-
Notifications
You must be signed in to change notification settings - Fork 5
/
convert.py
605 lines (528 loc) · 22.5 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
"""
Pytorchモデルを読み込んでONNXモデルに変換する。
モデルを複数指定した場合は、それらを並列に接続し入力によって実行パスが切り替わるモデルが作成される。
例えば6話者のmodel1と10話者のmodel2が接続された場合は、入力speaker_idが0-5の時はmodel1が、6-15の時はmodel2が動作するONNXモデルが生成される。
各モデルに含まれている話者数はconfigファイルから推定される。
複数指定可能なモデルはduration, intonation, contour, spectrogram推定。
vocoderは並列化することができず、全ての入力パターンに対してモデルが共有される。
"""
import argparse
import logging
from pathlib import Path
from typing import List, Optional
import onnx
import onnx.compose
import onnx.helper
import onnxruntime
import torch
import yaml
from vv_core_inference.forwarder import Forwarder
from vv_core_inference.make_decode_forwarder import make_decode_forwarder
from vv_core_inference.make_yukarin_s_forwarder import make_yukarin_s_forwarder
from vv_core_inference.make_yukarin_sa_forwarder import make_yukarin_sa_forwarder
from vv_core_inference.make_yukarin_sosf_forwarder import make_yukarin_sosf_forwarder
from vv_core_inference.utility import OPSET, to_tensor
def convert_duration(model_dir: Path, device: str, offset: int, working_dir: Path, sample_input):
"""duration推定モデル(yukarin_s)のONNX変換"""
from yukarin_s.config import Config
from yukarin_s.network.predictor import create_predictor
from vv_core_inference.make_yukarin_s_forwarder import WrapperYukarinS
logger = logging.getLogger("duration")
with model_dir.joinpath("config.yaml").open() as f:
model_config = Config.from_dict(yaml.safe_load(f))
size = model_config.network.speaker_size
predictor = create_predictor(model_config.network)
state_dict = torch.load(
model_dir.joinpath("model.pth"), map_location=device
)
predictor.load_state_dict(state_dict)
predictor.eval().to(device)
logger.info("duration model is loaded!")
logger.info("speaker size: %d" % size)
phoneme_list = to_tensor(sample_input["phoneme_list"], device=device)
speaker_id = to_tensor(sample_input["speaker_id"], device=device).reshape((1,)).long()
forwarder = WrapperYukarinS(predictor)
outpath = working_dir.joinpath(f"duration-{offset:03d}.onnx")
torch.onnx.export(
forwarder,
(phoneme_list, speaker_id),
outpath,
opset_version=OPSET,
do_constant_folding=True,
input_names=["phoneme_list", "speaker_id"],
output_names=["phoneme_length"],
dynamic_axes={
"phoneme_list": {0: "sequence"},
"phoneme_length" : {0: "sequence"}}
)
return outpath, size
def convert_intonation(model_dir: Path, device: str, offset: int, working_dir: Path, sample_input):
"""intonation推定モデル(yukarin_sa)のONNX変換"""
from yukarin_sa.config import Config
from yukarin_sa.network.predictor import create_predictor
from vv_core_inference.make_yukarin_sa_forwarder import WrapperYukarinSa
from vv_core_inference.utility import remove_weight_norm
logger = logging.getLogger("intonation")
with model_dir.joinpath("config.yaml").open() as f:
model_config = Config.from_dict(yaml.safe_load(f))
size = model_config.network.speaker_size
predictor = create_predictor(model_config.network)
state_dict = torch.load(
model_dir.joinpath("model.pth"), map_location=device
)
predictor.load_state_dict(state_dict)
predictor.eval().to(device)
predictor.apply(remove_weight_norm)
logger.info("intonation model is loaded!")
