forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadain.py
201 lines (164 loc) · 5.78 KB
/
adain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import sys
import time
import ailia
import cv2
import numpy as np
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402
from image_utils import imread, load_image # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from utils import get_base_parser, get_savepath, update_parser # noqa: E402
import adain_utils # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
VGG_WEIGHT_PATH = 'adain-vgg.onnx'
VGG_MODEL_PATH = 'adain-vgg.onnx.prototxt'
DEC_WEIGHT_PATH = 'adain-decoder.onnx'
DEC_MODEL_PATH = 'adain-decoder.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/adain/'
IMAGE_PATH = 'cornell.jpg'
STYLE_PATH = 'woman_with_hat_matisse.jpg'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 512
IMAGE_WIDTH = 512
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Arbitrary Style Transfer Model', IMAGE_PATH, SAVE_IMAGE_PATH,
)
parser.add_argument(
'-t', '--style', metavar='STYLE_IMAGE',
default=STYLE_PATH,
help='The style image path.'
)
parser.add_argument(
'-a', '--alpha',
default=1.0, type=float,
help='Adjust the degree of stylization. It should be a value between 0.0 and 1.0(default).'
)
args = update_parser(parser)
# ======================
# Utils
# ======================
# TODO multiple style image and weight feature
def style_transfer(vgg, decoder, content, style, alpha=args.alpha):
assert (0.0 <= alpha <= 1.0)
content_f = vgg.predict(content.astype(np.float32))
style_f = vgg.predict(style)
feat = adain_utils.adaptive_instance_normalization(content_f, style_f)
feat = feat * alpha + content_f * (1 - alpha)
return decoder.predict(feat)
# ======================
# Main functions
# ======================
def image_style_transfer():
# net initialize
vgg = ailia.Net(VGG_MODEL_PATH, VGG_WEIGHT_PATH, env_id=args.env_id)
decoder = ailia.Net(DEC_MODEL_PATH, DEC_WEIGHT_PATH, env_id=args.env_id)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
input_img = load_image(
image_path,
(IMAGE_HEIGHT, IMAGE_WIDTH),
normalize_type='255',
gen_input_ailia=True,
)
src_h, src_w, _ = imread(image_path).shape
style_img = load_image(
args.style,
(IMAGE_HEIGHT, IMAGE_WIDTH),
normalize_type='255',
gen_input_ailia=True,
)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
preds_ailia = style_transfer(
vgg, decoder, input_img, style_img
)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
preds_ailia = style_transfer(vgg, decoder, input_img, style_img)
res_img = cv2.cvtColor(
preds_ailia[0].transpose(1, 2, 0),
cv2.COLOR_RGB2BGR
)
res_img = cv2.resize(res_img, (src_w, src_h))
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, np.clip(res_img * 255 + 0.5, 0, 255))
logger.info('Script finished successfully.')
def video_style_transfer():
# net initialize
vgg = ailia.Net(VGG_MODEL_PATH, VGG_WEIGHT_PATH, env_id=args.env_id)
decoder = ailia.Net(DEC_MODEL_PATH, DEC_WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
writer = webcamera_utils.get_writer(
args.savepath, IMAGE_HEIGHT, IMAGE_WIDTH
)
else:
writer = None
# Style image
style_img = load_image(
args.style,
(IMAGE_HEIGHT, IMAGE_WIDTH),
normalize_type='255',
gen_input_ailia=True
)
frame_shown = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
# Resize by padding the perimeter.
_, input_data = webcamera_utils.preprocess_frame(
frame, IMAGE_HEIGHT, IMAGE_WIDTH, normalize_type='255'
)
# # The image will be distorted by normal resize
# input_data = (cv2.cvtColor(
# cv2.resize(frame, (IMAGE_WIDTH, IMAGE_HEIGHT)), cv2.COLOR_BGR2RGB
# ) / 255.0).transpose(2, 0, 1)[np.newaxis, :, :, :]
# inference
preds_ailia = style_transfer(vgg, decoder, input_data, style_img)
# post-processing
res_img = cv2.cvtColor(
preds_ailia[0].transpose(1, 2, 0), cv2.COLOR_RGB2BGR
)
cv2.imshow('frame', res_img)
frame_shown = True
# save results
if writer is not None:
writer.write(np.clip(res_img * 255 + 0.5, 0, 255).astype(np.uint8))
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(VGG_WEIGHT_PATH, VGG_MODEL_PATH, REMOTE_PATH)
check_and_download_models(DEC_WEIGHT_PATH, DEC_MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
video_style_transfer()
else:
# image mode
image_style_transfer()
if __name__ == '__main__':
main()