forked from aHuiWang/plot_demo
-
Notifications
You must be signed in to change notification settings - Fork 2
/
plots.py
466 lines (377 loc) · 17.6 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# -*- coding: utf-8 -*-
# @Time : 2020/9/5 23:04
# @Author : Hui Wang
import numpy as np
import matplotlib
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "Times New Roman"
def plot_bar():
result1 = [0.0714, 0.0840, 0.0784, 0.0709]
# Arial
# plt.rcParams['font.sans-serif'] = ['Times New Roman'] # 如果要显示中文字体,则在此处设为:SimHei
# plt.rcParams['axes.unicode_minus'] = False # 显示负号
plt.figure(figsize=(5, 4))
plt.ylim(0.067, 0.088)
labels = ['1', '2', '3', '4']
# from matplotlib.font_manager import FontProperties
# myfont = FontProperties(fname='times.ttf', size=25)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
colors = ['tomato'] * 4
# /, \, |, -, +, x, o, O,., * 。
plt.bar(np.arange(len(result1)), result1, ec='b', hatch=2 * '.', width=0.5,
tick_label=labels,
color=colors)
plt.tight_layout()
plt.savefig(f'pics/bar.png', format='png') # 建议保存为svg格式,再用inkscape转为矢量图emf后插入word中
plt.show()
def plot_line():
x = np.array([1, 2, 3, 4, 5])
model1 = np.array([0.2160, 0.1925, 0.1854, 0.1513, 0.1132])
Ours = np.array([0.2416, 0.2331, 0.2165, 0.1943, 0.1715])
# label在图示(legend)中显示。若为数学公式,则最好在字符串前后添加"$"符号
# color:b:blue、g:green、r:red、c:cyan、m:magenta、y:yellow、k:black、w:white、、、
# 线型:- -- -. : ,
# marker:. , o v < * + 1
plt.figure(figsize=(5, 4))
# linestyle = "-"
plt.grid(linestyle="-.") # 设置背景网格线为虚线
ax = plt.gca()
# ax.spines['top'].set_visible(False) # 去掉上边框
# ax.spines['right'].set_visible(False) # 去掉右边框
linewidth = 2.0
markersize = 7
plt.plot(x, model1, marker='s', markersize=markersize, color="blue", label="Model1", linewidth=linewidth)
plt.plot(x, Ours, marker='X', markersize=markersize, color="tomato", label="Ours", linewidth=linewidth)
group_labels = ['-', '20%', '40%', '60%', '80%']
plt.xticks(x, group_labels, fontsize=15) # 默认字体大小为10
y_ticks = [0.10, 0.15, 0.20, 0.25, 0.30]
y_lables = ['0.10', '0.15', '0.20', '0.25', '0.30']
plt.yticks(np.array(y_ticks), y_lables, fontsize=15)
# plt.title("example", fontsize=12, fontweight='bold') # 默认字体大小为12
# plt.text(1, label_position, dataset,fontsize=25, fontweight='bold')
# plt.xlabel("Edge Miss Rate", fontsize=15)
plt.ylabel(f"HR@20", fontsize=15)
plt.xlim(0.5, 5.5) # 设置x轴的范围
plt.ylim(0.08, 0.30)
# plt.legend()
# 显示各曲线的图例 loc=3 lower left
plt.legend(loc=0, numpoints=1, ncol=2)
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize=15)
# plt.setp(ltext, fontsize=25, fontweight='bold') # 设置图例字体的大小和粗细
plt.tight_layout()
plt.savefig(f'pics/line.png', format='png') # 建议保存为svg格式,再用inkscape转为矢量图emf后插入word中
plt.show()
def plot_multi_bar():
model1 = np.array([0.0409, 0.0543, 0.0943, 0.1115, 0.1363])
model2 = np.array([0.0351, 0.0557, 0.0916, 0.1315, 0.1860])
model3 = np.array([0.0586, 0.0865, 0.1046, 0.1476, 0.2160])
Ours = np.array([0.1043, 0.1344, 0.1638, 0.2035, 0.2446])
# label在图示(legend)中显示。若为数学公式,则最好在字符串前后添加"$"符号
# color:b:blue、g:green、r:red、c:cyan、m:magenta、y:yellow、k:black、w:white、、、
# 线型:- -- -. : ,
# marker:. , o v < * + 1
plt.figure(figsize=(7, 4))