logger.info("speaker size: %d" % size)
wrapper = WrapperYukarinSa(predictor)
args = (
to_tensor(sample_input["length"], device=device).long(),
to_tensor(sample_input["vowel_phoneme_list"], device=device),
to_tensor(sample_input["consonant_phoneme_list"], device=device),
to_tensor(sample_input["start_accent_list"], device=device),
to_tensor(sample_input["end_accent_list"], device=device),
to_tensor(sample_input["start_accent_phrase_list"], device=device),
to_tensor(sample_input["end_accent_phrase_list"], device=device),
to_tensor(sample_input["speaker_id"], device=device).reshape((1,)).long()
)
output = wrapper(*args)
outpath = working_dir.joinpath(f"intonation-{offset:03d}.onnx")
torch.onnx.export(
torch.jit.script(wrapper),
args,
outpath,
opset_version=OPSET,
do_constant_folding=True,
input_names=[
"length",
"vowel_phoneme_list",
"consonant_phoneme_list",
"start_accent_list",
"end_accent_list",
"start_accent_phrase_list",
"end_accent_phrase_list",
"speaker_id",
],
output_names=["f0_list"],
dynamic_axes={
"vowel_phoneme_list": {0: "length"},
"consonant_phoneme_list": {0: "length"},
"start_accent_list": {0: "length"},
"end_accent_list": {0: "length"},
"start_accent_phrase_list": {0: "length"},
"end_accent_phrase_list": {0: "length"},
"f0_list": {0: "length"}},
)
return outpath, size
def convert_contour(model_dir: Path, device: str, offset: int, working_dir: Path, sample_input):
"""contour推定モデル(yukarin_sosf)のONNX変換"""
from vv_core_inference.make_yukarin_sosf_forwarder import make_yukarin_sosf_wrapper
logger = logging.getLogger("contour")
wrapper = make_yukarin_sosf_wrapper(model_dir, device)
size = wrapper.speaker_embedder.num_embeddings
logger.info("spectrogram model is loaded!")
logger.info("speaker size: %d" % size)
args = (
to_tensor(sample_input["f0_discrete"], device=device),
to_tensor(sample_input["phoneme"], device=device),
to_tensor(sample_input["speaker_id"], device=device).reshape((1,)).long()
)
outpath = working_dir.joinpath(f"contour-{offset:03d}.onnx")
torch.onnx.export(
wrapper,
args,
outpath,
opset_version=OPSET,
do_constant_folding=True,
input_names=[
"f0_discrete",
"phoneme",
"speaker_id"
],
output_names=["f0_contour", "voiced"],
dynamic_axes={
"f0_discrete": {0: "length"},
"f0_contour": {0: "length"},
"phoneme": {0: "length"},
"voiced": {0: "length"},
},
)
return outpath, size
def convert_spectrogram(model_dir: Path, device: str, offset: int, working_dir: Path, sample_input):
"""spectrogram推定モデル(decodeの前半, yukarin_sosoa)のONNX変換"""
from vv_core_inference.make_yukarin_sosoa_forwarder import (
make_yukarin_sosoa_wrapper,
)
logger = logging.getLogger("spectrogram")
wrapper = make_yukarin_sosoa_wrapper(model_dir, device)
size = wrapper.speaker_embedder.num_embeddings
logger.info("spectrogram model is loaded!")
logger.info("speaker size: %d" % size)
args = (
to_tensor(sample_input["f0"], device=device),
to_tensor(sample_input["phoneme"], device=device),
to_tensor(sample_input["speaker_id"], device=device)
)
outpath = working_dir.joinpath(f"spectrogram-{offset:03d}.onnx")
torch.onnx.export(
wrapper,
args,
outpath,
opset_version=OPSET,
do_constant_folding=True,
input_names=[
"f0",
"phoneme",
"speaker_id"
],
output_names=["spec"],
dynamic_axes={
"f0": {0: "length"},
"phoneme": {0: "length"},
"spec": {0: "row", 1: "col"}
}
)
return outpath, size
def convert_vocoder(model_dir: Path, device: str, working_dir: Path, sample_input):
"""vocoder(decodeの後半, hifi_gan)のONNX変換"""
from vv_core_inference.make_decode_forwarder import make_hifigan_wrapper
logger = logging.getLogger("vocoder")
wrapper = make_hifigan_wrapper(model_dir, device)
logger.info("vocoder model is loaded!")
