-
Notifications
You must be signed in to change notification settings - Fork 4
/
visualizer.py
274 lines (212 loc) · 10.7 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import copy
import glob
import open3d as o3d
import numpy as np
import cv2
import yaml
from tqdm import tqdm
import torch
import argparse
from datasets.dataset import RenderDataset
from morpheus import MorpheuS
from datasets.utils import get_camera_rays
from tools.vis import render_mesh_from_view, run_tsdf_fusion, make_video
from tools.pose_utils import creat_360_trajectory, rot_x, rot_z
class Renderer(MorpheuS):
def __init__(self, config, backup=False, is_train=False):
super(Renderer, self).__init__(config, backup, is_train)
self.load_ckpt(os.path.join(self.workspace,
'models',
'model_ep_{:04d}.pth'.format(self.config['train']['n_epochs'])
))
def get_dataset(self):
'''
return dataset
'''
dataset = RenderDataset(self.config)
return dataset
@torch.no_grad()
def render_model_from_view(self, c2w, t, H=None, W=None, K=None, max_chunk=300*300, cano=False, optimize_pose=False, device=torch.device("cuda:0")):
"""
Core function!!!
:param c2w: [4, 4] OpenGL c2w camera pose, under reconstructed coordinate
:param t: time stamp
:param max_chunk:
:param cano:
:param optimize_pose:
:return:
"""
t = torch.tensor([t]).to(device)
rays_t = (t / self.dataset.num_frames)[:, None, None].repeat(1, H*W, 1) # [B, N, 3]
rays_id = t[:, None, None].repeat(1, H*W, 1)
# [H, W, 3]
rays_d_cam = get_camera_rays(H, W,
K[0, 0],
K[1, 1],
K[0, 2],
K[1, 2],
type='OpenGL').to(torch.float32).to(self.device)
rays_d_cam = rays_d_cam.unsqueeze(0) # [1, H, W, 3]
rays_o = c2w[:3, -1].view(1, 1, 1, 3).repeat(1, H, W, 1) # [1, H, W, 3]
rays_d = torch.sum(rays_d_cam[..., None, :] * c2w[None, None, None, :3, :3], -1) # [1, H, W, 3]
# In main script, data is obtained via sample_real_view_rays() or get_virtual_view_rays()
rays_o = rays_o.reshape(1, -1, 3) # [B, N, 3]
rays_d = rays_d.reshape(1, -1, 3) # [B, N, 3]
shading = 'albedo'
ambient_ratio = 1.0
pred_rgb = []
pred_depth = []
N = H * W
scale_factor = int(N // max_chunk + 1)
if N > max_chunk:
max_chunk = N // scale_factor + 1
for i in range(0, N, max_chunk):
outputs = self.render_rays(rays_o[:, i:i+max_chunk], rays_d[:, i:i+max_chunk],
rays_t[:, i:i+max_chunk], rays_id[:, i:i+max_chunk],
H,
W,
perturb=True,
ambient_ratio=ambient_ratio,
shading=shading,
cano=cano,
optimize_pose=optimize_pose)
pred_rgb.append(outputs['image'])
pred_depth.append(outputs['depth'])
pred_rgb = torch.cat(pred_rgb, dim=1).reshape(1, H, W, 3)
pred_depth = torch.cat(pred_depth, dim=1).reshape(1, H, W)
return pred_rgb, pred_depth
def get_recon2world_transform(self, offset=None):
num_frames = self.dataset.num_frames
coord_transforms = []
for i in range(num_frames):
c2w_raw = copy.deepcopy(self.dataset.poses_raw[i])
c2w_ndr = copy.deepcopy(self.dataset.poses_ndr[i])
c2w_ndr[:3, :3] /= self.dataset.sc_ndr
coord_transform = c2w_raw @ np.linalg.inv(c2w_ndr)
if offset is not None:
coord_transform = coord_transform @ offset
coord_transforms.append(coord_transform)
return coord_transforms
def reconstruct_bg_mesh(self, bg_mesh_path, voxel_length=0.01, depth_trunc=10.0, gray_scale=False):
os.makedirs(os.path.dirname(bg_mesh_path), exist_ok=True)
H, W, K = self.dataset.H, self.dataset.W, self.dataset.K_raw
c2w_list = self.dataset.poses_raw
rgb_list = self.dataset.images
depth_list = self.dataset.depths
mask_list = 1 - self.dataset.masks
mask_list[mask_list < 0.5] = 0
mask_list[mask_list >= 0.5] = 1
run_tsdf_fusion(K, H, W, c2w_list, depth_list, rgb_list,
mask_list=mask_list, save_path=bg_mesh_path,
voxel_length=voxel_length, depth_trunc=depth_trunc,
gray_scale=gray_scale)
def reconstruct_fg_mesh(self, mesh_dir, color=True):
self.export_all_meshes(mesh_dir, resolution=256, color=color)
def render_world_video(self, mesh_dir, traj_mode, color=True, bg_smooth=True, fg_smooth=True, scale = 1.0):
offset = None
if 'frog' in self.config['exp']['exp_name']:
offset = np.eye(4)
offset[:3, :3] = rot_z(np.pi / 6)
mesh_transforms = self.get_recon2world_transform(offset=offset)
bg_mesh_path = os.path.join(self.config['data']['data_dir'], "scene_meshes", "bg_mesh.ply")
if not os.path.exists(os.path.dirname(bg_mesh_path)):
self.reconstruct_bg_mesh(bg_mesh_path)
mesh_bg = o3d.io.read_triangle_mesh(bg_mesh_path)
if not bg_smooth:
mesh_bg.compute_vertex_normals()
if not os.path.exists(mesh_dir):
self.reconstruct_fg_mesh(mesh_dir, color=color)
mesh_files = sorted(glob.glob(os.path.join(mesh_dir, "*.ply")))
ndr2world = mesh_transforms[0]
target = self.dataset.poses_raw[0][:3, -1] + (ndr2world[:3, :3] @ -self.dataset.poses_ndr[0][:3, -1])
o2w_align = np.eye(4)
# up_vec requires mannual tweaking
if 'frog' in self.config['exp']['exp_name']:
o2w_align[:3, :3] = rot_x(0. * np.pi / 180.)