# linestyle = "-"
x = np.arange(5)
# n 为有几个柱子
total_width, n = 0.8, 4
width = total_width / n
x = x - (total_width - width) / n
# low = 0.05
# up = 0.44
low = 0.02
up = 0.27
plt.ylim(low, up)
# plt.xlabel("Amount of Data", fontsize=15)
plt.ylabel(f"HR@20", fontsize=20)
labels = ['Model1', 'Model2', 'Model3', 'Ours']
# 'tomato', 'blue', 'orange', 'green', 'purple', 'deepskyblue'
plt.bar(x, model1, width=width, color='blue', edgecolor='w') # , edgecolor='k',)
plt.bar(x + width, model2, width=width, color='green', edgecolor='w') # , edgecolor='k',)
plt.bar(x + 2*width, model3, width=width, color='orange', edgecolor='w') # , edgecolor='k',)
plt.bar(x + 3*width, Ours, width=width, color='tomato', edgecolor='w') # , edgecolor='k',)
plt.xticks(x +1.5*width, labels=['20%', '40%', '60%', '80%', '100%'], fontsize=20)
y_lables = ['0.02', '0.08', '0.14', '0.20', '0.26']
y_ticks = [float(i) for i in y_lables]
# plt.yscale('linear')
# y_ticks = [0.25, 0.30, 0.35, 0.40, 0.45]
# y_lables = ['0.25', '0.30', '0.35', '0.40', '0.45']
plt.yticks(np.array(y_ticks), y_lables, fontsize=20)#bbox_to_anchor=(0.30, 1)
plt.legend(labels=labels, ncol=2,
prop={'size': 14})
plt.tight_layout()
plt.savefig('./pics/multi_bar.png', format='png')
plt.show()
# 建议保存为svg格式,再用inkscape转为矢量图emf后插入word中
def plot_bar_and_line():
fontsize=20
result1 = [0.1967, 0.2103, 0.2398, 0.2446, 0.2387]
l = [i for i in range(5)]
lx = ['2', '3', '4', '5', '6']
fig = plt.figure()
ax1 = fig.add_subplot(111)
plt.bar(l, result1, alpha=0.3, color='blue', label='HR@20')
# left_axis.set_ylim(0.80, 0.96)
# left_axis.set_yticks(np.arange(0.80, 0.97, 0.04))
ax1.set_ylim([0.18, 0.26])
ax1.set_yticks(np.arange(0.18, 0.26, 0.015))
# ax1.set_ylabel('AUC', fontsize=fontsize)
plt.legend(loc="upper left", prop={'size': 15})
plt.xticks(l, lx, fontsize=fontsize)
plt.yticks(fontsize=fontsize)
result2 = [0.0823, 0.0976, 0.1054, 0.1185, 0.1045]
ax2 = ax1.twinx() # this is the important function
ax2.plot(l, result2, 'or-', label='NDCG@20', color='green')
ax2.legend(loc=2)
ax2.set_ylim([0.07, 0.13])
ax2.set_yticks(np.arange(0.07, 0.13, 0.01))
# ax2.set_ylabel('Log-loss', fontsize=fontsize)
plt.text(1.5, 0.06, "Num", fontsize=20)
plt.legend(loc="upper right", prop={'size': 15})
plt.yticks(fontsize=fontsize)
plt.tight_layout()
# , bbox_inches='tight', pad_inches=0.05, dpi=100
plt.savefig('pics/bar_and_line.png', format='png')
plt.show()
def plot_scatters():
# label在图示(legend)中显示。若为数学公式,则最好在字符串前后添加"$"符号
# color:b:blue、g:green、r:red、c:cyan、m:magenta、y:yellow、k:black、w:white、、、
# 线型:- -- -. : ,
# marker:. , o v < * + 1
plt.figure(figsize=(5, 4))
# linestyle = "-"
# plt.grid(linestyle = "-.") # 设置背景网格线为虚线
ax = plt.gca()
# ax.spines['top'].set_visible(False) # 去掉上边框
# ax.spines['right'].set_visible(False) # 去掉右边框
linewidth = 2.0
markersize = 25
plt.scatter(np.array([0.1394]), np.array([2.4]), marker='o', s=markersize, color="tomato", label="Model1")
plt.scatter(np.array([0.1353]), np.array([3.7]), marker='d', s=markersize, color="orange", label="Model2")
