forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsemantic-segmentation-mobilenet-v3.py
194 lines (152 loc) · 5.16 KB
/
semantic-segmentation-mobilenet-v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import sys
import time
import numpy as np
import cv2
import ailia
# import original modules
sys.path.append('../../util')
from utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from detector_utils import load_image # noqa: E402
import webcamera_utils # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = './sem_seg.onnx'
MODEL_PATH = './sem_seg.onnx.prototxt'
REMOTE_PATH = \
'https://storage.googleapis.com/ailia-models/semantic-segmentation-mobilenet-v3/'
IMAGE_PATH = 'demo.png'
SAVE_IMAGE_PATH = 'output.png'
CATEGORY = (
'Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes',
'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face',
'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'
)
IMAGE_HEIGHT = 224
IMAGE_WIDTH = 224
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Semantic segmentation with MobileNetV3 model', IMAGE_PATH, SAVE_IMAGE_PATH
)
parser.add_argument(
'--orig-size',
action='store_true',
help='output in original image size.'
)
args = update_parser(parser)
# ======================
# Secondaty Functions
# ======================
def preprocess(img):
img = img[:, :, ::-1]
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
img = img.astype(np.float32) / 255.0
img = np.expand_dims(img, axis=0)
return img
def post_processing(output, orig_shape=(IMAGE_HEIGHT, IMAGE_WIDTH)):
threshold = 100
out_mask = np.squeeze(output)
if args.orig_size:
out_mask = cv2.resize(
out_mask,
(orig_shape[1], orig_shape[0]),
interpolation=cv2.INTER_LINEAR,
)
out_mask = out_mask * 255 > threshold
return out_mask
# ======================
# Main functions
# ======================
def predict(img, net):
# initial preprocesses
h, w, _ = img.shape
img = preprocess(img)
# feedforward
output = net.predict({
'input_1': img
})
# post processes
out_mask = post_processing(output, orig_shape=(h, w))
return out_mask
def recognize_from_image(filename, net):
# prepare input data
img = load_image(filename)
logger.debug(f'input image shape: {img.shape}')
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
out_mask = predict(img, net)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
out_mask = predict(img, net)
if not args.orig_size:
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
res_img = np.ones(img.shape, np.uint8) * 255
res_img[out_mask] = img[out_mask]
# plot result
savepath = get_savepath(args.savepath, filename)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, res_img)
logger.info('Script finished successfully.')
def recognize_from_video(video, net):
capture = webcamera_utils.get_capture(video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
writer = webcamera_utils.get_writer(
args.savepath, IMAGE_HEIGHT, IMAGE_WIDTH
)
else:
writer = None
frame_shown = True
while True:
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
out_mask = predict(frame, net)
# draw segmentation area
if not args.orig_size:
frame = cv2.resize(frame, (IMAGE_WIDTH, IMAGE_HEIGHT))
res_img = np.ones(frame.shape, np.uint8) * 255
res_img[out_mask] = frame[out_mask]
# show
cv2.imshow('frame', res_img)
frame_shown = False
# save results
if writer is not None:
writer.write(res_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
net.set_input_shape((1, IMAGE_HEIGHT, IMAGE_WIDTH, 3))
if args.video is not None:
# video mode
recognize_from_video(args.video, net)
else:
# image mode
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
recognize_from_image(image_path, net)
if __name__ == '__main__':
main()