParams, 'FixedViewId', 1, ...
'PointsUndistorted', true);
%% Display Dense Reconstruction
figure;
plotCamera(camPoses, 'Size', 0.2);
hold on
% Exclude noisy 3-D world points.
goodIdx = (reprojectionErrors < 5);
% Display the dense 3-D world points.
pcshow(xyzPoints(goodIdx, :), 'VerticalAxis', 'y', 'VerticalAxisDir', 'down', ...
'MarkerSize', 45);
grid on
hold off
% Specify the viewing volume.
loc1 = camPoses.Location{1};
xlim([loc1(1)-5, loc1(1)+4]);
ylim([loc1(2)-5, loc1(2)+4]);
zlim([loc1(3)-1, loc1(3)+20]);
camorbit(0, -30);
title('Dense Reconstruction');