plt.scatter(np.array([0.1860]), np.array([8.7]), marker='+', s=markersize, color="gray", label="Model3")
plt.scatter(np.array([0.1478]), np.array([60]), marker='<', s=markersize, color="purple", label="Model4")
plt.scatter(np.array([0.1363]), np.array([6.7]), marker='^', s=markersize, color="peru", label="Model5")
plt.scatter(np.array([0.1683]), np.array([16]), marker='p', s=markersize, color="maroon", label="Model6")
plt.scatter(np.array([0.1922]), np.array([9.8]), marker='s', s=markersize, color="blue", label="Model7")
plt.scatter(np.array([0.1823]), np.array([90]), marker='>', s=markersize, color="lime", label="Model8")
plt.scatter(np.array([0.1875]), np.array([100.54]), marker='x', s=markersize, color="green", label="Model9")
plt.scatter(np.array([0.2160]), np.array([228]), marker='d', s=markersize, color="blue", label="Model10")
plt.scatter(np.array([0.2446]), np.array([66.02]), marker='*', s=markersize, color="red", label="Ours")
x_labels = ['0.11', '0.15', '0.19', '0.23', '0.27']
x_ticks = [float(i) for i in x_labels]
plt.xticks(np.array(x_ticks), x_labels, fontsize=15)
plt.xlabel("HR@20", fontsize=15)
plt.ylabel(f"Inference Time", fontsize=15)
plt.xlim(0.11, 0.27) # 设置x轴的范围
plt.ylim(0, 250)
y_labels = ['0', '50', '100', '150', '200', '250']
y_ticks = [int(i) for i in y_labels]
plt.yticks(np.array(y_ticks), y_labels, fontsize=15)
# plt.legend() #显示各曲线的图例
plt.legend(loc=0, numpoints=1, ncol=1, bbox_to_anchor=(1.05, 1.0), borderaxespad=0.)
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize=10) # 设置图例字体的大小和粗细
plt.tight_layout()
plt.savefig(f'./pics/scatter.png', format='png') # 建议保存为svg格式,再用inkscape转为矢量图emf后插入word中
plt.show()
def plot_hetmap():
import seaborn as sns
import numpy as np
x = np.array(
[[0.3761, 0.3704, 0.3674],
[0.3568, 0.3318, 0.3319],
[0.3461, 0.3335, 0.3182]]
)
# x = x.T
plt.figure(figsize=(5, 4))
ax = sns.heatmap(x, annot=True, fmt=".4f", annot_kws={'size': 15, 'color': 'black'}, # 'weight': 'bold'
linewidths=0.5, cmap='YlOrRd', square=True)
x_lables = ['Model1', 'Model2', 'Model3']
ax.set_yticklabels(ax.get_yticklabels(), rotation=0)
ax.set_xticklabels(ax.get_xticklabels(), rotation=0)
ax.xaxis.tick_top()
# plt.title('Target Model', fontsize=15)
plt.xlabel('Target Model', fontsize=15)
plt.ylabel('Complementary Model', fontsize=15)
plt.xticks([0.5, 1.5, 2.5], x_lables, fontsize=15) # 默认字体大小为10
plt.yticks([0.5, 1.5, 2.5], x_lables, fontsize=15) # 默认字体大小为10
cax = plt.gcf().axes[-1]
cax.tick_params(labelsize=15)
plt.tight_layout()
plt.savefig('./pics/heatmap.png', format='png')
plt.show()
# text的位置确认有点拉
def plot_ablation_bar_in_one():
models = ['Base', '$\\neg$ A', '$\\neg$ B', '$\\neg$ C', "Ours"]
x_label_size = 35
rotation = 0
# 从这里开始选择数据
labels = models
# plt.rcParams['font.sans-serif'] = ['Times New Roman'] # 如果要显示中文字体,则在此处设为:SimHei
# plt.rcParams['axes.unicode_minus'] = False # 显示负号
# # plt.rcParams['savefig.dpi'] = 300 # 图片像素
# plt.rcParams['figure.dpi'] = 300 # 分辨率
plt.figure(figsize=(40, 7))
colors = ['blue', 'green', 'red']
low = 0.34
up = 0.391
Beauty = [0.3488, 0.3687, 0.3688, 0.3546, 0.3761]
data=Beauty
plt.subplot(141)
