Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

RotNet

input

(from https://github.com/d4nst/RotNet/tree/master/data/test_examples)

Ailia input shape: (1, 224, 224, 3)

output

  • Original: original image (after cropped)
  • Rotated: input image (randomly rotated)
  • Corrected: output image (model output is predicted angle, therefore we rotated the "rotated image" to visualize our output) output_image

Usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 rotnet.py

If you want to specify the input image, put the image path after the --input option.
You can use --savepath option to change the name of the output file to save.

$ python3 rotnet.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH

By adding the --video option, you can input the video.
If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 rotnet.py --video VIDEO_PATH

Currectly, two pretrained-models are avilable:

  • mnist(for mnist dataset)
  • gsv2(for google street view dataset) You can select one of them by adding --model (default: gsv2).

Reference

CNNs for predicting the rotation angle of an image to correct its orientation

Framework

Keras

Model Format

ONNX opset = 10

Netron

rotnet_gsv_2.onnx.prototxt