args = (
to_tensor(sample_input["spec"], device=device),
to_tensor(sample_input["f0"], device=device),
)
outpath = working_dir.joinpath(f"vocoder.onnx")
torch.onnx.export(
wrapper,
args,
outpath,
opset_version=OPSET,
do_constant_folding=True,
input_names=["spec", "f0"],
output_names=["wave"],
dynamic_axes={
"spec": {0: "row", 1: "col"},
"f0": {0: "length"},
}
)
return outpath
def get_sample_inputs(
yukarin_s_model_dir: Path,
yukarin_sa_model_dir: Path,
yukarin_sosf_model_dir: Optional[Path],
yukarin_sosoa_model_dir: Path,
hifigan_model_dir: Path,
sample_text: str,
sample_speaker: int,
device: str
):
"""ONNX変換に必要な中間表現を収集する"""
# yukarin_s
yukarin_s_forwarder = make_yukarin_s_forwarder(
yukarin_s_model_dir=yukarin_s_model_dir, device=device
)
# yukarin_sa
yukarin_sa_forwarder = make_yukarin_sa_forwarder(
yukarin_sa_model_dir=yukarin_sa_model_dir, device=device
)
# yukarin_sosf_forwarder
if yukarin_sosf_model_dir is not None:
yukarin_sosf_forwarder = make_yukarin_sosf_forwarder(
yukarin_sosf_model_dir=yukarin_sosf_model_dir,
device=device
)
else:
yukarin_sosf_forwarder = None
# decoder
decode_forwarder = make_decode_forwarder(
yukarin_sosoa_model_dir=yukarin_sosoa_model_dir,
hifigan_model_dir=hifigan_model_dir,
device=device
)
forwarder = Forwarder(
yukarin_s_forwarder=yukarin_s_forwarder,
yukarin_sa_forwarder=yukarin_sa_forwarder,
yukarin_sosf_forwarder=yukarin_sosf_forwarder,
decode_forwarder=decode_forwarder,
)
_wave, intermediates = forwarder.forward(
text = sample_text,
speaker_id = sample_speaker,
f0_speaker_id = sample_speaker,
return_intermediate_results = True
)
return intermediates
def concat(onnx_list: List[Path], offsets: List[int]):
"""
複数のONNXモデル model[:] を並列に接続し、
入力されるspeaker_idがどのoffsetに含まれるかによって実行パスが変わるONNXモデルを再生成する。
ONNX上ではモデルiのノードXはm{i}.Xにリネームされ、上流のIFノードによって実行パスが変化する。
goal is outputing an onnx equivalent to:
def merged_model(speaker_id, **kwargs):
if speaker_id < offset[1]:
y = model[0](speaker_id - offset[0], **kwargs)
else:
if speaker_id < offset[2]:
y = model[1](speaker_id - offset[1], **kwargs)
else:
if ...
return y
"""
logger = logging.getLogger("concat")
models = [onnx.load(path) for path in onnx_list]
logger.info("loaded models:")
for path in onnx_list:
logger.info(f"* {path}")
opset = models[0].opset_import[0].version
logger.info("opset: %d" % opset)
# io name/nodes to be shared
input_names = []
input_nodes = []
output_names = []
output_nodes = []
logger.info("input names:")
for node in models[0].graph.input:
logger.info(f"* {node.name}")
input_names.append(node.name)
input_nodes.append(node)
assert "speaker_id" in input_names
input_names.remove("speaker_id") # speaker_id input is not shared
logger.info("output names:")
for node in models[0].graph.output:
logger.info(f"* {node.name}")
output_names.append(node.name)
output_nodes.append(node)
def rename(graph, prefix: str, freeze_names: List[str]):
for node in graph.node:
for i, n in enumerate(node.input):
if n not in freeze_names and n != "":
node.input[i] = prefix + n
node.name = prefix + node.name
if node.op_type == "Loop":
for attr in node.attribute:
if attr.name == "body":
for subnode in attr.g.input:
subnode.name = prefix + subnode.name
for subnode in attr.g.output:
subnode.name = prefix + subnode.name
rename(attr.g, prefix, freeze_names)
for i, n in enumerate(node.output):
if n not in freeze_names and n != "":
node.output[i] = prefix + n
for init in graph.initializer:
init.name = prefix + init.name
offset_consts = []
for i, offset in enumerate(offsets):
offset_consts.append(onnx.helper.make_tensor(
name=f"offset_{i}",
data_type=onnx.TensorProto.INT64,
dims=(),
vals=[offset]))
for i, model in enumerate(models):
prefix = f"m{i}."
rename(model.graph, prefix, input_names + output_names) # all submodules share inputs and outputs.
select_conds = []
shifted_speaker_ids = []
for i, model in enumerate(models):
prefix = f"m{i}."