plt.ylim(low, up)
position = (up - low) * 0.9 + low
plt.text(1.4, position, 'Beauty', fontsize=40)
plt.xticks(fontsize=x_label_size, rotation=rotation)
my_y_ticks = np.arange(low, up, 0.01)
plt.yticks(my_y_ticks, fontsize=40)
# plt.xlabel("Meituan", fontsize=20, fontweight='bold')
# hatches = ["\\"] + ["."] * 4 + ["/"]
# /, \, |, -, +, x, o, O,., * 。
plt.bar([0], data[0], width=0.5, color=colors[0], hatch=".", edgecolor='w')
plt.bar([1, 2, 3], data[1:4], width=0.5, color=colors[1], hatch=".", edgecolor='w')
plt.bar([4], data[4], width=0.5, color=colors[2], hatch=".", edgecolor='w')
plt.xticks([0, 1, 2, 3, 4], labels)
# plt.bar(np.arange(len(data)), data, width=0.5, tick_label=labels, color=colors, hatches=hatches)
low = 0.32
up = 0.361
Sport = [0.328, 0.3385, 0.3346, 0.3335, 0.3473]
data = Sport
plt.subplot(142)
plt.ylim(low, up)
position = (up - low) * 0.9 + low
plt.text(1.4, position, 'Sports', fontsize=40)
plt.xticks(fontsize=x_label_size, rotation=rotation)
my_y_ticks = np.arange(low, up, 0.01)
plt.yticks(my_y_ticks, fontsize=40)
# plt.xlabel("Beauty", fontsize=20, fontweight='bold')
# colors = ['darkorange'] * 1 + ['royalblue'] * 4 + ['red']
# /, \, |, -, +, x, o, O,., * 。
# plt.bar(np.arange(len(data)), data, hatch=2 * '.', width=0.5,
# tick_label=labels, color=colors,
# # edgecolor='k'
# )
plt.bar([0], data[0], width=0.5, color=colors[0], hatch="\\", edgecolor='w')
plt.bar([1, 2, 3], data[1:4], width=0.5, color=colors[1], hatch=".", edgecolor='w')
plt.bar([4], data[4], width=0.5, color=colors[2], hatch="/", edgecolor='w')
plt.xticks([0, 1, 2, 3, 4], labels)
low = 0.34
up = 0.391
Toys = [0.3455, 0.3671, 0.3588, 0.3611, 0.3749]
data = Toys
plt.subplot(143)
plt.ylim(low, up)
position = (up - low) * 0.9 + low
plt.text(1.4, position, 'Toys', fontsize=40)
plt.xticks(fontsize=x_label_size, rotation=rotation)
my_y_ticks = np.arange(low, up, 0.01)
plt.yticks(my_y_ticks, fontsize=40)
# plt.xlabel("Sports", fontsize=20, fontweight='bold')
# colors = ['darkorange'] * 1 + ['royalblue'] * 4 + ['red']
# /, \, |, -, +, x, o, O,., * 。
# plt.bar(np.arange(len(data)), data, hatch=2 * '.', width=0.5,
# tick_label=labels, color=colors,
# # edgecolor='k'
# )
plt.bar([0], data[0], width=0.5, color=colors[0], hatch="\\", edgecolor='w')
plt.bar([1, 2, 3], data[1:4], width=0.5, color=colors[1], hatch=".", edgecolor='w')
plt.bar([4], data[4], width=0.5, color=colors[2], hatch="/", edgecolor='w')
plt.xticks([0, 1, 2, 3, 4], labels)
low = 0.49
up = 0.54
Yelp = [0.496, 0.523, 0.5231, 0.5167, 0.53]
data = Yelp
plt.subplot(144)
plt.ylim(low, up)
position = (up - low) * 0.9 + low
plt.text(1.6, position, 'Yelp', fontsize=40)
plt.xticks(fontsize=x_label_size, rotation=rotation)
my_y_ticks = np.arange(low, up, 0.01)
plt.yticks(my_y_ticks, fontsize=40)
# plt.xlabel("Toys", fontsize=20, fontweight='bold')
# colors = ['darkorange'] * 1 + ['royalblue'] * 4 + ['red']
# /, \, |, -, +, x, o, O,., * 。
# plt.bar(np.arange(len(data)), data, hatch=2 * '.', width=0.5,
# tick_label=labels, color=colors,
# # edgecolor='k'
# )
plt.bar([0], data[0], width=0.5, color=colors[0], hatch="\\", edgecolor='w')
