(Image from https://github.com/daniegr/EfficientPose/blob/master/utils/MPII.jpg)
Model variant: RT
Ailia input shape : (1, 224, 224, 3)
Range : [0, 1.0]
- Confidence : (1, 224, 224, 16)
- Range : [0, 1.0]
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 efficientpose.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 efficientpose.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
If you want to specify the model variant, put the model variant after the --model_variant
option.
You can only choose variants from 'rt','i','ii','iii','iv'.
$ python3 efficientpose.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH --model_variant rt
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 efficientpose.py --video VIDEO_PATH
Keras, TensorFlow, TensorFlow Lite or PyTorch
ONNX opset = 10