speaker_offset = offset_consts[i]
speaker_end = offset_consts[i+1]
select_conds.append(onnx.helper.make_node(
"Less",
inputs=["speaker_id", speaker_end.name],
outputs=[f"select_cond_{i}"]
))
shifted_speaker_ids.append(onnx.helper.make_node(
"Sub",
inputs=["speaker_id", speaker_offset.name],
outputs=[prefix + "speaker_id"]
))
branches = []
for i, m in enumerate(models):
branches.append(onnx.helper.make_graph(
nodes=[shifted_speaker_ids[i]] + list(m.graph.node),
name=f"branch_m{i}",
inputs=[],
outputs=output_nodes,
initializer=list(m.graph.initializer) + [offset_consts[i]]
))
whole_graph = branches[-1]
for i in range(len(branches)-2, -1, -1):
if_node = onnx.helper.make_node(
"If",
inputs=[f"select_cond_{i}"],
outputs=output_names,
then_branch=branches[i],
else_branch=whole_graph
)
# logger.info(f"else: {whole_graph.node}")
whole_graph = onnx.helper.make_graph(
nodes=[select_conds[i], if_node],
name=f"branch{i}",
inputs=[],
outputs=output_nodes,
initializer=[offset_consts[i+1]]
)
whole_graph = onnx.helper.make_graph(
nodes=list(whole_graph.node),
name="whole_model",
inputs=input_nodes,
outputs=output_nodes,
initializer=list(whole_graph.initializer)
)
whole_model = onnx.helper.make_model(whole_graph, opset_imports=[onnx.helper.make_operatorsetid("", opset)])
output_onnx_path = onnx_list[0].parent / (onnx_list[0].stem[:-4] + "_unopt.onnx")
onnx.checker.check_model(whole_model)
onnx.save(whole_model, output_onnx_path)
logger.info(f"saved {output_onnx_path}")
return output_onnx_path
def fuse(onnx1: Path, onnx2: Path):
"""ふたつのONNXモデルを直列に接続する。spectrogramとvocoderを接続するために利用する。"""
# you can use onnx.compose.merge_models
# https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md#onnx-compose
logger = logging.getLogger("fuse")
model1 = onnx.load(onnx1)
model2 = onnx.load(onnx2)
opset = model1.opset_import[0].version
logger.info("opset: %d" % opset)
merged_graph = onnx.GraphProto()
merged_graph.node.extend(model1.graph.node)
merged_graph.node.extend(model2.graph.node)
# model1のoutputであるspecはそのままmodel2のinputであるspecに接続される
merged_graph.input.extend(model1.graph.input)
merged_graph.output.extend(model2.graph.output)
init1 = set([i.name for i in model1.graph.initializer])
init2 = set([i.name for i in model2.graph.initializer])
assert len(init1 & init2) == 0
merged_graph.initializer.extend(model1.graph.initializer)
merged_graph.initializer.extend(model2.graph.initializer)
spinit1 = set([i.name for i in model1.graph.sparse_initializer])
spinit2 = set([i.name for i in model2.graph.sparse_initializer])
assert len(spinit1 & spinit2) == 0
merged_graph.sparse_initializer.extend(model1.graph.sparse_initializer)
merged_graph.sparse_initializer.extend(model2.graph.sparse_initializer)
info1 = set([i.name for i in model1.graph.value_info])
info2 = set([i.name for i in model2.graph.value_info])
assert len(info1 & info2) == 0
merged_graph.value_info.extend(model1.graph.value_info)
merged_graph.value_info.extend(model2.graph.value_info)
merged_graph.name = "decoder"
merged = onnx.helper.make_model(merged_graph, opset_imports=[onnx.helper.make_operatorsetid("", opset)])
logger.info(f"fused {onnx1} and {onnx2}")
output_onnx_path = onnx1.parent / "decode_unopt.onnx"
onnx.checker.check_model(merged)
onnx.save(merged, output_onnx_path)
logger.info(f"saved {output_onnx_path}")
return output_onnx_path
def optim(path: Path, output_path: Path):
"""ONNX Runtime sessionを作るときに走る最適化を利用する"""
sess_options = onnxruntime.SessionOptions()
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_BASIC
sess_options.optimized_model_filepath = str(output_path)
session = onnxruntime.InferenceSession(str(path), sess_options)
def run(
yukarin_s_model_dir: List[Path],
yukarin_sa_model_dir: List[Path],
yukarin_sosf_model_dir: Optional[List[Path]],
yukarin_sosoa_model_dir: List[Path],
hifigan_model_dir: Path,
working_dir: Path,
text: str,
speaker_id: int,
use_gpu: bool,
):
logger = logging.getLogger()
device = "cuda" if use_gpu else "cpu"
model_size = len(yukarin_s_model_dir)
if yukarin_sosf_model_dir is None:
yukarin_sosf_model_dir = [None] * model_size
assert model_size == len(yukarin_sa_model_dir)
assert model_size == len(yukarin_sosf_model_dir)
assert model_size == len(yukarin_sosoa_model_dir)
assert working_dir.exists() and working_dir.is_dir()
logger.info("device: %s" % device)
logger.info("onnx OPSET is %d." % OPSET)
logger.info("vocoder model dir is %s" % str(hifigan_model_dir))
logger.info("working on %s" % str(working_dir))
logger.info("--- creating onnx models ---")
duration_onnx_list = []
intonation_onnx_list = []
contour_onnx_list = []
spectrogram_onnx_list = []
offsets = [0]
for idx, s_dir, sa_dir, sosf_dir, sosoa_dir in zip(
range(model_size), yukarin_s_model_dir, yukarin_sa_model_dir, yukarin_sosf_model_dir, yukarin_sosoa_model_dir
):
logger.info(f"[{idx+1}/{model_size}] Start converting models")
logger.info(f"duration: {s_dir}")
logger.info(f"intonation: {sa_dir}")
logger.info(f"contour: {sosf_dir}")
logger.info(f"spectrogram: {sosoa_dir}")
sample_inputs = get_sample_inputs(
s_dir, sa_dir, sosf_dir, sosoa_dir, hifigan_model_dir, text, speaker_id, device
)
logger.info("duration model START")
duration_onnx, duration_size = convert_duration(s_dir, device, offsets[-1], working_dir, sample_inputs["yukarin_s_input"])
duration_onnx_list.append(duration_onnx)
logger.info("duration model DONE")
logger.info("intonation model START")
intonation_onnx, intonation_size = convert_intonation(sa_dir, device, offsets[-1], working_dir, sample_inputs["yukarin_sa_input"])
intonation_onnx_list.append(intonation_onnx)
logger.info("intonation model DONE")
assert duration_size == intonation_size
if sosf_dir is not None:
logger.info("contour model START")
contour_onnx, contour_size = convert_contour(sosf_dir, device, offsets[-1], working_dir, sample_inputs["yukarin_sosf_input"])
contour_onnx_list.append(contour_onnx)
logger.info("contour model DONE")
assert duration_size == contour_size
logger.info("spec model START")
spec_onnx, spec_size = convert_spectrogram(sosoa_dir, device, offsets[-1], working_dir, sample_inputs["yukarin_sosoa_input"])
spectrogram_onnx_list.append(spec_onnx)
logger.info("spec model DONE")
assert duration_size == spec_size
offsets.append(offsets[-1] + duration_size)
logger.info(f"collected offsets: {offsets}")
logger.info(f"[###] Start converting vocoder model: {hifigan_model_dir}")
vocoder_onnx = convert_vocoder(hifigan_model_dir, device, working_dir, sample_inputs["hifigan_input"])
logger.info("vocoder model DONE")
logger.info("--- concatination ---")
duration_merged_onnx = concat(duration_onnx_list, offsets)
intonation_merged_onnx = concat(intonation_onnx_list, offsets)
if len(contour_onnx_list) > 0:
contour_merged_onnx = concat(contour_onnx_list, offsets)
spectrogram_merged_onnx = concat(spectrogram_onnx_list, offsets)
decoder_onnx = fuse(spectrogram_merged_onnx, vocoder_onnx)
logger.info("--- optimization ---")
optim(duration_merged_onnx, working_dir / "duration.onnx")
optim(intonation_merged_onnx, working_dir / "intonation.onnx")
if len(contour_onnx_list) > 0:
optim(contour_merged_onnx, working_dir / "contour.onnx")
optim(decoder_onnx, working_dir / "decode.onnx")
logger.info("--- DONE! ---")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
parser = argparse.ArgumentParser()
parser.add_argument(
"--yukarin_s_model_dir", type=Path, nargs="*", default=[Path("model/yukarin_s")]
)
parser.add_argument(
"--yukarin_sa_model_dir", type=Path, nargs="*", default=[Path("model/yukarin_sa")]
)
parser.add_argument(
"--yukarin_sosf_model_dir", type=Path, nargs="*", default=None
)
parser.add_argument(
"--yukarin_sosoa_model_dir", type=Path, nargs="*", default=[Path("model/yukarin_sosoa")]
)
parser.add_argument("--hifigan_model_dir", type=Path, default=Path("model/hifigan"))
parser.add_argument(
"--working_dir", type=Path, default="model"
)
parser.add_argument("--use_gpu", action="store_true")
parser.add_argument("--text", default="こんにちは、どうでしょう")
parser.add_argument("--speaker_id", type=int, default=5)
run(**vars(parser.parse_args()))