plt.bar([1, 2, 3], data[1:4], width=0.5, color=colors[1], hatch=".", edgecolor='w')
plt.bar([4], data[4], width=0.5, color=colors[2], hatch="/", edgecolor='w')
plt.xticks([0, 1, 2, 3, 4], labels)
plt.tight_layout()
plt.subplots_adjust(wspace=0.3, hspace=0)
# 建议保存为svg格式,再用inkscape转为矢量图emf后插入word中
plt.savefig('./pics/ablation.png', format='png')
plt.show()
import matplotlib.patches as mpatches
# 上下对齐的两个子图
def plot_two_bar_in_one():
beauty_base = [0.14, 0.16, 0.23, 0.25, 0.27, 0.30, 0.33, 0.34]
beauty_grow = [0.15, 0.17, 0.24, 0.26, 0.28, 0.31, 0.34, 0.35]
toys_base = [0.14, 0.16, 0.23, 0.25, 0.27, 0.30, 0.33, 0.34]
toys_grow = [0.15, 0.17, 0.24, 0.26, 0.28, 0.31, 0.34, 0.35]
# plt.xlabel("Extend", fontsize=20, fontweight='bold')
# plt.ylabel("NDCG@10", fontsize=25)
# plt.text(0.1, 0.55, data_name, fontsize=20, fontweight='bold')
x = np.arange(8)
total_width, n = 0.8, 2
width = total_width / n
x = x - (total_width - width) / n
lables = ['Model1', 'Model2', 'Model3', 'Model4',
'Model5', 'Model6', 'Model7', 'Model8']
# plt.rcParams['font.sans-serif'] = ['Times New Roman'] # 如果要显示中文字体,则在此处设为:SimHei
# plt.rcParams['axes.unicode_minus'] = False # 显示负号
# # from matplotlib.font_manager import FontProperties
# myfont = FontProperties(fname='times.ttf', size=25)
fig, (ax1, ax2) = plt.subplots(
2, 1, sharex=True, figsize=(20, 16), dpi=100)
beauty_base = np.array(beauty_base)
beauty_grow = np.array(beauty_grow)
low = 0.13
up = 0.41
ax1.set_ylim(low, up)
ax1.bar(x, beauty_base, width=width, color='royalblue', hatch=".", edgecolor='w') # , edgecolor='k',)
ax1.bar(x + width, beauty_grow, width=width, color='tomato', hatch="/", edgecolor='w') # , edgecolor='k',)
position = (up - low) * 0.9 + low
ax1.text(2.6, position, 'Beauty', fontsize=40)
y_ticks = [0.15, 0.20, 0.25, 0.30, 0.35, 0.40]
y_lables = ['0.15', '0.20', '0.25', '0.30', '0.35', '0.40']
ax1.set_yticks(np.array(y_ticks))
ax1.set_yticklabels(y_lables, fontsize=40)
toys_base = np.array(toys_base)
toys_grow = np.array(toys_grow)
low = 0.11
up = 0.41
ax2.set_ylim(low, up)
ax2.bar(x, toys_base, width=width, color='royalblue', hatch=".", edgecolor='w')
ax2.bar(x + width, toys_grow, width=width, color='tomato', hatch="/", edgecolor='w')
position = (up - low) * 0.9 + low
ax2.text(2.7, position, 'Toys', fontsize=40)
ax2.set_xticks(x + (width / 2))
ax2.set_xticklabels(lables, fontsize=40, rotation=20)
y_ticks = [0.15, 0.20, 0.25, 0.30, 0.35, 0.40]
y_lables = ['0.15', '0.20', '0.25', '0.30', '0.35', '0.40']
ax2.set_yticks(np.array(y_ticks))
ax2.set_yticklabels(y_lables, fontsize=40)
leg1 = mpatches.Patch(color='royalblue', hatch='.')
leg2 = mpatches.Patch(color='tomato', hatch='/')
labels = ['Original', 'Final']
fig.legend(handles=[leg1, leg2], labels=labels, loc='upper center', bbox_to_anchor=(0.2, 1), ncol=1, prop={'size': 40})
fig.tight_layout()
fig.show()
# 建议保存为svg格式,再用inkscape转为矢量图emf后插入word中
fig.savefig('./pics/two_bars.png', format='png')
plot_bar()
plot_line()
plot_multi_bar()
plot_bar_and_line()
plot_scatters()
plot_hetmap()
plot_ablation_bar_in_one()
plot_two_bar_in_one()