-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotting.py
182 lines (147 loc) · 7.51 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import numpy as np
import torch
from scipy import io
from typing import List, Optional, Tuple
from models_wrappers.models_wrapper_base import ModelWrapper
from max_entropy_utils import max_entropy_pdf
from moments_calculations import Moments
import matplotlib
matplotlib.use('Agg')
# matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
plt.rcParams.update({
"text.usetex": True,
"text.latex.preamble": r"\usepackage{amsmath}",
"font.family": "cmu-serif",
"mathtext.fontset": "cm",
# "font.size": 18
})
def plot_subspace_corr(subspace_corr: Optional[List], outdir: str):
if subspace_corr is not None:
torch.save(subspace_corr, os.path.join(outdir, 'subspace_corr.pth'))
ev1_convergence = [x[0, 0] for x in subspace_corr][1:]
ev2_convergence = [x[1, 1] for x in subspace_corr][1:]
ev3_convergence = [x[2, 2] for x in subspace_corr][1:]
plt.figure(figsize=(4, 2))
plt.plot(ev1_convergence, label=r'$\boldsymbol{v}_1$')
plt.plot(ev2_convergence, label=r'$\boldsymbol{v}_2$', color='red', linestyle=(0, (5, 10)))
plt.plot(ev3_convergence, label=r'$\boldsymbol{v}_3$', color='black', linestyle=(0, (2, 6)))
plt.legend()
plt.tight_layout()
plt.savefig(os.path.join(outdir, 'evs_convergence.pdf'), dpi=500, bbox_inches='tight')
plt.close()
def plot_eigvecs(model: ModelWrapper,
im,
nim: torch.Tensor, fullnim: torch.Tensor,
patch: torch.Tensor, npatch: torch.Tensor, rpatch: torch.Tensor,
eigvecs: torch.Tensor, eigvals: torch.Tensor,
name: str, outdir: str, model_name: str, path_name: str,
max_entropy_params: Optional[Tuple[List[np.array], np.array, np.array]] = None,
amount: int = 1,
subspace_corr: Optional[List] = None,
max_axis: float = 3,
delta: float = 0.01,
noisemap: Optional[torch.Tensor] = None):
n_ev = eigvecs.shape[0]
plot_subspace_corr(subspace_corr, outdir)
fig = plt.figure(figsize=(30, 5*n_ev))
rowmult = 1 + (max_entropy_params is not None)
nrows = max(2, n_ev * rowmult)
save_im = model.save_im
toim = model.toim
# Cols = 1 For original image, 1 for patch + noisy patch, 1 for evs, 1 for the MMSE, and 2*amount for the +- images
imax = plt.subplot2grid((nrows, 4 + 2 * amount), (0, 0), rowspan=nrows)
imax.imshow(toim(im), cmap='gray')
imax.axis('off')
imax.set_title('Original Image')
imax = plt.subplot2grid((nrows, 4 + 2 * amount), (0, 1), rowspan=nrows//2)
imax.imshow(toim(patch), cmap='gray')
imax.axis('off')
imax.set_title('Original Patch')
imax = plt.subplot2grid((nrows, 4 + 2 * amount), (nrows//2, 1), rowspan=nrows-nrows//2)
imax.imshow(toim(npatch), cmap='gray')
imax.axis('off')
imax.set_title('Noisy Patch')
for row in range(n_ev):
norm_stretch = max(abs(eigvecs[row].min()), abs(eigvecs[row].max()))
eigvecs_normed = eigvecs[row] / (2 * norm_stretch) + 0.5
# show eigvec
eigvecs_show = toim(eigvecs_normed)
ax = plt.subplot2grid((nrows, 4 + 2 * amount), (row * rowmult, 2))
ax.imshow(eigvecs_show, cmap='gray', vmin=0, vmax=255)
ax.axis('off')
ax.set_title(f'EigVec, Eigval: {eigvals[row]:.2E}')
save_im(eigvecs_show, os.path.join(outdir, f'pc{row + 1}_eigvec.png'))
# plot MMSE
ax = plt.subplot2grid((nrows, 4 + 2 * amount), (row * rowmult, 3 + amount))
ax.imshow(toim(rpatch), cmap='gray')
