-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhamiltonian_cycle.py
65 lines (49 loc) · 1.66 KB
/
hamiltonian_cycle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class Graph():
def __init__(self, vertices):
self.graph = [[0 for column in range(vertices)]
for row in range(vertices)]
self.V = vertices
def isSafe(self, v, pos, path):
if self.graph[path[pos-1]][v] == 0:
return False
for vertex in path:
if vertex == v:
return False
return True
def hamCycleUtil(self, path, pos):
if pos == self.V:
if self.graph[path[pos-1]][path[0]] == 1:
return True
else:
return False
for v in range(1, self.V):
if self.isSafe(v, pos, path) == True:
path[pos] = v
if self.hamCycleUtil(path, pos+1) == True:
return True
path[pos] = -1
return False
def hamCycle(self):
path = [-1] * self.V
path[0] = 0
if self.hamCycleUtil(path, 1) == False:
print("Solution does not exist\n")
return False
self.printSolution(path)
return True
def printSolution(self, path):
print("Solution Exists: Following",
"is one Hamiltonian Cycle")
for vertex in path:
print(vertex, end=" ")
print(path[0], "\n")
g1 = Graph(5)
g1.graph = [[0, 1, 0, 1, 0], [1, 0, 1, 1, 1],
[0, 1, 0, 0, 1, ], [1, 1, 0, 0, 1],
[0, 1, 1, 1, 0], ]
g1.hamCycle()
# g2 = Graph(5)
# g2.graph = [[0, 1, 0, 1, 0], [1, 0, 1, 1, 1],
# [0, 1, 0, 0, 1, ], [1, 1, 0, 0, 0],
# [0, 1, 1, 0, 0], ]
# g2.hamCycle()