elif 'snoopy' or 'duck' or 'teddy' in self.config['exp']['exp_name']:
o2w_align[:3, :3] = rot_x(8. * np.pi / 180.)
elif 'mochi' in self.config['exp']['exp_name']: # mochi
o2w_align[:3, :3] = rot_x(15. * np.pi / 180.)
elif 'haru' in self.config['exp']['exp_name']:
o2w_align[:3, :3] = rot_x(45. * np.pi / 180.)
elif 'seq028' in self.config['exp']['exp_name']:
o2w_align[:3, :3] = rot_x(8. * np.pi / 180.)
else:
raise NotImplementedError
o2w_align[:3, -1] = target.squeeze()
o_axis = o3d.geometry.TriangleMesh.create_coordinate_frame().transform(o2w_align)
up_vec = o2w_align[:3, 1] # y-axis
# Create trajectory
r = None
if traj_mode == "real_view":
c2w_list = self.dataset.poses_raw
elif traj_mode == "360":
c2w_raw0 = self.dataset.poses_raw[0]
c2w_ref = copy.deepcopy(self.dataset.poses_raw[0])
if 'mochi' in self.config['exp']['exp_name']:
c2w_ref[1, -1] += 0.15
c2w_ref[:3, :3] = c2w_ref[:3, :3] @ rot_x(-15. * np.pi / 180.)
elif 'seq002' in self.config['exp']['exp_name']:
c2w_ref[1, -1] += -0.12 # 0.5
c2w_ref[:3, :3] = c2w_ref[:3, :3] @ rot_x(0.5 * np.pi / 180.)
r = 0.7
# c2w_ref[:3, -1] = r * c2w_ref[:3, -1] + (1 - r) * (target - c2w_ref[:3, -1])
c2w_ref[:3, -1] = target + r * (c2w_ref[:3, -1] - target)
elif 'seq028' in self.config['exp']['exp_name']:
c2w_ref[1, -1] += -0.3 # 1.0
c2w_ref[:3, :3] = c2w_ref[:3, :3] @ rot_x(5. * np.pi / 180.)
r = 0.5
# c2w_ref[:3, -1] = r * c2w_ref[:3, -1] + (1 - r) * (target - c2w_ref[:3, -1])
# r = 1.75
c2w_ref[:3, -1] = target + r * (c2w_ref[:3, -1] - target)
elif 'seq004' in self.config['exp']['exp_name']:
#c2w_ref[1, -1] += -0.3 # 1.0
# c2w_ref[:3, :3] = c2w_ref[:3, :3] @ rot_x(5. * np.pi / 180.)
r = 0.5
c2w_ref[:3, -1] = r * c2w_ref[:3, -1] + (1 - r) * (target - c2w_ref[:3, -1])
# r = 1.75
# c2w_ref[:3, -1] = target + r * (c2w_ref[:3, -1] - target)
c2w_list = creat_360_trajectory(c2w_ref, target, up_vec, self.dataset.num_frames)
else:
raise NotImplementedError()
save_dir = os.path.join(self.workspace, "scene_renderings")
os.makedirs(save_dir, exist_ok=True)
save_dir_rgb = os.path.join(save_dir, "rgb")
os.makedirs(save_dir_rgb, exist_ok=True)
for i, mesh_file in enumerate(tqdm(mesh_files)):
mesh = o3d.io.read_triangle_mesh(mesh_file)
if not fg_smooth:
mesh.compute_vertex_normals()
mesh.transform(mesh_transforms[i])
if 'mochi' in self.config['exp']['exp_name']:
H, W = 480, 640
K = copy.deepcopy(self.dataset.K_raw)
K[0, 2] = W / 2
K[1, 2] = H / 2
else:
H, W = self.dataset.H, self.dataset.W
K = copy.deepcopy(self.dataset.K_raw)
H *= scale
W *= scale
if r is not None:
K[0, 0] *= r
K[1, 1] *= r
K[0, :] *= scale
K[1, :] *= scale
c2w = c2w_list[i]
img = render_mesh_from_view([mesh, mesh_bg], c2w, K, int(H), int(W), mode="color", show_backface=True)
img = (img * 255).astype(np.uint8)
save_path = os.path.join(save_dir_rgb, "{:04d}.png".format(i))
cv2.imwrite(os.path.join(save_path), cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
make_video(save_dir, save_dir_rgb, 'render_{}'.format(traj_mode))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Your program description")
parser.add_argument('--config', type=str, default='configs/snoopy.yaml', help='Path to the YAML config file')
parser.add_argument('--traj', type=str, default='360', help='Path to the YAML config file')
args = parser.parse_args()
config = yaml.full_load(open(args.config, 'r'))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
renderer = Renderer(config).to(device)
mesh_dir =os.path.join(renderer.workspace, 'mesh_final_color_256')
renderer.render_world_video(mesh_dir, args.traj, color=True)