ax.axis('off')
ax.set_title('Restored Patch')
steps = np.linspace(0, max_axis, amount + 1)[1:]
for i, step in enumerate(steps):
evup = (rpatch + (step * eigvals[row].sqrt() * eigvecs[row]))
evdown = (rpatch - (step * eigvals[row].sqrt() * eigvecs[row]))
ax = plt.subplot2grid((nrows, 4 + 2 * amount), (row * rowmult, 3 + amount + 1 + i))
ax.imshow(toim(evup), cmap='gray')
ax.axis('off')
ax.set_title(fr'+ {step:.2g} * PC \#{row + 1}')
ax = plt.subplot2grid((nrows, 4 + 2 * amount), (row * rowmult, 3 + amount - i - 1))
ax.imshow(toim(evdown), cmap='gray')
ax.axis('off')
ax.set_title(fr'- {step:.2g} * PC \#{row + 1}')
save_im(toim(evdown), os.path.join(outdir, f'pc{row+1}_evdown_{step:.2g}.png'))
save_im(toim(evup), os.path.join(outdir, f'pc{row+1}_evup_{step:.2g}.png'))
# plot pdf if possible
if max_entropy_params is not None:
z = max_entropy_params[0][row]
ax = plt.subplot2grid((nrows, 4 + 2 * amount), (row*rowmult + 1, 3), colspan=amount * 2 + 1)
if z is not None:
yup_max = (max_entropy_params[1][row] + max_axis * np.sqrt(max_entropy_params[2][row]))
ydown_max = (max_entropy_params[1][row] - max_axis * np.sqrt(max_entropy_params[2][row]))
bit = 0.5
abit = bit * np.sqrt(max_entropy_params[2][row])
xs = np.arange(ydown_max - abit, yup_max + abit, delta)
unnormed_pdf = max_entropy_pdf(z, xs, max_entropy_params[1][row])
pdf = unnormed_pdf / (delta * sum(unnormed_pdf))
xs = np.linspace(-max_axis - bit, max_axis + bit, len(xs))
ax.plot(xs, pdf)
xs = np.concatenate([-1 * steps[::-1], np.array([0]), steps])
scatter_xs = max_entropy_params[1][row] + xs * np.sqrt(max_entropy_params[2][row])
scatter_ys = max_entropy_pdf(z, scatter_xs, max_entropy_params[1][row])
# ax.scatter(xs, scatter_ys, c='k')
ax.scatter(xs, scatter_ys / (delta * sum(unnormed_pdf)), c='k')
else:
ax.text(0.5, 0.5, 'Optimization problem didn\'t converge',
ha='center', va='center', fontsize=20, color='red')
plt.suptitle(f'eigvecs for {name} using {model_name}')
plt.tight_layout()
# plt.show()
plt.savefig(os.path.join(outdir, '..', path_name + '.png'))
save_im(toim(rpatch), os.path.join(outdir, 'rpatch.png'))
save_im(toim(npatch), os.path.join(outdir, 'npatch.png'))
save_im(toim(patch), os.path.join(outdir, 'ppatch.png'))
save_im(toim(im), os.path.join(outdir, 'im.png'))
save_im(toim(nim), os.path.join(outdir, 'nim.png'))
save_im(toim(fullnim), os.path.join(outdir, 'fullnim.png'))
if noisemap is not None:
torch.save(noisemap.cpu(), os.path.join(outdir, 'noisemap.pth'))
plt.close(fig)
def save_moments(moments: Moments, outdir: str, use_poly: bool):
n_ev = len(moments.vmu1)
io.savemat(os.path.join(outdir, 'moments.mat' if not use_poly else 'poly_moments.mat'),
{'n_ev': n_ev,
'vmu1': moments.vmu1,
'vmu2': moments.vmu2,
'vmu3': moments.vmu3,
'vmu4': moments.vmu4}) # << That's the difference
io.savemat(os.path.join(outdir, 'bigger_c_moments.mat' if not use_poly else 'bigger_c_poly_moments.mat'),
{'n_ev': n_ev,
'vmu1': moments.vmu1,
'vmu2': moments.vmu2,
'vmu3': moments.vmu3,
'vmu4': moments.vmu4_other}) # << That's the difference
def save_eigvecs(eigvecs: torch.Tensor, eigvals: torch.Tensor, outdir: str):
io.savemat(os.path.join(outdir, 'eigvecs.mat'),
{'eigvecs': eigvecs.cpu().numpy().astype(np.float64),
'eigvals': eigvals.cpu().numpy().astype(np.float64)})