forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsku110k-densedet.py
244 lines (183 loc) · 6.59 KB
/
sku110k-densedet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import sys
import time
import numpy as np
import cv2
import ailia
# import original modules
sys.path.append('../../util')
from utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from detector_utils import load_image # noqa: E402C
from image_utils import normalize_image # noqa: E402C
from webcamera_utils import get_capture, get_writer # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'DenseDet.onnx'
MODEL_PATH = 'DenseDet.onnx.prototxt'
REMOTE_PATH = \
'https://storage.googleapis.com/ailia-models/sku100k-densedet/'
IMAGE_PATH = 'demo.jpg'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 2560
IMAGE_WIDTH = 2560
THRESHOLD = 0.3
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'SKU110K-DenseDet', IMAGE_PATH, SAVE_IMAGE_PATH
)
parser.add_argument(
'-th', '--threshold',
default=THRESHOLD, type=float,
help='The detection threshold.'
)
parser.add_argument(
'--onnx',
action='store_true',
help='execute onnxruntime version.'
)
args = update_parser(parser)
# ======================
# Secondaty Functions
# ======================
def draw_bbox(
img, bboxes, thickness=1, font_scale=0.5):
color = (0, 255, 0)
for bbox in bboxes:
bbox_int = bbox.astype(np.int32)
left_top = (bbox_int[0], bbox_int[1])
right_bottom = (bbox_int[2], bbox_int[3])
cv2.rectangle(
img, left_top, right_bottom, color, thickness=thickness)
text = '{:.02f}'.format(bbox[-1])
cv2.putText(
img, text, (bbox_int[0], bbox_int[1] - 2),
cv2.FONT_HERSHEY_COMPLEX, font_scale, color)
return img
# ======================
# Main functions
# ======================
def preprocess(img, image_shape):
h, w = image_shape
im_h, im_w, _ = img.shape
# keep_aspect
scale = min(h / im_h, w / im_w)
ow, oh = int(im_w * scale + 0.5), int(im_h * scale + 0.5)
if ow != im_w or oh != im_h:
img = cv2.resize(img, (ow, oh), interpolation=cv2.INTER_LINEAR)
img = normalize_image(img, normalize_type='ImageNet')
pad_img = np.zeros((h, w, 3), dtype=img.dtype)
pad_img[:oh, :ow, ...] = img
img = pad_img
img = img.transpose(2, 0, 1) # HWC -> CHW
img = np.expand_dims(img, axis=0)
img = img.astype(np.float32)
return img, scale
def post_processing(bboxes, scale):
score_thr = args.threshold
bboxes[:, :4] = bboxes[:, :4] / scale
scores = bboxes[:, -1]
inds = scores > score_thr
bboxes = bboxes[inds, :]
return bboxes
def predict(net, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
shape = (IMAGE_HEIGHT, IMAGE_WIDTH)
img, scale = preprocess(img, shape)
# feedforward
if not args.onnx:
output = net.predict([img])
else:
output = net.run(None, {'img': img})
bboxes, _ = output
bboxes = post_processing(bboxes, scale)
return bboxes
def recognize_from_image(net):
# input image loop
for image_path in args.input:
logger.info(image_path)
# prepare input data
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time_estimation = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
bboxes = predict(net, img)
end = int(round(time.time() * 1000))
estimation_time = (end - start)
# Loggin
logger.info(f'\tailia processing estimation time {estimation_time} ms')
if i != 0:
total_time_estimation = total_time_estimation + estimation_time
logger.info(f'\taverage time estimation {total_time_estimation / (args.benchmark_count - 1)} ms')
else:
bboxes = predict(net, img)
res_img = draw_bbox(img, bboxes)
# plot result
savepath = get_savepath(args.savepath, image_path, ext='.png')
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, res_img)
logger.info('Script finished successfully.')
def recognize_from_video(net):
video_file = args.video if args.video else args.input[0]
capture = get_capture(video_file)
assert capture.isOpened(), 'Cannot capture source'
# create video writer if savepath is specified as video format
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
if args.savepath != SAVE_IMAGE_PATH:
logger.warning(
'currently, video results cannot be output correctly...'
)
writer = get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while True:
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
# inference
bboxes = predict(net, frame)
# plot result
res_img = draw_bbox(frame, bboxes)
# show
cv2.imshow('frame', res_img)
frame_shown = True
# save results
if writer is not None:
writer.write(res_img.astype(np.uint8))
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
env_id = args.env_id
# initialize
if not args.onnx:
logger.info("This model requires 10GB or more memory.")
memory_mode=ailia.get_memory_mode(reduce_constant=True, ignore_input_with_initializer=True, reduce_interstage=True, reuse_interstage=False)
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id, memory_mode=memory_mode)
else:
import onnxruntime
net = onnxruntime.InferenceSession(WEIGHT_PATH)
if args.video is not None:
recognize_from_video(net)
else:
recognize_from_image(net)
if __name__ == '__main__':
main()